
Multiprimary support for the Availability of

Cluster-based Stateful Firewalls using FT-FW

P. Neira1, R.M. Gasca1, L. Lefèvre2

1 QUIVIR Research Group - University of Sevilla, Spain, pneira, gasca@lsi.us.es
2 INRIA RESO - University of Lyon, laurent.lefevre@inria.fr

Abstract. Many research has been done with regards to firewalls during
the last decade. Specifically, the main research efforts have focused on
improving the computational complexity of packet classification and en-
suring the rule-set consistency. Nevertheless, other aspects such as fault-
tolerance of stateful firewalls still remain open. Continued availability of
firewalls has become a critical factor for companies and public adminis-
tration. Classic fault-tolerant solutions based on redundancy and health
checking mechanisms does not success to fulfil the requirements of state-
ful firewalls. In this work we detail FT-FW, a scalable software-based
transparent flow failover mechanism for stateful firewalls, from the mul-
tiprimary perspective. Our solution is a reactive fault-tolerance approach
at application level that has a negligible impact in terms of network la-
tency. On top of this, quick recovery from failures and fast responses
to clients are guaranteed. The solution is suitable for low cost off-the-
shelf systems, it supports multiprimary workload sharing scenarios and
no extra hardware is required 3.

1 Introduction

Firewalls have become crucial network elements to improve network security.
Firewalls separate several network segments and enforce filtering policies which
determine what packets are allowed to enter and leave the network. Filtering
policies are defined by means of rule-sets, containing each rule a set of selectors
that match packet fields and the action to be issued, such as accept or deny.
There are many problems that firewalls have to face in modern networks:

1. Rule set design. Firewall rule languages tend to be very low level. Thus,
writing a rule set is a very difficult task [1] and usually requires an in-
depth knowledge of a particular firewalls’ internal working. Furthermore,
each vendor has its own firewall language. The research community is trying
to construct a standard language to express rule-sets that compile as many
specific low level languages as possible [2].

2. Rule set consistency. When rules are expressed using wildcards (i.e. filter-
ing entire subnets instead of single IPs) then the rules may not be disjoint.

3
This work has been partially supported by the Spanish Ministerio de Educación y Ciencia through a coordinated
research project(grant DPI2006-15476-C02-00) and Feder (ERDF).

In such a situation rule ordering is important and it can introduce a con-
sistency problem. Moreover, if on the route from the sender to the destina-
tion, multiple firewalls are crossed, a consistency problem can be introduced
between the rule-sets of firewalls. Building a consistent inter-firewall and
intra-firewall rule-set is a difficult task, and even more challenging if it must
support frequent dynamic updates [3]. Also, several works have focused on
solving consistency and conformity problems in rule-sets and also in dis-
tributed environments [4] [5] [6].

3. Computational complexity. As each packet must be checked against a
list of ordered rules (or unordered if rule-sets are designed in positive logic),
the time required for filtering grows in different orders depending on the al-
gorithm and data structure used [7]. Conversely, performant algorithms, may
require great memory occupation or dedicated hardware, which is another
important parameter to take into account.

4. Fault tolerance. Firewalls inherently introduce a single point of failure in
the network schema. Thus, a failure in the firewall results in temporary isola-
tion of the protected network segments during reparation. Failures can arise
due to hardware-related problems, such as problems in the power supply,
bus, memory errors, etc. and software-related problems such as bugs. This
can be overcome with redundancy and health check monitor techniques. The
idea consists of having several firewall replicas: one that filters flows (primary
replica), and others that (backup replicas) are ready to recover the services
as soon as failure arises (See Fig. 1).

However, system-level redundancy is insufficient for Stateful Firewalls. State-
ful firewalls extend the firewall capabilities to allow system administrators define
state-based flow filtering. The stateful capabilities are enabled by means of the
connection tracking system (CTS) [8]. The CTS performs a correctness check
upon the protocols that it gateways. This is implemented through a finite state
automaton for each supported protocol that determines what protocol transi-
tions are valid. The CTS stores several aspects of the evolution of a flow in a set
of variables that compose a state. This information can be used to deny packets
that trigger invalid state transitions. Thus, the system administrator can use the
states to define more intelligent and finer filter policies that provide higher level
of security.

Let’s assume the following example to clarify the fault-tolerance problem in
stateful firewall environments: the primary firewall replica fails while there is
an established TCP connection. Then, one of the backup replicas is selected
to become primary and recover the filtering. However, since the new primary
replica has not seen any packets for that existing connection, the CTS of the
new primary firewall replica considers that TCP PSH packets of non-existing
connections triggers an invalid state transition. With the appropriate stateful
rule-set, this TCP connection will not be recovered since this packet triggers
an invalid state transition (the first packet seen does not belong to any known
established connection by the new primary firewall replica cannot be a TCP PSH
packet). Thus, the packets are denied and the connection has to be re-established

4. Therefore, the redundant solution requires a replication protocol to guarantee
that the flow states are known by all replica firewalls.

