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Today’s computational grids are using the standard IP routing functionality, that has basically remained
unchanged for 2 decades, considering the network as a pure communication infrastructure. With the grid’s
distributed system point of view, one might consider to extend the commodity Internet’s basic functionalities.
Higher value functionalities can thus be offered to computational grids. In this paper, we report on our early
experiences in building application-aware components and in defining an active grid architecture that would bring
the usage of computational grid to a higher level than it is now (mainly batch submission of jobs). To illustrate the
potential of this approach, we first present how such application-aware components could be built and then some
experiments on deploying enhanced communication services for the grid. We will show how reliable multicast and
QoS mechanisms could deploy specific services based on the grid application needs.

1. Introduction

The simplest perception one has of a com-
putational grid [14] is a pool of geographically
distributed computers that can be accessed and
used in a structured manner to solve a given
problem. Such grid infrastructures are foreseen
to be one of the most critical yet challenging
technologies to meet the exponentially growing
demands for high-performance computing in a
large variety of scientific disciplines: high energy
physics, weather prediction, mathematics and
combinatorial problems, genome exploration,
etc. In the past few years, many software en-
vironments for gaining access to very large dis-
tributed computing resources have been made
available (e.g. Condor [21], Globus [15], Legion
[18] to name a few). National and interna-
tional projects have been launched all around
the world to investigate the potential of grid
computing: DataGrid (www.eu-datagrid.org),
EuroGrid (www.eurogrid.org), GriPhyn
(www.gryphyn.org), PPDG (www.ppdg.net),
DAS (www.cs.vu.nl/das2) to name some of them.

Today’s computational grids are using the stan-
dard IP routing functionality, that has basically

remained unchanged for 2 decades, considering
the network as a pure communication infrastruc-
ture. With the grid’s distributed system point of
view, one might consider to extend the commod-
ity Internet’s basic functionalities. Higher value
functionalities can thus be offered to computa-
tional grids. In that sense, these ideas are very
similar to those of the peer-to-peer (P2P) com-
munity (with emerging popular P2P applications
such as Napster or Gnutella) and web services.
Going a step further, we want to embed more
generally in the network infrastructure specific
functionalities for computational grids and their
applications. Therefore application-aware com-
ponents (AAC) are introduced as opposed to tra-
ditional Internet routers. Such AACs will be dis-
tributed at the edge of the grid networking infras-
tructure and will be based on active networking
technologies1 that allow specific program codes

1Active networks/grid and P2P both allow the notion of
having some type of application-specific processing ”in-
line” with communication, and that can take advantage
of the actual communication topology. For this particular
use (”in-line” processing), the primary difference between
them is the implementation approach. P2P systems are
typically user-level processes. The original active network
concept was to put application-specific processing in the
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to be uploaded into routers to perform specific
functions related to the applications on the data
flows.

The ideas of active elements and application-
aware components is not new and some ideas have
been taken from other areas. For example, us-
ing edge nodes to improve bandwidth, latency,
resiliency, etc, has been previously proposed in
[31,2,38,19,41,34]. However, the application in
grids is both novel and practically useful. The re-
sulting active grid architecture proposes solutions
to implement the two main kinds of grid configu-
rations : meta-cluster computing and global com-
puting. In this architecture the network takes
part in the grid computing session by providing
efficient and intelligent services dedicated to grid
data streams transport: caching, monitoring, fil-
tering, interest management, reduction, election,
etc.

In this paper, we report on our early experi-
ences in building such application-aware compo-
nents and in defining an active grid architecture
that would bring the usage of computational grid
to a higher level than it is now (mainly batch sub-
mission of jobs). We present how a high perfor-
mance execution environment can be built and
how dynamic services can be deployed. To il-
lustrate the potential of this approach, we also
present some experiments on deploying enhanced
communication services for the grid. We will
present how reliable multicast and QoS mecha-
nisms could deploy specific services based on the
grid application needs. The paper is organized as
follows. First we present the AAC technologies
and the active grid architecture. Then Section
3 presents the high-performance execution envi-
ronment for building an active grid infrastructure
that meet the current Gb/s requirements. QoS
and reliable multicast on an active grid infras-
tructure are presented in Section 4. Section 5
concludes.

hardware router. It is much easier and practical, however,
to experiment with active networks built as user-level pro-
cesses. Hence, the difference between active networks and
P2P becomes even less. Please refer to [12] for more details
on grids and P2P systems.

2. Active Grid Architecture

There can be a large variety of grid infrastruc-
tures but in most cases they use a similar network
architecture: local computing resources are con-
nected together using any kind of local/system
area networks (Fast/Giga-Ethernet, Fiber Chan-
nel, SCI, Myrinet, etc.) and gain access to the
rest of the world through one or more routers.
So we will mainly assume that the computing re-
sources are distributed across an Internet-based
network with a high-speed backbone network in
the core, typically the one provided by the Telco
companies, and several lower-speed2 access net-
works at the edge.
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Figure 1. An application-aware grid infrastruc-
ture.

Figure 1 depicts such a typical grid infrastruc-
ture. For simplicity we represented an access net-
work by a router but practically such networks
would contain several routers. We propose an ac-
tive network architecture dedicated to grid en-
vironments and grid applications requirements.
Such an active grid architecture is based on a vir-
tual topology of AACs deployed at the edge ac-
cesses. AACs nodes are connected between each

2With respect to the throughput ranges found in the back-
bone, say up to 1 Gbit/s.
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other and each AAC manages communications for
a small subset of grid nodes. Grid data streams
can cross various AACs towards the passive back-
bone and then cross another set of AACs to the
receiver node.

