
R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part II, LNCS 4804, pp. 1367–1384, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SNMP-Based Monitoring Agents and Heuristic
Scheduling for Large-Scale Grids

Edgar Magaña1,3, Laurent Lefevre2, Masum Hasan1, and Joan Serrat3

1 Cisco Systems, Inc.
10 West Tasman Dr, San Jose, CA 95134, USA
{emagana, masum}@cisco.com

2 Universitat Politècnica de Catalunya
Jordi Girona 1-3, Barcelona, Spain

emagana@nmg.upc.edu, serrat@tsc.upc.edu
3 INRIA RESO / LIP Laboratory

UMR 5668 (CNRS, ENS Lyon, INRIA, UCB), France
laurent.lefevre@inria.fr

Abstract. This paper presents both, SNMP-based resource monitoring and
heuristic resource scheduling systems targeted to manage large-scale Grids.
This approach involves two phases: resource monitoring and resource
scheduling. Resource monitoring (even discovery) phase is supported by the
SNMP-based Balanced Load Monitoring Agents for Resource Scheduling
(SBLOMARS). This resource monitoring and discovery approach is different
from current distributed monitoring systems in three main areas. Firstly, it
reaches a high level of generality by the integration of SNMP technology and
thus, it is offering an alternative solution to handle heterogeneous operating
platforms. Secondly, it solves the flexibility problem by the implementation of
complex dynamic software structures, which are used to monitor from simple
personal computers to robust multi-processor systems or clusters with even
multiple hard disks and storage partitions. Finally, the scalability problem is
covered by the distribution of the monitoring system into a set of sub-
monitoring instances which are specific per each kind of computational
resource to monitor (processor, memory, software, network and storage).
Resource scheduling phase is supported by the Balanced Load Multi-Constrain
Resource Scheduler (BLOMERS). This resource scheduler is implemented
based on a Genetic Algorithm, as an alternative to solve the inherent NP-hard
problem for resource scheduling in large-scale Grids. We show some graphical
and textual snapshots of resource availability reports as well as a scheduling
scenario in the Grid50001 platform. We have obtained a scalable scheduler with
an extraordinary load balanced between all nodes participating in the Grid.

Keywords: Genetic Algorithms, Load Balancing, Monitoring Agents, Resource
Monitoring, Resource Scheduling.

1 Experiments in this article were performed on the Grid5000 platform, an initiative from the

French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and
RENATER and other contributing partners (https://www.grid5000.fr)

1368 E. Magaña et al.

1 Introduction

Resource Management in distributed systems is a well-studied problem. There are
numerous implementations available for many computing environments and which
include batch schedulers, work-flow engines and operating systems. In such systems,
the resource manager has complete control of resources, and thus can implement
mechanisms and policies needed for effective use of those resources in isolation.

In Grid Computing [2], things are completely different, mainly because resources
are heterogeneous, autonomous, and can be distributed on a large scale. Grids are
dynamic environments where resource management is taking place in scenarios
characterized by different administrative domains with high variability of resource
availability and multiple networking issues. Moreover, in the near future, Grid
systems are expected to connect large number of heterogeneous resources (desktops,
data-bases, clusters, visualization tools, etc.) that are accessible by many users (in the
range of millions) and able to execute a large variety of applications. They are
becoming considered as large-scale Grids.

Traditional resource management research has provided many models and
algorithms to tackle a wide variety of Grid resource management problems. These
solutions are individually addressed to any of the three main resource management
phases; namely, resource discovery, resource scheduling and resource allocation [4].
But, as the network spans and the number of users increase, the rather simple
management methodologies currently used become more and more inadequate.
Therefore, improving these techniques is not sufficient. New alternatives should
involve better integration and synergism between the before mentioned resource
management phases.

On one hand, resource monitoring problem has been solved by means of both,
centralized and distributed approaches. The first ones fail when the number of
resources increases or when resources maintain certain mobility in the Grid. The
second ones are considered better solutions mainly for heterogeneous networks, no
matter the level of resource mobility presented. The most important disadvantage is
the complexity of their implementation. Thus, a level of fusion is required to improve
efficiency and functionality in current approaches.

On the other hand, the efficient computational resource scheduling is recognized as
a hard problem that has been tackled for many years by operation research and
artificial intelligence researchers. Indeed, it is well known that the generation of
optimal job-shop schedules is an NP-hard problem and hence heuristic algorithms are
usually employed to find “good”, sub-optimal solutions in affordable time [8]. One of
the most popular heuristic methodologies is Genetic Algorithms (GAs) [15]. These
are adaptive methods that can be used to solve optimization problems, based on the
genetic process of biological organisms. Over many generations, natural populations
evolve according to the principles of natural selection and “survival of the fittest”.
They are able to evolve solutions to real world problems, if they have been suitably
encoded. Unfortunately, these heuristics algorithms require real-time and statistical
information regarding resource availability in order to be successful [12].

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1369

This paper presents a new resource monitoring and scheduler systems with the
capability of efficiently fulfilling multi-constrain service requirements, which are
respectively: user requirements (QoS, deadlines, etc.), service necessities (memory,
storage and software requirements) and resource-load balancing in the entire Grid.
These requirements are expressed in service policies and they are managed by means
of a Policy-based Grid Resource Management Architecture (PbGRMA) [6]. The
presented approach is based on a full distributed resource monitoring system and a
heuristic algorithm for resource scheduling in large-scale Grids. The first one is a
SNMP-based Balanced Load Monitoring Agents for Resource Scheduling
(SBLOMARS). In this approach, unlike the current monitoring and discovery
systems, each targeted computational resource (memory, processor, network, storage,
etc.) is monitored by an autonomous monitoring sub-agent, offering a pure
decentralized monitoring system. The second one is a Balanced Load Multi-Constrain
Resource Scheduler (BLOMERS). This resource scheduler is implemented based on a
Genetic Algorithm, as an alternative to solving the inherent NP-hard problem for
resource scheduling in large-scale Grids.