In this work, we specifically focus on solving the fault-tolerance problem. We
extend the FT-FW (Fault Tolerant FireWall) [10], a reactive fault-tolerant solu-
tion for stateful firewalls, from the multiprimary setup perspective in which sev-
eral replica firewalls can share workload. This solution guarantees transparency,
simplicity, protocol independency, failure-detection independency and low cost.
We extend our existing work to fulfil the scalability requirements of a multipri-
mary setting.

The main idea of our proposal is an event-driven model to reliably propagate
states among replica firewalls in order to enable fault-tolerant stateful firewalls.
The key concepts of FT-FW are the state proxy and the reliable replication
protocol. The state proxy is a process that runs on every replica firewall and
waits for events of state changes. This process propagates state changes between
replicas and keeps a cache with current connection states. State propagation is
done by means of the proposed reliable multicast IP protocol that resolves the
replication.

The paper is organized as follows: in Section 3 we formalize the system model.
In Section 4 we detail the architecture of FT-FW. The state proxy design is
detailed in Section 4.1. The proposed replication protocol is described in Sec-
tion 4.2. We focus on the specific multiprimary support in Section 5. Then we
evaluate our solution proposed in Section 6 and detail the related work in Sec-
tion 2. We conclude with the conclusions and future works in Section 7.

2 Related Work

Many generic architectures have been proposed to achieve fault-tolerance of net-
work equipments with a specific focus on web servers and TCP connections [11]
[12] [13] [14]. In these works, the authors cover scenarios where the complete
state history has to be sent to the backup replicas to successfully recover the
connections. Most of them are limited to 10/100 Mbit networks. These solutions
can also be used to implement fault-tolerant stateful firewalls; however, they do
not exploit the firewall semantics detailed in the system model (specifically def-
inition 11). A state replication based on extra hardware has been also proposed
[15]. Specifically, the authors use Remote Direct Memory Access (RDMA) mech-
anisms [15] to transfer states. This solution implies an extra cost and the use of
a technology that may result intrusive and out of the scope of high performance
computing clusters.

To the best of our knowledge, the only similar research in the domain of fire-
walls that we have found is [16]. This work is targeted to provide a fault-tolerant
architecture for stateless firewalls with hash-based load-balancing support. We
have used this idea in Sec. 5 to enable workload sharing without the need of a
load balancing director.

4 In our current work, we provide a detailed scenario in the website of the FT-FW
implementation [9].

With regard to replication protocols suitable for CBSF, we have found TIPC
[17] is a generic protocol designed for use in clustered computer environments,
allowing designers to create applications that can communicate quickly and reli-
ably with other applications regardless of their location within the cluster. TIPC
is highly configurable and covers different cluster-based setups. This protocol is
suitable for the scenario described in this work. The generic nature of TIPC
makes it hard for it to fulfil the policies 1, 2 and 3.

In [18], the authors of this work propose preliminary design ideas and a set
of problematic scenarios to define an architecture to ensure the availability of
stateful firewalls. The authors of this work detail the FT-FW architecture from
the Primary-Backup perspective in [10].

In the industry field, there are several proprietary commercial solutions such
as CheckPoint Firewall-1, StoneGate and Cisco PIX that offer a highly avail-
able stateful firewall for their products. However, as far as we know, there is
only documentation on how to install and configure the stateful failover. In the
OpenSource world, the OpenBSD project provides a fault-tolerant solution for
their stateful firewall [19]. The solution is embedded into the firewall code and
the replication protocol is based on unreliable Multicast IP and it also has sup-
port for multiprimary setups. The project lacks of internal design documentation
apart from the source code. Other existing projects such as Linux-HA [20] only
focus on system-level fault-tolerance so it does not cover the problem discussed
in our work.

3 Definitions and Notation

The formalization of the stateful firewall model is out of the scope of this work
as other works have already proposed a model [21]. Nevertheless, we formalize
the definitions extracted from the fault-tolerant stateful firewall semantics that
are useful for the aim of this work:

Definition 1. Fault-tolerant stateful firewall cluster: it is a set of state-
ful replica firewalls fw = {fw1, ..., fwn} where n ≥ 2 (See Fig. 1). The number
of replica firewalls n that compose the cluster depends on the availability re-
quirements of the protected network segments and their services, the cost of
adding a replica firewall, and the workload that the firewall cluster has to sup-
port. We also assume that failures are independent between them so that adding
new replica firewalls improve availability. The set of replica firewalls fw are con-
nected through a dedicated link and they are deployed in the local area network.
We may use more than one dedicated link for redundancy purposes. Thus, if one
dedicated link fails, we can failover to another.