2.1. Application-aware component tech-

nology

The AACs concept calls for an infrastructure
of network elements capable of executing spe-
cific processing functions (called services) on data
flows, and this mostly on-the-fly. It is possible
to build such an infrastructure by involving only
end-hosts: it is the peer-to-peer paradigm. How-
ever, although this scheme may work, even on
large scale systems such as demonstrated by the
recently general public P2P applications, there
are a number of drawbacks to this approach: re-
dundancy of functionalities, high end-host over-
head, limited range of applications, etc.

Recently, a disruptive technology called “active
networking” proposes a new vision for the Inter-
net that involves routers (so-called active routers)
in the processing of data packets. In active net-
working [36], routers can execute, through an ex-
ecution environment similar to an operating sys-
tem (such as the TAMANOIR system described
in this paper later on), application-dependent
functions on incoming packet. There are many
difficulties, however, for deploying in a large scale
an active networking infrastructure. Security and
performance are two main difficulties that are
usually raised. However, active networking has
the ability to provide a very general and flexible
framework for customizing network functionali-
ties in order to gracefully handle heterogeneity
and dynamic, key points in a computational grid.

In order to implement the AAC concepts, there
is no need to go for a complete active networking
scheme with an open architecture and the many
security pitfalls. It is possible to adopt an opera-
tor’s perspective which consists in deploying some
well identified services (similar to any protocol
supported by a router nowadays), chosen for their
generic approach. However this approach needs
a high amount of standardization thus only very
generic and core services are likely to be deployed.

2.2. Deployment issues

AACs could be hosted in Internet Data Cen-
ter (deployed by an operator) but this solution is
very difficult at this time because grid computing
is not yet the main concern of telecommunica-
tion operators or Internet Service Providers. The
other solution is to deploy AACs in private do-
mains. There is a great difference between grids
and the Internet upon which our work is based: it
is much easier to deploy customized solutions on
a grid architecture than on the Internet because
the number of cooperating sites is much lower.
The idea of a global, unique grid on the scale to
the planet is a nice idea but is usually impossible
to deploy and manage: practically, several grids
would coexist, especially if private companies are
involved. Therefore, it is possible to deploy on
a small scale, within a well-identified grid user
community the application-aware idea. In this
case, AACs could be deployed at the initiative of
a computing center or an internal enterprise IT
infrastructure or a campus for example. This so-
lution is very possible now, with AACs based on
dedicated hardware such as powerful PC-based
active routers.
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Figure 2. Example of a max operation with net-
work support.

As shown in Figure 1, AACs are typically put
at the edges of the core network. Since the core
network is reliable and a very high-speed net-
work (several Gb/s), adding complex process-
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ing functions inside the core network will cer-
tainly slow down the packet forwarding functions.
As described previously, AACs provide the abil-
ity for grids to dynamically adapt to new us-
ages, and especially to use the network infras-
tructure as an efficient computing system. For
instance, Figure 2 illustrates a network-supported
max operation where AACs are used in the net-
work infrastructure to assist for the computa-
tion of the max value by hierarchically comput-
ing/aggregating the values sent from end-hosts.

The range of utilization is much broader than
the simple scenario illustrated in Figure 2. An
application-aware grid could for example per-
form locality-dependent data encryption, hetero-
geneous video compression for remote displays,
interest management and filtering, etc. Specific
services can be deployed on demand upon the ar-
rival of a data flow on an AACs.

2.3. Scenario of usage

To support most of grid applications, the A-
Grid architecture must deal with the two main
grid configurations :

• Meta cluster computing (Fig. 3) : a set of
parallel machines or clusters are linked to-
gether with Internet to provide a very large
parallel computing resource. Grid environ-
ments such as Globus, MOL[32], Polder[28]
or Netsolve[4] are well designed to handle
meta-cluster computing session to execute
long-distance parallel applications.

In this highly coupled configuration, an
AAC is mapped on the network head of
each cluster or parallel machine. This node
manages all data streams coming or leav-
ing a cluster. All AACs are linked with
other AACs mapped at the backbone pe-
riphery. An AAC delivers data streams to
each node of a cluster and can aggregate
output streams to other clusters of the grid.

AN AN

AN AN

Backbone

Figure 3. Meta-cluster computing.

• Global or Mega-computing (Fig. 4) : these
environments usually rely on thousand
of connected machines. Most of them
are based on computer cycles stealing
like Condor, Entropia[10], Nimrod-G[7] or
XtremWeb[39].

In this loosely coupled configuration, an
AAC can be associated with each grid node
or can manage a set of aggregated grid
nodes. Hierarchies of AACs can be de-
ployed at each network heterogeneity point.
Each AAC manages all operations and data
streams coming to/from grid nodes : fil-
tering, interest management, results gath-
ering, nodes synchronization and check-
pointing, collective and gather operations,
election, etc.
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Figure 4. Global computing.

For both configurations, AACs will manage the
grid environment by deploying dedicated services
adapted to the grid (as an infrastructure) require-
ments : management of nodes mobility, dynamic
topology re-configuration, fault tolerance, etc.

3. Designing an high performance AAC to

efficiently support an active grid infras-

tructure

When designing AACs capable of sustaining
the high bit rate found in nowadays grid infras-
tructures, performance is the main concern. In
this section we present a high performance active
router architecture serving as an AAC to be de-
ployed around high performance backbones.

We define an Execution Environment (EE) as
an environment able to load and execute services,
like network services. It must be also able to di-
rect packets towards the required service thanks
to appropriate headers filtering. By taking into
account high performance challenges, we designed
an active node where active services can be de-
ployed at various levels depending on resources
(processing capabilities, memory consumption,
storage capacity) and intelligence (flexibility of
the execution environment) they need. In order
to provide an adapted EE for each type of ser-
vices we designed the AAC architecture on 4 lev-
els : Network Interface Card (NIC), kernel space,
user space and distributed resources (Fig. 5).