Definition 2. Cluster rule-set: Every replica firewall has the same rule-set.
Definition 3. Flow filtering: A stateful firewall fwx filters a set of flows

Fx = {F1, F2, ..., Fn}.
Definition 4. Multiprimary cluster: We assume that one or more firewall

replicas deploy the filtering at the same time, the so-called primary replicas, while
others act as backup replicas.

Fig. 1. Stateful firewall cluster of order 2 and order 3 respectively

Definition 5. Failure detection: We assume a failure detection manager,
eg. an implementation of VRRP [22], that detects failures by means of heart-
beat tokens. Basically, the replicas send a heartbeat token to each other every t

seconds, if one of the replicas stops sending the heartbeat token, it is supposed
to be in failure. This failure detection mechanism is complemented with several
multilayer checkings such as link status detection and checksumming. This man-
ager is also responsible of selecting which replica runs as primary and which one
acts as backup. Also, we assume that the manager runs on every firewall replica
belonging the cluster.

Definition 6: Flow durability (FD): The FD is the probability that a
flow has to survive failures. If FD is 1 the replica firewall can recover all the
existing flows. In this work, we introduce a trade-off between the FD and the
performance requirements of cluster-based stateful firewalls.

Definition 7. Flow state: Every flow Fi in F is in a state Sk in an instant
of time t.

Definition 8. State determinism: The flow states are a finite set of de-
terministic states s = {S1, S2, ..., Sn}.

Definition 9. Maximum state lifetime: Every state Sk has a maximum
lifetime Tk. If the state Sk reaches the maximum lifetime Tk, we consider that
the flow Fj is not behaving as expected, eg. one of the peers has shutdown due
to a power failure without closing the flow appropriately.

Definition 10. State variables: Every state Sk is composed of a finite sets
of variables Sk = {v1, v2, ..., vj}. The change of the value of a certain variable va

may trigger a state change Sk → Sk+1.

Definition 11. State history: The backup replica does not have to store
the complete state history S1 → S2 → ... → Sk to reach the consistent state Sk.
Thus, the backup only has to know the last state Sk to recover the flow Fi.

Definition 12. State classification: The set of states s can be classified
in two subsets: transitional and stable states. These subsets are useful to notice
if the effort required to replicate one state change is worthwhile or not:

– Transitional states (TS) are those that are likely to be superseded by another
state change in short time. Thus, TS have a very short lifetime.

– Stable States (SS) are long standing states (the opposite of TS).

We have formalized this state classification as the function of the probability
(P) of the event of a state change (X). Let t be the current state age. Let Tk

be the maximum lifetime of a certain state. For the flow Fj the current state
Sk, we define the probability Px that a TS can be superseded by another state
change can be expressed as:

Px(t, Sk) =

{

1 − δ(t, Sk) if (0 ≤ t < Tk)
0 if (t ≥ Tk)

And the probability Py that a SS can be superseded by a state change can
be expressed as:

Py(t, Sk) = 1 − Px(t, Sk)

This formalization is a representation of the probability that a state can be
replaced by another state as time goes by. Both definitions depend on the δ(t, Sk)
function that determines how the probability of a state change Sk increases, e.g.
linearly, exponential, etc. The states can behave as SS or TS depending on
their nature, eg. initial TCP handshake and closure packets (SYN, SYN-ACK
and FIN, FIN-ACK, ACK respectively) trigger TS and TCP ACK after SYN-
ACK triggers TCP Established which usually behaves as SS. Network latency is
another important factor because if latency is high, all the states tend to behave
as SS. In practise, we can define a simple δ(t, Sk) that depends on the acceptable
network latency l:

δx(t, Sk) =

{

1 if t > (2 ∗ l)
0 if t ≤ (2 ∗ l)

The acceptable network latency l depends on the communication technology,
eg. on a wired line the acceptable latency is 100 ms and in satellite links 250 ms.

For the aim of this work, we focus on ensuring the durability of SS as they
have a more significant impact on the probability that a flow can survive failures.
This means that our main concern is to ensure that long standing flows can
survive failures because the interruption of these flows lead to several problems
such as:

1. Extra monetary cost for an organization, eg. if the VoIP communications are
disrupted, the users would have to be re-called with the resulting extra cost.

2. Multimedia streaming applications breakage, eg. Internet video and radio
broadcasting disruptions.

3. Remote control utility breakage, eg. SSH connections closure.
4. The interruption of a big data transfer between two peers, eg. peer to peer

bulk downloads.

Nevertheless, the high durability of TS is also desired; however, they are less
important than SS since their influence on the FD is smaller.

4 FT-FW Architecture

The FT-FW architecture is composed of two blocks: the state proxy and the
efficient and scalable replication protocol.

4.1 State Proxy

From the software perspective, each replica firewall is composed of two parts:

1. The connection tracking system (CTS): the system that tracks the state
evolution of the connections. This software block is part of a stateful firewall,
and the packet filter uses this state information to filter traffic [8].

2. The state proxy (SP): the application that reliably propagates state changes
among replica firewalls [23].

In order to communicate both parts, we propose an event-driven architecture
(EDA) which provides a natural way to propagate changes: every state change
triggers an event that contains a tuple composed of {AddressSRC , AddressDST ,

PortSRC , PortDST , P rotocol}, that uniquely identifies a flow, together with the
set of variables that compose a state Sk = {v1, v2, ..., vn}. Thus, the CTS sends
events in response to state changes. These events are handled by the SP which
decides what to do with them. We have classified events into three types [18]:
new, which details a flow that just started; update, which tells about an update
in an opened flow and destroy, which notifies the closure of an existing flow.

The EDA facilities modularization and reduces dependencies since the CTS
and the SP are loosely coupled. Moreover, its asynchronous nature suits well for
the performance requirements of stateful firewalls.

We have modified the CTS to implement a framework to subscribe to state
change events, dump states and inject them so that the SP can interact with the
CTS. The number of changes required to introduce this framework in the CTS
is minimal. This framework makes the FT-FW architecture independent of the
CTS implementation since we clearly delimit the CTS and the SP functionalities.
Also, the FT-FW solution allows the system architect to add support for fault
tolerance in a plug-and-play fashion, ie. the system architect only has to launch
the SP in runtime and add new replica firewalls to enable FT-FW. The CTS
framework offers three methods to the SP:

1. Dumping: it obtains the complete CTS state table, including generic and spe-
cific states. This method is used to perform a full resynchronization between
the SP and the CTS.

2. Injection: it inserts a set of states, this method is invoked during the con-
nection failover.

3. Subscription: it subscribes the SP to state-change notifications through events.

The SP listens to events of state change, maintains a cache with current
states, and sends state-change notifications to other replicas. We assume that
every replica firewall that is part of the cluster runs a SP. Every SP has two
caches:

– The internal cache which holds local states, ie. those states that belong to
flows that this replica is filtering. These states can be a subset of states
subset(s) of the set of states s held in the CTS. This is particularly useful
if the system architect does not want to guarantee the FD of certain flows
whose nature is unreliable, eg. the UDP name resolution flows (UDP DNS)
that are usually reissued in short if there is no reply from the DNS server.
Thus, we assume that the CTS provides an event filtering facility to ignore
certain flows whose state the SP does not store in the internal cache.

– The external cache which hold foreign states, ie. those states that belong to
connections that are not being filtered by this replica. If the firewall cluster is
composed of n replicas, the number of external caches is n− 1 at maximum.
Thus, there is an external cache for every firewall replica in the cluster so
that, when a failure arises in one of the firewall replicas fwy, one of the
backups fwx is selected to inject the flow states stored in its external cache
fwy.

We represent the FT-FW architecture for three replica firewalls and the in-
teraction between the blocks in Fig. 2. Note that, in this particular case, the
number of external caches is two so that every replica firewall can recover the
filtering of the other two replicas at any moment.

Fig. 2. FT-FW Architecture of order 3

At startup, the SP invokes the dumping method to fully resynchronize its
internal cache with the CTS, and subscribes to state change events to keep
the internal cache up-to-date. The flows are mapped into a state objects which
are stored in the internal cache. We also assume that the events that the CTS
generates are mapped into temporary state objects that are used to update the
internal cache.

Definition 13. State object: We assume that every flow Fj is mapped
into an state object (SO). This SO has an attribute lastseq seen to store the
last sequence number m of the message sent that contained the state change
Sk−1 → Sk. This sequence number is updated when send msg() is invoked.

The purpose of this sequence number attribute is to perform an efficient state
replication under message omission and congestion situations as we detail in the
replication protocol section.