This layered architecture proposes solutions to

NIC (programmable)

Data streams

User space

Kernel space

Aggregate resources

Figure 5. Execution Environment of an active
node architecture.

avoid the inefficient packet ascent and to allow
the dynamic embedding of services optimally de-
ployed on suitable levels :

• network programmable cards for ultra
lightweight services (no-state, few cycles
CPU requirements, scarcely updated and
embedded) such as packets marking, drop-
ping and filtering services;

• kernel space level for lightweight services
(state with reduced memory usage, real-
time) such as packets counting, QoS, man-
agement services, intelligent dropping and
state-based services;

• user space level for middle-level services
(complex with high level language, sequen-
tial, access to memory and disk) such
as packets monitoring, reliable multicast,
packets aggregating and data caching ser-
vices;

• aggregate resources for high-level services
(CPU and memory consuming, parallel and
distributed) such as compression and mul-
timedia transcoding on-the-fly services.

Depending on their software or hardware-
assisted implementation, active services can be
deployed on various combined levels.
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3.1. The TAMANOIR framework

The aims of the TAMANOIR project is to de-
sign an high performance node validating the
architecture described previously. The develop-
ment of the high performance TAMANOIR EE
has been done in several steps. First we imple-
mented a EE running in user space, next we in-
vestigated the kernel space solution and finally
the distributed computing approach.

3.1.1. High-level multi-threaded Execu-

tion Environment in user space

The TAMANOIR software suite [16] is a com-
plete software environment dedicated to build
AACs and to deploy services inside the grid in-
frastructure. TAMANOIR Active Nodes (TAN)
are persistent AACs which are able to handle dif-
ferent applications and various data streams at
the same time (multi-threaded approach). Both
TCP and UDP are supported by TAN with the
ANEP format [1] (Figure 6). New services are
plugged dynamically in the TAN. The Active
Node Manager (ANM) is dedicated to the de-
ployment of active services and to update rout-
ing tables. The TAMANOIR EE running in user
space is written in the JAVATM 3 language which
provides a great flexibility and is shipped with
the standard library. Services are also written in
JAVA and deployed inside independent threads.

ANM

TCP

UDP

control stream
(TCP)

service #1

service #2

service #3Raw data

ANEP data
streams

streams
TCP/UDP

Execution Environment

(Active Node Manager)

req.

hash table

demultiplexer

Figure 6. A TAMANOIR Active Node (TAN)

The dynamic injection of new services is per-
formed out-of-band of data streams : services are
3JAVA, JVM and Sun are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other
countries.

deployed on demand when streams reach a TAN
which does not hold the required service. As
shown on Figure 7 two service deployment meth-
ods are available : (i) by using a service repository
where TANs send all requests for downloading the
required services and, (ii) by deploying the ser-
vices from TAN to TAN. In order to avoid having
a single point of failure, a service repository can
be mirrored and replicated. Active data streams
can of course go through legacy routers without
any processing actions and overheads.

As mentioned in introduction, security in active
networks can be a mandatory aspect for service
deployment. In our Active Grid current deploy-
ment, we adopt an operator’s perspective which
consists in deploying some well identified services.
This paper does not cover security and authenti-
cation aspects between users, service repositories
and AACs.

: service transport (tcp)

: service request (tcp)

: ANEP packet (tcp or udp)

TAN TAN

core network

http protocol

tcp/ip

tcp/udp

Figure 7. Dynamic service deployment.

3.1.2. Kernel space Execution Environ-

ment

Another part of our project is to investigate
the idea of deploying lightweight services (packets
counting, QoS, management services, state-based
services) inside the kernel space of the operating
system. Our main purpose here is to efficiently
deport active functionalities from the high-level
execution environment and virtual machine for
the JAVATMplatform (JAVA Virtual Machine or
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JVMTM)4 into the OS kernel.
Recent versions of the Linux kernel are well fur-

nished with networking functionalities and proto-
cols : QoS, firewall, routing and packet filtering.
For packet filtering, kernels 2.4 propose IpTables
with NetFilter [33]. NetFilter is a framework for
packet modification, outside the normal Berke-
ley socket interface. With IPv4 communication
protocol, NetFilter provides five hooks on the IP
packet processing path. These hooks allow to de-
velop and run modules written in C at the kernel-
level. The function nf register hook is used to
attach a personalized function to a specific hook.
When a packet reaches the hook, it is automati-
cally transmitted to this personalized function.

The various modules which are set up into the
OS kernel can be modified dynamically by ac-
tive services. A TAMANOIR active service, run-
ning inside the JVMTM, configures the NetFilter
module by sending control messages. These mes-
sages are captured by the NetFilter module and
used to parameterize lightweight services (for-
ward, packet marking, drop, etc.). This on-the-fly
configuration allows to dynamically deport per-
sonalized functions inside the kernel.

3.1.3. Distributed service processing:

cluster-based TAMANOIR

High-level and application-oriented active ser-
vices require intensively computing resources. To
support these services, a TAMANOIR Active
Node embeds a dedicated cluster to efficiently de-
ploy parallel services on streams.

The Linux Virtual Server (LVS)[22] software
suite is dedicated to provide distributed servers
(ftp, web, mail, etc.) offering best perfor-
mances in terms of throughput and availabil-
ity. We modified and adapted LVS functionalities
for active networking and used them within the
TAMANOIR EE. A TAMANOIR-LVS is a col-
lection of TAN execution environments running
on a cluster of machines and linked together with
an high performance network (Myrinet or Giga-
Ethernet). A dedicated machine is configured as a
front-end and is used to route packets from the in-
ternet to back-ends machines. The TAMANOIR

4The terms ”JAVA virtual machine” and ”JVM” mean a
virtual machine for the JAVATMplateform.

EE is replicated on each back-end machine.