The operation of the SP consists of the following: A packet p that is part of an
existing flow Fj may trigger a state change Sk−1 → Sk when the primary replica
firewall succesfully finds a match in the rule-set for p. If such state change occurs,
it is notified through an event delivered to the SP. The SP updates its internal
cache and propagates the state change to other replicas via the dedicated link
(See Algorithm. 1 for the implementation of the internal cache routine). Thus,
the backup firewall SPs handle the state change received and insert it in their
external cache (See Algorithm. 2 for the implementation of the external cache
routine).

internal ← create cache();1

dump states from CTS(internal);2

subscribe to CTS events();3

for ever do4

object ← read event from CTS();5

switch event type(object) do6

case new7

cache add(internal, object);8

end9

case update10

cache update(internal, object);11

end12

case destroy13

cache del(internal, object);14

end15

end16

send msg(object);17

end18

Algorithm 1: Internal cache routine

The function send msg() converts the object which represents the state
change event into network message format and sends it to the other replicas.
The function recv msg() receives and converts the network message format into
a state object. The implementation of these functions is discussed in the repli-
cation protocol.

4.2 Replication Protocol

In this work, we propose an asynchronous replication protocol to replicate state
changes between replica firewall. This protocol trades off with the FD (definition
6) and performance. The FT-FW protocol also handles link congestions and mes-

external ← create cache();1

request resync(external);2

for ever do3

object ← read msg();4

switch event type(object) do5

case new6

cache add(external, object);7

end8

case update9

cache update(external, object);10

end11

case destroy12

cache del(external, object);13

end14

end15

end16

Algorithm 2: External cache routine

sage omission situations efficiently by exploiting the stateful firewall semantics,
specifically definition 11.

Definition 14. Message omission handling: Given two messages with
sequence number m and m + k that contains state changes Sk−2 → Sk−1 and
Sk−1 → Sk respectively. If both messages are omitted, only the state change
Sk−1 → Sk is retransmitted since, due to definition 11, the old state changes,
such as Sk−2 → Sk+1 does not improve the FD.

Replication has been studied in many areas, especially in distributed sys-
tems for fault-tolerance purposes and in databases [24] [25]. These replication
protocols (RP) may vary from synchronous to asynchronous behaviours:

1. Synchronous (also known as eager replication): These RPs are implemented
through transactions that guarantee a high degree of consistency (in the con-
text of this work, this means a FD close to 1). However, they would roughly
reduce performance in the cluster-based stateful firewall environment. With
a synchronous solution, the packets that trigger state changes must wait un-
til all backup replicas have successfully updated their state synchronously.
This approach would introduce an unaffordable latency in the traffic deliv-
ery. The adoption of this approach would particularly harm real-time traffic
and the bandwidth throughput.

2. Asynchronous (also known as lazy replication): This approach speeds up the
processing in return of it reduces the level of consistency between the repli-
cas and increasing the complexity. From the database point of view, a high
degree of data consistency is desired so this approach usually makes asyn-
chronous solutions unsuitable. However, in the context of stateful firewalls,
the asynchronous replication ensures efficient communication which helps to
avoid quality of service degradation.

Therefore, we have selected an asynchronous solution which allows the packet
to leave the primary firewall before the state has been replicated to other backup
replicas. We propose an efficient and reliable replication protocol for cluster-
based stateful firewalls (CBSF) based on Multicast IP. Our protocol uses se-
quence tracking mechanisms to guarantee that states propagate reliably. Al-
though message omissions are unlikely in the local area, communication reliabil-
ity is a desired property of fault-tolerant systems.

In our protocol, we define three kinds of messages that can be exchanged
between replicas, two of them are control messages (Ack and Nack) and one
that contains state changes:

- Positive Acknowledgment (Ack) is used to explicitly confirm that a range of
messages were correctly received by the backup replica firewall.

- Negative Acknowledgment (Nack) explicitely requests the retransmission of
a range of messages that were not delivered.

- State Data contains the state change Sk−1 → Sk for a given flow Fj . This
message contains the subset of variables v = {v1, ..., vn} that has changed.

Our replication protocol is based on an incremental sequence number algo-
rithm and it is composed of two parts: the sender and the receiver. The sender
and the receiver are implemented through send msg() and recv msg() respec-
tively (See Algorithm.3 and Algorithm. 4). Basically, the sender transmits state
changes and control messages and the receiver waits for control messages, which
request explicit retransmission and confirm correct reception.

We formalize the behaviour of the replication protocol with the following
policies:

Policy 1. Sender Policy: The sender does not wait for acknowledgments to
send new data. Thus, its behaviour is asynchronous since it never stops sending
state changes.

Policy 2: Receiver policy: The receiver always delivers the messages re-
ceived even if they are out of sequence. This policy is extracted from the defini-
tion 11.

Policy 3: Receiver acknowledgment policy: The receiver schedules an
acknowledgment when we receive WINDOW SIZE messages correctly, and
negative acknowledges the range of those messages that were not delivered ap-
propriately. The best value of WINDOW SIZE is left for future works due to
space restrictions.