3.2. Experimental results

Our first experiments have been deployed on
a Gigabit platform (Giga-Ethernet and Myrinet
networks) with Dual-Pentium III, 1.4GHz. Each
node runs GNU/Linux operating system (kernel
2.4.18).

3.2.1. Lightweight services in kernel space

We experiment the deport of active forwarding
service inside the kernel for TCP active packets.
We compare the latency of a forwarding func-
tionality inside user space (SunTMJVM, IBM r©
5 implementation of the JVM and GCJ [17] im-
plementation) with the same basic functionality
in kernel space (fig. 8).
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Figure 8. Latency time for ANEP packets using
TCP protocol.

As we expected, when a packet is forwarded by
the execution environment in the JVM level, raw
performances are impacted. Packets crossing the
TAN while passing by the Linux kernel spend only
a few microseconds whereas they can spend sev-
eral milliseconds (according to the payload size)
while passing through the JAVA platform layer of
the active node.

5IBM and the IBM Logo are registered trademarks of IBM
Corp. in the United States and other countries, and are
used under license by Sun Microsystems, Inc.
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Results obtained in user space show large dif-
ference between JVM. The Sun JVM provides the
best results on these tests. On the kernel level,
the size of ANEP packet does not really affect
performances as packets are simply redirected to-
wards the exit hook by modifying the destination
address with no packet copy.

3.2.2. Middle-level active services in user

space

We explored the limits of a TAN running on
a single machine and deploying middle-level ser-
vices in user space. Our experiments consisted
in sending active packets from a set of send-
ing hosts to another set of receiving hosts on
Gb/s networks. These active packets are pro-
cessed and routed by active middle-level ser-
vices (packet monitoring) deployed on interme-
diate TANs. Figure 9 shows the performances
of a TAN crossed by various TCP streams. The
TAN scales compared to the number of streams
and provides best performances with large active
packets.
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Figure 9. TAMANOIR Active Node perfor-
mances on a middle-level monitoring service de-
ployed in user space.

These first experiments show impressive results
in terms of performance: a TAN running on a
single machine and supporting middle-level ser-
vice in user space can support up to 450 Mb/s
of bandwidth depending on the packet size and

the number of streams while lightweight services
running in kernel space support up to 800 Mb/s.

3.2.3. Distributing services on a cluster-

based TAMANOIR: fully support-

ing Gigabit networks

As a TAN running on a single machine is not
enough to fully support a gigabit network, we
explore the cluster-based active node solutions.
We implemented a TAMANOIR node based on 3
back-end machines for the deployment of services
and 1 front-end machine for streams distribution
between back-end machines.
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Monitoring service/1BE

Gzip service/3BE

Figure 10. Cluster-based TAMANOIR experi-
ments with middle-level and high-level active ser-
vices.

We can see in Figure 10 that with this dis-
tributed architecture, TAMANOIR is able to sup-
port gigabit networks requirements for a middle-
level active service (around 1.05 Gb/s for 4KB
packets). In this experiment, active streams
are equally processed between back-end ma-
chines. With larger packet size more throughput
is achieved up to 1.4 Gb/s. Of course, obtaining
these performances and fully supporting a gigabit
network depends on the deployed service (high-
level, middle-level or lightweight service) and its
implementation quality.

In Figure 10, we also compare the impact of
service level by deploying an high-level compres-
sion service (gzip on-the-fly). This service re-
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quires high processing power and back-end nodes
spend most of their time on performing gzip com-
pression. A Gzip service on a 3 back-end TAN,
supports around 200 Mb/s of bandwidth. With
this kind of service, we should add a few more
back-end machines to fully support a Gb/s band-
width.

We have deployed TAMANOIR active nodes
around VTHD6 high performance backbone.
First experimental results are presented in Fig-
ure 11. We compare our long distance results
over VTHD with benchmarks made on a Myrinet
gigabit, low latency, local experimental platform.
We show that with 8KB packets and 25 streams
we sustain a throughput of 919 Mb/s. It’s a good
result because network technology employed over
VTHD is Gigabit Ethernet which is different and
less performant than Myricom technology. More-
over, because it’s a long distance experiment, lot
of network devices have to be crossed and this
increase latency.

By providing high performance, Tamanoir ac-
tive nodes are able to support active services de-
ployed by Grid applications on high performance
backbones.

Figure 11. Cluster-based TAMANOIR experi-
ments on a local network and around VTHD

These first experiments show that the
TAMANOIR framework can support a grid en-

6See http://www.vthd.org

vironment without adding to much latency to all
data streams. Next sections will focus on two
services for enhanced communications on grids:
QoS and multicast communications.

4. Enhanced communications on an active

grid architecture

This part presents the opportunities the
application-aware components and the active net-
work technology to provide enhanced communi-
cation facilities on an grid architecture for the
next generation of applications. We will present
(i) dynamic network QoS management and con-
trol and (ii) reliable multicast to illustrate how an
active grid architecture can contribute to provide
a higher level of performances.

4.1. Grid QoS

The network Quality of Service is traditionally
defined as a set of tools and standards that give
network managers the ability to control the mix
of network characteristics like bandwidth, delay,
variance in delay (jitter) and packet loss. Con-
trolling this mix allows to provide better and
more predictable network services. The purpose
of Active Grid QoS is to offer a set of facilities
that gives the grid applications the capacity of
specifying and dynamically control the end to end
network characteristics like end to end transfer
delay or end to end throughput. The QoS re-
quirements in a grid environment is very large.
Several analysis (e.g. [29]) have demonstrated
that the QoS performances requirements spec-
trum of grid streams is broad comprising needs
like the guaranteed delivery of a complete data
file, the predictability of the TCP throughput,
the bounded delivery time of a file transfer and
a stability-level for data-delivery. As detailed in
section 3.1, the network has to efficiently sup-
port both grid control flows and grid applica-
tion flows. The quality of service the grid con-
trol flows will receive may affect the overall grid
infrastructure performances and utilization level
while the quality of service the application flows
will experiment will impact each individual ap-
plication performance. In both cases, each type
of traffic has to be treated differently in terms
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of end-to-end delay, end-to-end loss rate or end-
to-end throughput. In general, applications de-
ployment and large parameters transfers between
nodes are more concerned about grid QoS services
based on bandwidth requirements while grid con-
trol streams and data streams of pipelined cou-
pled applications are more concerned about de-
lay based QoS services. Grids generally rely on
IP networks for wide area communications. But,
the IP protocol, being a connectionless protocol,
has no inherent traffic contract concepts, no ad-
mission control and provides a simple packet for-
warding service with no delay and loss guaran-
tees. Since more than ten years, the Internet
community tries to find a way to introduce the
capabilities required to support QoS in the In-
ternet infrastructure and to develop mechanisms
and algorithms that scale, while enabling a wide
range of QoS guarantees. The IP network QoS
proposed solutions are based on resource reserva-
tion (IntServ [6]) or on class-based services (Diff-
Serv [5]). IntServ requires per flow signaling and
state to be maintained at all routers on a flow’s
path. This is not feasible for deployment in wide-
area backbone routers since there could be an un-
bounded number of flows. DiffServ has only a
fixed number of service classes, regardless of the
number of flows. Hence, while this only provides a
statistical guarantee, it is much more practical for
real-world deployment. Today, DiffServ solutions
have been deployed in some Internet clouds. Diff-
Serv services like Premium Service, Assured Ser-
vice and Less than best effort service are the most
deployed ones. By construction, DiffServ service
properties are statistically guaranteed only within
a single DS domain. As grids rely on a complex
interconnection of DS domains and flat IP do-
mains, end-to-end flow performances cannot be
guaranteed or predicted. Then, for achieving end-
to-end QoS objectives the remaining deficiencies
of the network performances have to be masked
by adaptation performed at host level. The grid
flows have actually to integrate adaptive algo-
rithms or delay-transparent algorithms to com-
pensate the low quality of service or the lack of
transfer delay bounds provided by the networks
interconnections. The drawback of such an ap-
proach is that it imposes the application to be

network-aware and complexifies the programming
and the execution of its communication parts.
The next section will examine how the integra-
tion of AACs and active network technology may
enable grid users and grid applications to simply
access and fully benefit from the QoS capabilities,
like DiffServ, partially offered by the network.

4.1.1. Dynamic QoS control and Manage-

ment with active services

The aim of the active approach, instanciated in
the QoSinus (QoS invocation and utilization ser-
vice) service is to introduce flexibility and dynam-
icity in the management, the control and the real-
ization of end-to-end QoS in a grid context. The
proposed model aims to cumulate the advantages
of the QoS solutions offered at the network level
and the end-to-end adaptation approach. The
goal is to avoid the respective drawback of both
approaches and to propose an interface to make
both approaches to efficiently interoperate. The
aims are to:

1. provide an extensible end-to-end differenti-
ated services set to meet heterogeneous grid
flows QoS objectives,

2. refine the network QoS granularity by pro-
cessing grid flows aggregates rather than
coarse DiffServ classes,

3. rely on the existing IP QoS services pro-
vided by the core inter-network for improv-
ing the individual packet performances,

4. realize a dynamic and appropriate adapta-
tion along the path according to the real
state of the link, the QoS mechanisms con-
figured along the path and the experienced
performances of the flows.

The main issues to be solved are firstly to allow
grid components or grid applications to program
and control their QoS and, secondly, to define
generic QoS services that can be on demand de-
ployed to realize the required QoS flexibility in
a specific networking context. The first issue is
addressed by an API that provides the user the
ability to characterize the flow’s needs in terms
of qualitative or quantitative end-to-end delay,
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end to end throughput, end-to-end loss rate or
in terms of relative weight of these three main
metrics. This first stage dissociates the end to
end QoS objectives specification from its effec-
tive realization. The second issue is to enable
the flows to activate dedicated processing compo-
nents in the network in order to meet their QoS
objectives when crossing heterogeneous DiffServ
domains. We have identified four types of QoS ac-
tive functions for flexible QoS programming and
control: QoS programming service, QoS measure-
ment service, QoS adaptive control service and
QoS enforcement service. The QoS programming
services are invoked for propagating and storing
the flow QoS goals in the active nodes belong-
ing to the path. The QoS monitoring entities
are responsible of the QoS characterization of a
class of a specific link. The QoS adaptive con-
trol components are responsible for controlling
the correctness and for adapting the packet for-
warding performances regarding the QoS goals
of the flows. The QoS enforcement service in-
tercepts and processes the flows when necessary.
Other agents may be added for status report ex-
change. This extensible and open approach has
been implemented in the QoSinus active software
we have designed and developed within the con-
text of the e-Toile project [30] (an experimental
wide area grid testbed using the TAMANOIR en-
vironment). Qosinus will be extended and eval-
uated in a multi-domain grid testbed deployed
across Europe. QoSinus acts an active QoS ser-
vice that connects the Grid application QoS spec-
ification with an adaptive packet marking at Diff-
Serv domains frontiers. The QoSinus model is
composed of several main entities: a monitor-
ing component that measures the performances
of each class on each path to egress active nodes
(as presented in table 1), a local controller that
monitors the allocated bandwidth of each class
and realizes the flow conditioning and a decision
component that decides which class has to be at-
tributed to each packet to meet the QoS flow re-
quirements when crossing the next DiffServ do-
main. From the user point of view the QoSinus
service is invoked in two phases. The first one is
called the programming phase: the Open Service
Level Specification is transmitted to all QoSinus