5 Multiprimary support

The FT-FW architecture supports several workloads sharing multi-primary se-
tups in which several replica firewalls act as primary. Thus, more than one replica
firewall can filter traffic at the same time. This is particularly important to en-
sure that the solution proposed scales up well. Specifically, our solution covers
two approaches: the symmetric and the asymmetric path workload sharing.

switch typeof(parameters) do1

case Ack2

msg ← build ack msg(from, to);3

end4

case Nack5

msg ← build nack msg(from, to);6

end7

case Data8

object.lastseq seen = seq;9

if is enqueued(retransmission queue, object) then10

queue del(retransmission queue, object);11

queue add(retransmission queue, object);12

else13

queue add(retransmission queue, object);14

end15

msg ← build data msg(seq, object);16

end17

send(msg);18

seq ← seq + 1;19

end20

Algorithm 3: Implementation of send msg()

Symmetric path: in this approach, the same replica firewall always filters the
original and reply packets. Therefore, we apply per-flow workload sharing. Thus,
the replica firewalls can act as primary for a subset F1 of flows and as backup
another subset of flows F2 at the same, being F1 U F2 the complete set of flows
that both firewalls are filtering.

For the symmetric path approach. We consider two possible setups depending
on the load balancing policy, they are:

- Static. The system administrator or the DHCP server configures the clients
to use different firewalls as gateway, ie. the client A is configured to use the
gateway G1 and the client B uses the gateway G2. And so, if the gateway
G2 fails, the gateway G1 takes over B’s connections. Thus, the same firewall
filters traffic for the same set of clients (statically grouped) until failure.

- Dynamic. Flows are distributed between replica firewalls by means of hash-
based load balancing similar to what is described in [16]. The tuple t =
{AddressSRC , AddressDST , PortSRC , PortDST } which identifies a flow Fj

is used to determine which replica filters each flow. Basically, the tuple t is
hashed and the modulo of the result by the number of replicas tells which
replica has to filter the flow, eg. given two replicas fw0 and fw1, if h(t) mod

2 returns 0 then the replica firewall fw0 filters the flow. For this solution we
assume that all replica firewalls use a multicast MAC address and the same
IP configuration so that they all receive the same packets. This approach
does not require any load balancing director.

msg ← recv();1

n ← msg.sender node;2

if after(msg.seq, lastseq seen[n] + 1) then3

confirmed ← WINDOW SIZE - window[n];4

send msg(Ack, n, lastseq seen[n] - confirmed, lastseq seen[n]);5

send msg(Nack, n, lastseq seen[n] + 1, msg.seq);6

window[n] ← WINDOW SIZE;7

else8

window[n] ← window[n] - 1;9

end10

if window[n] = 0 then11

window[n] ← WINDOW SIZE;12

from ← msg.seq - WINDOW SIZE;13

send msg(Ack, n, from, msg.seq);14

end15

if msg type(msg) = Ack then16

foreach object i in the retransmission queue[n] do17

if between(msg.from, seq(i), msg.to) then18

queue del(object);19

end20

end21

end22

if msg type(msg) = Nack then23

foreach object i in the retransmission queue[n] do24

if between(msg.from, seq(i), msg.to) then25

send msg(object);26

end27

end28

end29

lastseq seen[n] ← msg.seq;30

deliver(msg)31

Algorithm 4: Implementation of recv msg()

The external cache policy in symmetric path is write back (WB), ie. the states
are only injected to the CTS in case of failure.

Asymmetric path: in this setup, any replica firewall may filter a packet that
belongs to a flow. Therefore, we apply per-packet workload sharing. In this case,
we assum that the original and reply packets may be filtered by different replica
firewalls. Again, we consider two possible setups depending on the workload
sharing policy, they are:

- Static. The system administrator has configured firewall fwn as default route
for original packets and fwn+1 as default route for reply packets.

- Dynamic. The routes for the original and reply packets may dynamically
change based on shortest path first routing policies, as it happens in OSPF

[26] setups. In this case, the firewall dynamically configures the routing table
depending on several parameters such as the link latency.

The external cache policy behaviour is write through (WT) since SP injects
the states to the CTS as they arrive. Of course, asymmetric path setups incur
an extra penalty in terms of CPU consumption that has to be evaluated.

5.1 Flow Recovery

As said, the architecture described in this work is not dependent of the failure-
detection schema. So, we assume a failure-detection software, e.g. an implemen-
tation of VRRP.

If the primary firewall fails, the failure-detection software selects the candidate-
to-become-primary replica firewall among all the backup replicas that will take-
over the flows. At the failover stage, the recovery process depends on the load
balancing setup:

– Symmetric path load balancing: the selected replica firewall invokes the in-
jection method that puts the set of states stored in the external cache into
the CTS. Later on, the SP clears its internal cache and issues a dump to
obtain the new states available in the CTS.