modules on the path from sender to receiver. A
QoS session code is returned back to the sender.
Then the sender transmits data packets, identi-
fied by the attributed QoS session code. The
QoSinus decision component dynamically chooses
the appropriated DiffServ class to cross the DS
domain, trying to optimize the class utilization.
The e-Toile grid is based on the french Giga-
bit VTHD backbone which provides four DiffServ
classes (EF, TCP AF, UDP AF and BE). The
principle of the DiffServ configuration in VTHD
is that classes are statically allocated and provi-
sioned in the edge routers. The consequence is
that each access point has to control and shape
the traffic injected in each class. In the e-Toile
context, where only one DiffServ domain is avail-
able, the decision component of the ingress TAN
is responsible for the flexible mapping of end-to-
end high-level QoS needs of grid flows to the ac-
tual QoS provided by the network cloud. When a
DiffServ class is allocated by the decision compo-
nent, the corresponding available bandwidth pa-
rameter has to be updated. In this case, the flow
QoS enforcement component of QoSinus imple-
ments a token bucket for admission control. The
advantage of the active approach here, is that it
permits to easily deploy dedicated and hetero-
geneous enforcement components for each Diff-
Serv domain. Table 1 shows the performances
obtained from one end (ENS Lyon) to an other
end (CEA in Paris) when using the EF and BE
classes in two extreme experimental conditions:
empty network and congested network. The TCP
stack used is the standard one (TCP NewRENO)
with no Iperf tuning. For UDP, Iperf gives a
throughput of 100 Mb/s. Links are denoted with
EC (ENS to CEA) and CE (CEA to ENS). The e-
Toile experiment shows that the flexible and mod-
ular approach proposed by QoSinus is functional.
To verify that the API is well adapt to Grid con-
text, we conducted experiments with real grid ap-
plications that have QoS and flow isolation re-
quirements. Next step is to conduct the same ex-
periments with the same Grid applications across
multiple DiffServ domains to examine how QoS-
inus helps to solve the inter-domain and partial
deployment problems of DiffServ in the Internet.
We expect to validate the per-domain adaptive
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Metric Link DS no load congested
RTT EC BE 5.8 ms 32ms
RTT EC EF 5.8 ms 6.8ms
RTT CE BE 5.8 ms 72ms
RTT CE EF 5.8 ms 6.8ms
TCP EC BE 86 Mb/s 100 - 200 Kb/s
TCP EC EF 86 Mb/s 44 Mbs/s
TCP CE BE 49.6 Mb/s 100 - 200 Kb/s
TCP CE EF 49.6 Mb/s 49.6 Mb/s
UDP EC BE 100 Mb/s 73Mb/s+ 30% loss
UDP EC EF 100 Mb/s 100 Mb/s + no loss
UDP CE BE 105 Mb/s 64 Mb/s + 38% loss
UDP CE EF 105 Mb/s 105 Mb/s no loss

Table 1
The measured end-to-end performances on
VTHD DiffServ classes from/to ENS (Lyon)
to/from CEA (Paris)

packet marking features and the end to end QoS
monitoring facilities. Scalability and performance
aspects will also be studied in detail. The QoS-
inus architecture can be functionally compared
with the GARA (Globus Architecture for Reser-
vation and Allocation) architecture [13] that pro-
vides advance reservations and end-to-end man-
agement for quality of service on different types
of resources (network, storage and computing).
While in Gara, DiffServ class reservation is made,
QoSINUS requires only a Service Level Specifica-
tion. No resource reservation is made, only QoS
objective are stored. After this phase, the data
packets are sent transparently and the sender has
never to care about QoS management or adap-
tation, except if it wants to modify the QoS ob-
jectives. The active network technology permits
to easily replace and upgrade the modular QoS
adaptation engine. As active components, the
different functions can be easily modified to meet
heterogeneous requirements of grid environment
or upgraded to adapt the evolution of the network
QoS architectures and mechanisms. For example,
when on demand optical links will be made avail-
able in some networks, only the QoSinus mapping
entity of the TAN located near the access equip-
ment would be dynamically replaced and config-
ured.

4.2. Reliable multicast communications on

grids

Multicast [9] is the process of sending every sin-
gle packet from the source to multiple destina-

tions in the same logical multicast group. Since
most of communications occurring on a grid im-
ply many participants that can be geographically
spread over the entire planet, these data trans-
fers could be gracefully and efficiently handled
by multicast protocols provided that these pro-
tocols are well-designed to suit the grid require-
ments. Motivations behind multicast are to han-
dle one-to-many communications in a wide-area
network with the lowest network and end-system
overheads while achieving scalability (end-system
or application-multicast solutions can succeed in
providing low complexity but lack scalability). In
contrast to best-effort multicast, that typically
tolerates some data losses and is more suited for
real-time audio or video for instance, reliable mul-
ticast requires that all packets are safely delivered
to the destinations. Desirable features of reliable
multicast include, in addition to reliability, low
end-to-end delays, high throughput and scalabil-
ity. These characteristics fit perfectly the need of
grid computing and distributed computing com-
munities. Embedding a multicast support in a
grid infrastructure would not only optimize the
network resources in term of bandwidth saving,
but mainly increase both performances for ap-
plications, and interactivity for end-users, thus
bringing the usage of grids to a higher level than
it is at the moment.