– Asymmetric path load balancing: since the external cache policy is WT, the
states are already in the CTS.

If a backup replica firewall fails and, later on, comes back to life again (typical
scenario of short-time power-cut and reboot or a maintenance stop), the backup
replica that just restarted sends a full resynchronization request. If there is more
than one backup, to reduce the workload of the primary replica, that backup
may request the full state table to another backup replica. Moreover, if this
backup was a former primary replica that has come back to life, we prevent any
process of take-over attempt by such replica until it is fully resynchronized.

6 Evaluation

To evaluate FT-FW, we have used our implementation of the state proxy dae-
mon for stateful firewalls [27]. This software is a userspace program written in C
that runs on Linux. We did not use any optimization in the compilation. In our
previous work [10], we have already evaluated the recovery time of the connec-
tions in the Primary-Backup scenario, these results are similar to those obtained
in the multiprimary setup, for that reason, and due to space restrictions we do
not provide them in this section.

The testbed environment is composed of AMD Opteron dual core 2.2GHz
hosts connected to a 1 GEthernet network. The schema is composed of four hosts:
host A and B that act as workstations and FW1 and FW2 that are the firewalls.
We have adopted a Multiprimary configuration with workload sharing of order
two for simplicity. Thus, both FW1 and FW2 acts as primary for each other at

the same time. In order to evaluate the solution, we reproduce a hostile scenario
in which one of the hosts generates lots of short connections, thus generating
loads of state change messages. Specifically, the host A requests HTML files of
4 KBytes to host B that runs a web server. We created up to 2500 GET HTTP
requests per second (maximum connection rate reached with the testbed used).
For the test case, we have used the Apache webserver and a simple HTTP client
for intensive traffic generation.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

C
P

U
 l
o
a
d
 (

%
)

HTTP GET requests per seconds

w/o replication
with replication (write back)

with replication (write through)

 150

 160

 170

 180

 190

 200

 210

 220

 0 500 1000 1500 2000

H
T

T
P

 G
E

T
 r

e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d
s

Round-trip time (microseconds)

w/o replication
with replication (write back)

with replication (write through)

Fig. 3. CPU consumption and Round-trip time (from left to right)

6.1 CPU overhead

We have measured CPU consumption in FW1 and FW2 with and without full
state replication. The tool cyclesoak [28] has been used to obtain accurate CPU
consumption measurements. The HTTP connections have 6 states, thus the
amount of state changes is 6 * total number of requests. The results obtained
in the experimentation have been expressed in a graphic. In both firewalls, the
maximum CPU load is 24% and 36% for WB and WT external cache policy
respectively. This means 9% and 17% more than without replication. Not sur-
prisingly, the full replication of short connection is costly due to the amount
of states propagated. Anyhow, the CPU consumption observed is affordable for
CBSFs deployed on off-the-shelf equipments since they come with several low
cost processors (SMP and hyperthreading). Thus, we can conclude that FT-FW
guarantees the connection recovery at the cost of requiring extra CPU power.

6.2 Round Trip

In order to obtain the delay that FT-FW introduces in client responses, we have
measured the round-trip time of an ICMP echo request/reply (ping pong time)
from host A to B with and without replication enabled. The results has been
expressed in Fig. 3. As we can observe, the increment in the round trip time is
around 8 microseconds so that we can say that the delay introduced in clients’
responses is negligible.

7 Conclusion and Future Work

In this work we have revisited the FT-FW (Fault Tolerant FireWall) solution
from the multiprimary perspective. The solution introduced negligible extra net-
work latency in the packet handling at the cost of relaxing the replication. The
architecture follows an event-driven model that guarantees simplicity, trans-
parency, fast client responses and quick recovery. No extra hardware is required.
The solution proposed is not dependent of the failure detection schema nor the
layer 3 and 4 protocols that the firewalls filter. The FT-FW replication protocol
exploits the cluster-based stateful firewall semantics to implement an efficient
replication protocol. Moreover, we have proved in the evaluation that the solu-
tion requires affordable CPU resources to enable state replication.

As future work, we are dealing with several improvements to reduce CPU
consumption without harming FD in environments with limited resources such as
mobile and embedded systems. Specifically, we plan to use our state-classification
model to avoid the replication of TS since they barely improve FD but they
increase resource consumption due to the state replication.

References

1. A. Wool, “A quantitative study of firewall configuration errors,” IEEE Computer,
vol. 37, no. 6, pp. 62–67, 2004.

2. A. Mayer, A. Wool, and E. Ziskind, “Offline Firewall Analysis,” International Jour-
nal of Computer Security, vol. 5, no. 3, pp. 125–144, 2005.

3. E. Al-Shaer and H. Hamed, “Taxonomy of Conflicts in Network Security Policies,”
IEEE Communications Magazine, vol. 44, no. 3, 2006.

4. E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict Classification and
Analysis of Distributed Firewall Policies,” IEEE Journal on Selected Areas in Com-
munications (JSAC), vol. 23, no. 10, 2005.

5. Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall man-
agement toolkit,” ACM Transactions on Computer Systems, vol. 22, no. 4, pp.
381–420, Nov. 2004.

6. S. Pozo, R. Ceballos, and R. M. Gasca, “CSP-Based Firewall Rule Set Diagnosis
using Security Policies,” 2nd International Conference on Availability, Reliability
and Security, 2007.

7. D. E. Taylor, “Survey and taxonomy of packet classification techniques,” ACM
Computing Surveys, vol. 37, no. 3, pp. 238–275, 2005.

8. P. Neira, “Netfilter’s Connection Tracking System,” In :LOGIN;, The USENIX
magazine, vol. 32, no. 3, pp. 34–39, 2006.

9. ——, “Conntrack-tools: Test Case,” 2007. [Online]. Available:
http://people.netfilter.org/pablo/conntrack-tools/testcase.html

10. P. Neira, R. M. Gasca, and L. Lefevre, “FT-FW: Efficient Connection Failover in
Cluster-based Stateful Firewalls,” in Proceedings of the 16th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP’08), Feb. 2008, pp.
573–580.

11. R. Zhang, T. Adelzaher, and J. Stankovic, “Efficient TCP Connection Failover in
Web Server Cluster,” in IEEE INFOCOM 2004, Mar. 2004.

12. M. Marwah, S. Mishra, and C. Fetzer, “TCP server fault tolerance using connection
migration to a backup server,” In Proc. IEEE Intl. Conf. on Dependable Systems
and Networks (DSN), pp. 373–382, Jun. 2003.

13. N. Aghdaie and Y. Tamir, “Client-Transparent Fault-Tolerant Web Service,” in
20th IEEE International Performance, Computing, and Communication confer-
ence, 2001, pp. 209–216.

14. N. Ayari, D. Barbaron, L. Lefevre, and P. Primet, “T2CP-AR: A system for Trans-
parent TCP Active Replication,” in AINA ’07: Proceedings of the 21st Interna-
tional Conference on Advanced Networking and Applications, 2007, pp. 648–655.

15. F. Sultan, A. Bohra, S. Smaldone, Y. Pan, P. Gallard, I. Neamtiu, and L. Iftode,
“Recovering Internet Service Sessions from Operating System Failures,” in IEEE
Internet Computing, Apr. 2005.

16. R. M. Y. Chen, “Highly-Available Firewall Service using Virtual Redirectors,”
University of the Witwatersrand, Johannesburg, Tech. Rep., 1999.

17. J. Maloy, “TIPC: Transparent Inter Protocol Communication protocol,” May 2006.
18. P. Neira, L. Lefevre, and R. M. Gasca, “High Availability support for the design of

stateful networking equipments,” in Proceedings of the 1st International Conference
on Availability, Reliability and Security (ARES’06), Apr. 2006.

19. R. McBride, “Pfsync: Firewall Failover with pfsync and CARP.” [Online].
Available: http://www.countersiege.com/doc/pfsync-carp/

20. A. Robertson, “Linux HA project.” [Online]. Available: http://www.linux-ha.org
21. M. Gouda and A. Liu, “A model of stateful firewalls and its properties,” Proceedings

of the International Conference on Dependable Systems and Networks (DSN), pp.
128–137, Jun. 2005.

22. R. Hinden, “RFC 3768: Virtual Router Redundancy Protocol (VRRP),” Apr. 2004.
23. X. Zhang, M. A. Hiltunen, K. Marzullo, and R. D. Schlichting, “Customizable

Service State Durability for Service Oriented Architectures,” in IEEE Proceedings
of EDCC-6: European Dependable Computing Conference, Oct. 2006, pp. 119–128.

24. M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Understanding
Replication in Databases and Distributed Systems,” International Conference on
Distributed Computing Systems, pp. 464–474, 2000.

25. R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, and G. Alonso, “How to Select
a Replication Protocol According to Scalability, Availability, and Communication
Overhead,” International Conference on Reliable Distributed Systems, p. 24, 2001.

26. J. Moy, “RFC 1247 - OSPF Version 2,” Jul. 1991.
27. P. Neira, “conntrackd: The netfilter’s connection tracking userspace daemon.”

[Online]. Available: http://people.netfilter.org/pablo/
28. A. Morton, “cyclesoack: a tool to accurately measure CPU consumption on Linux

systems.” [Online]. Available: http://www.zip.com.au/ akpm/linux/