Meeting the objectives of reliable multicast is
not an easy task. In the past, there have been a
number of propositions for reliable multicast pro-
tocols that rely on complex exchanges of feedback
messages (ACK or NACK) [35,11,27,40]. All of
the above schemes do not provide exact solutions
to all the loss recovery problems and therefore are
hardly suitable for distributed or interactive ap-
plications running on a grid. This is mainly due
to the lack of topology information at the end
hosts. In this section, we illustrate how an active
grid infrastructure can help to provide low latency
and high-bandwidth multicast communication for
grid applications. In particular, we show how spe-
cific services can be composed and selected by the
grid application to meet its networking require-
ments.
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4.2.1. Specific services for reliable multi-

cast

DyRAM [23] is a reliable multicast protocol
framework that uses active network technology to
allow an application to off-load specific function-
alities traditionally performed by the end hosts in
the commodity Internet. Several high-level mech-
anisms were thus identified to improve the perfor-
mances (latency, scalability) of a multicast com-
munication and were separated as application-
aware services (AAS) to be off-loaded in the ac-
tive grid infrastructure (in the AACs). Therefore
the end host part of the protocol is kept very sim-
ple and the main AAS consist in:

1. the early detection of packet losses and the
emission of the corresponding NACKs.

2. the suppression of duplicated NACKs (from
end-hosts) in order to limit the NACK im-
plosion problem.

3. the sub-cast of the repair packets only to
the relevant set of receivers that have expe-
rienced a loss. This service limits the scope
of the repairs to the affected subtree.

4. the dynamic replier election which consists
in choosing a link/host as a replier one to
perform local recoveries. Dynamic election
provides robustness to host and link fail-
ures.

These services have been designed with the
following motivations in mind: (i) to minimize
AAC’s load to make them supporting more ses-
sions (mainly in unloading them from the cache
of data) and (ii) to reduce the recovery latency
for distributed and interactive grid applications.
Avoiding cache in AACs for instance is performed
by a dynamic replier election service that will be
briefly described later on.

4.2.2. Simulation and experimental results

on e-Toile

The performances of the previously described
services have been investigated by simulation
and validated by real experimentations on a
grid testbed as part of the RNTL e-Toile french

project. The simulation model has been imple-
mented in the PARSEC language developed at
UCLA [3]. The grid model considers an applica-
tion multicasting data files to R receivers through
a packet network composed of a fast core network
and several slower edge access networks. AACs
are located at the edge of the core network as
described previously. The study shows that, de-
pending on the need of the grid application, the
deployment of specific services (amongst those
implemented) at some strategic points can pro-
vide enhanced performances.
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Figure 12. (a) Completion time, p = 0.25 . (b)
Consumed bandwidth ratio.

Figure 12a shows the completion time as a func-
tion of the number of receivers. p is the end-to-
end probability of a packet loss perceived by a
receiver. Local recovery has been enabled with
edge AACs performing the replier election func-
tion. These results have been obtained from sim-
ulations of a multicast session with 48 receivers
distributed among 12 local groups. The curves
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show that local recoveries decreases the latency
as the number of receivers increases. Although
not shown in this paper, the load at the source
is also decreasing when local recovery is enabled.
This is especially true for high loss rates.
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Figure 13. The normalized recovery delay with
(a) p = 0.25 and (b) p = 0.5

Putting the recovery process in the receivers re-
quires at least 2 receivers under a given AAC oth-
erwise local recoveries can not be realized. There-
fore the local group size (B) is an important pa-
rameter. In a real grid environment, B would
represent the number of end hosts participating
in a computation. In order to study the impact
of B, simulations are performed with the 48 re-
ceivers distributed among groups of different sizes
and Figure 12b shows how much bandwidth (in
ratio) can be saved with the local recovery mech-
anism. As the number of receivers per group in-
creases, the consumed bandwidth is reduced by
larger ratios for large loss rates. In fact, when the
group size is larger it is more likely that the mem-

bers of the group can recover from each other.
For instance, Figure 12b shows that with only
6 receivers per group and local recovery we can
achieve a gain of 1.8. This result is particularly
interesting for distributed applications with many
collective and reduction operations.

The next simulations set shows how the early
loss detection service could further decrease the
delay of recovery. To do so, we simulate an appli-
cation with low latency requirements that select
two configuration noted DyRAM- and DyRAM+.
DyRAM- has no loss detection services in AACs
whereas DyRAM+ benefits from the loss detec-
tion service in the source AAC. Figure 13 plots
the recovery delay (normalized to the RTT) for
the 2 cases as a function of the number of re-
ceivers. In general, the loss detection service al-
lows DyRAM+ to complete the transfer faster
than DyRAM-. For p = 0.25 and 96 receivers
for instance, DyRAM+ can be 4 times faster!

Figure 14. Testbed topology.

DyRAM has been tested and validated on a
real grid infrastructure that connects 4 comput-
ing sites by a high-speed optical network (VTHD,
2.5 Gb/s). Figure 14 illustrates the test topology
where a source located at CERN in Switzerland
multicast a data file needed by a biology appli-
cation to 7 receivers in 3 different sites. AACs
located at the edge of the optical backbone pro-
vides the local recovery mechanism. Figure 15
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is a snapshot of the test realized where the vari-
ous steps of the local recovery are indicated. In
this scenario, one computer in ENS lost packet 28
which is repaired by the other computer elected
by the AAC located at the ENS campus.

Figure 15. Augmented snapshot.

5. Conclusion and future works

This paper reported our experiments in propos-
ing a new grid architecture that can take into ac-
count a large variety of existing grid computation
models. The grid architecture we proposed relies
on the definition of application-aware components
distributed at the edge of the grid networking in-
frastructure where application-specific function-
alities can be deported in the network in a trans-
parent way for the grid designer and the grid user.
These AACs are practically implemented using
the TAMANOIR high-performance execution en-
vironment. The main motivations for this work is
to show that application-aware components and
services are viable concepts and bring more per-
formance for the end-users. Enabling and gener-
alizing the use of application-aware services on a
grid infrastructure will provide a level of flexibil-
ity that have never been achieved in the Internet
before and will certainly help for a massive usage

of distributed computing.
To illustrate the usage of such a grid architec-

ture we specifically explored how communications
on a grid could be enhanced, first with QoS sup-
port and, second with a multicast support. The
results show that the concept of AACs distributed
at the edge of the grid networking infrastructure
can provide a higher level of performances both
in terms of latency and bandwidth. In the future,
we would like to merge the TAMANOIR frame-
work with a grid middleware environment (such
as Globus) in order to provide more transparency
for grid applications.
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20. L. Lefèvre, C. Pham, P. Primet, B.
Tourancheau, B. Gaidioz, J. P. Gelas, M.
Maimour. Active Networking Support for
The Grid. Proceedings of the third Inter-
national Working Conference on Active Net-
works (IWAN’01), 2001.

21. M. Litzkow and M. Livny. Experience With
The Condor Distributed Batch System. In

IEEE Workshop on Experimental Distributed
Systems, October 1990.

22. J. Mack LVS HOWTO. http://www.

linuxvirtualserver.org/.
23. M. Maimour and C. Pham. Dynamic Replier

Active Reliable Multicast (DyRAM) Proceed-
ings of the 7th IEEE Symposium on Comput-
ers and Communications (ISCC 2002).

24. M. Maimour and C. Pham. An analysis of
a router-based loss detection service for ac-
tive reliable multicast protocols. Proceedings
of the International Conference On Networks
(ICON 2002), Singapore.

25. K. Nichols, S. Blake, F. Baker, and D. Black.
Definition of the differentiated services field
(DS field) in the IPv4 and IPv6 headers.
Internet Request For Comments RFC 2474,
Internet Engineering Task Force, December
1998.

26. C. Papadopoulos, G. M. Parulkar, and G.
Varghese. An error control scheme for large-
scale multicast applications. In IEEE INFO-
COM’98, pp1188–1996.

27. S. Paul and K. K. Sabnani. Reliable multicast
transport protocol (rmtp). IEEE Journal
of Selected Areas in Communications, Spe-
cial Issue on Network Support for Multipoint
Communication, 15(3):407–421, April 1997.

28. The polder metacomputing initiative. http:

//www.science.uva.nl/projects/polder.
29. P. Vicat-Blanc/Primet. High Performance

Grid Networking in the DataGrid Project.
Special Issue Future Generation Computer
Systems, Elsevier, January 2003.

30. P. Vicat-Blanc/Primet. e-Toile project: de-
velopment and implementation of a high-
performance grid. Proceedings of the french
National RNTL workshop, Toulouse, Novem-
ber 2002.

31. N. S. V. Rao NetLets: End-To-End QoS
Mechanisms for Distributed Computing in
Wide-Area Networks Using Two-Paths. Jour-
nal of High-Performance Computing Applica-
tions, Vol. 16(3), August 2002, pp285-292.

32. A. Reinefeld, R. Baraglia, T. Decker,
J. Gehring, D. Laforenza, J. Simon,
T. Romke, and F. Ramme. The mol
project: An open extensible metacom-



17

puter. In Heterogenous computing workshop
HCW’97,IPPS’97, Geneva, April 1997.

33. R. Russell. Linux Filter Hacking. HOWTO,
July 2000.

34. R. State, O. Festor, E. Nataf. A Pro-
grammable Network Based Approach for
Managing Dynamic Virtual Private Networks
In Proceedings of PDPTA 2000, Las Vegas,
June 26-29.

35. T. Strayer, B. Dempsey, and A. Weaver. XTP
– THE XPRESS TRANSFER PROTOCOL.
Addison-Wesley Publishing Company, 1992.

36. D. L. Tennehouse et al. A survey of active
network research. IEEE Comm. Mag., pp80–
86, January 1997.

37. D.J. Wetherall, J.V. Guttag and D.L. Ten-
nehouse. ANTS: a Toolkit for Building
and Dynamically Deploying Network Proto-
cols. In IEEE OPENARCH’98, San Fran-
cisco, April 1998.

38. L. Wei, H. Lehman, S. J. Garland, and D. L.
Tennenhouse. Active reliable multicast. In
IEEE INFOCOM’98.

39. Xtremweb : a global computing experimental
platform. http://www.xtermweb.net.

40. R. Yavatkar, J. Griffoen, and M. Sudan. A
reliable dissemination protocol for interactive
collaborative applications. In ACM Multime-
dia, pages 333–344, 1995.

41. S. Zabele et al. Improving Distributed Sim-
ulation Performance Using Active Networks.
In World Multi Conference, 2000.
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an HDR (Habilitation à Diriger les Recherches)
in 2002. Since 1989 she has been working at
the Ecole Centrale de Lyon, teaching and do-
ing research in Computer Science, Operating Sys-
tems, Internet protocols and Computer Networks.
Member of the LIP laboratory and leader of the
INRIA team project RESO since 2002, her re-
search interests include High Performance Grid
and Cluster Networking, Internet (TCP/IP), End
to end Quality of Service, Transport protocols,
Active Networks, Large Scale Distributed Sys-
tems, Collaborative Work. She has been the man-
ager of the Network Workpackage of the Euro-
pean DataGRID project. She is also the scientifi-
cal coordinator of the French RNTL E-Toile grid
Platform project funded by the French Research
Ministry.

Bernard Tourancheau is currently principal in-
vestigator at Sun Labs Europe. His research in-
terests include networking, communication mod-
els and protocols, clusters and parallel comput-
ing, parallel and distributed systems. From 1996
to 2000, he was a Professor at the University of



18

Lyon after two years as a CRPC research asso-
ciate at the University of Tennessee, Knoxville
and a decade as a research associate at CNRS
in ENS-Lyon. He received his Ph.D. from INP-
Grenoble in 1989 and his HDR from University
of Lyon in 1994. He is a member of the IEEE
Society.