The rest of the paper is structured as follows. Section II presents related work in
the area of monitoring and scheduling systems for Grid Computing. Section III
presents the distributed monitoring agents and their main features to improve
scheduling process. Section IV describes the general model for resource selection and
its interaction with monitoring agents. Section V presents an evaluation of the
monitoring system and a quantitative scheduler evaluation performed on Grid5000
platform. Conclusions and future work are described in Section VI.

2 Related Work

Many heuristic algorithms have been proposed to deal with specific cases of job
scheduling but they fail, or behave inefficient, when applied to other problem
domains. An important family of these heuristic solutions is based on Genetic
Algorithms (GAs), which apply evolutionary strategies to allow for a faster
exploration of the search space. GAs have proven to be successful in getting better
distribution of the jobs through the entire network [10]. Many researchers have
investigated GAs to schedule tasks in homogeneous [13] and heterogeneous [12]
multi-processor systems with remarkable success.

In the area of resource monitoring, SNMP agents have been implemented by many
researchers in different contexts, each one with its own strengths and weaknesses.
One of the most similar approaches to SBLOMARS is GridRM [16]. It consists of a
generic monitoring architecture that has been specifically designed for the Grid. It
was developed integrating several technologies and standards like Java (applets,
servlets and JDBC) and SQL Databases. It also follows several Open Grid Forum
(OGF) [2] recommendations for resource management. SBLOMARS could be more
competitive due to its lower resource consumption and its greater availability to offer
at any moment reliable information regarding availability of computational resources.

Other alternatives are MonAlisa [7] and Ganglia [11], which are well known
systems to monitor computational resources and clusters, respectively. On one hand

1370 E. Magaña et al.

MonAlisa require complementary systems to be helpful in the Grid management area.
On the other hand, Ganglia is not oriented to large-scale Grids. It is oriented to
clusters and high capacity resources. NetLogger [17] is both a methodology for
analyzing distributed systems, and a set of tools to help implementing the
methodology. It provides tools for distributed application performance monitoring
and analysis. ReMos [18] aims to allow network-aware applications to obtain relevant
information about their execution environment. Condor-G [19] is a task broker
designed as a front end to a computational Grid. It acts as an entry point to the grid
dispatching jobs to run on the various nodes available. Also worth mentioning is,
JAMM (Java Agents for Monitoring and Management) [21] a distributed set of
sensors that collect and publish monitoring information of computational resources.
GridLab [14] aims to enable applications to fully exploit dynamically changing
computational resources.

3 SBLOMARS – Resource Monitoring Agents

Resource monitoring and discovery involves determining which resources are
available to be assigned to execute a specific job, application, service, etc. The
challenge here is to deal with resources not belonging to a unique centralized
administrator. This is because we are assuming realistic scenarios far away from the
case where a management system knows a priory the assigned resources to any node
on the Grid.

A diagram showing the main classes and interfaces of SBLOMARS monitoring
agents is presented in Figure 1. The (1)PrincipalAgentDeployer, the main class of
the overall system, deploys a specific agent for each kind of resource to be monitored.
It offers a generic user interface that can be used to specify the timing between every
invocation of the SNMP-MIBs, as well as the number of invocations between every
statistical measurement. The (2)ResourceSubAgents are instantiated in as many
classes as different resources must be tracked (five, so far). The
(3)ResourcesDiscovery class advises the system on the kinds of resources that are
available in the nodes constituting the Grid, and stores that information in the
(8)Network-Map Database. The (4)RealTimeReport generates real-time resource
availability information. Finally, the (5)HistoricalReport generates statistical
resource availability information. This information is presented in two formats:
(6)XML-based documents containing the historical and statistical reports, and
(7)Dynamic Software Structures consisting of real-time snapshots. The statistical
reports are later used in the resource selection phase to determine, in advance and by
means of a heuristic approach, which resources are more likely to be the optimal
solution for the fulfillment of any user’s request. Since the information thus displayed
could appear to be crude or unfriendly to customers, network administrators and
resource owners, a graphical interface has been integrated in order to provide user-
friendly information on resource availability to any third party on the Grid.

This has no impact on the performance of SBLOMARS due to the fact that the
graphical interface solely collects information that is already in the local database. A
more detailed description of how the resource scheduler contacts with SBLOMARS is

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1371

left for the next section. SBLOMARS overcomes the scalability problem by splitting
monitoring activities into independent frameworks (a sub-agent is deployed for every
kind of resource) and distributing the monitoring phase through software agents
running autonomously (agents do not depend on other systems). SBLOMARS agents
have been developed based on SNMP monitoring technology because it is commonly
available in any type of platform. This ensures flexibility and applicability of our
approach in heterogeneous operating environments [5].

PrincipalAgentDeployer

software.start ()
processor.start ()
memory.start ()
network.start ()
storage.start ()

ResourceDiscovery

getCommunity ()
getHostName ()

addressIP : String

HistoricalReport

software_elements : int
processor_elements : int
memory_elements : int
storage_elements : int
network_elements : int

getting_elements ()
write ()
print ()
buffwrite.flush ()
… ()

processorParameter : Vector
cicle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

ProcessorAgent

memoryDetails : Vector
processorDetails : Vector
networkDetails : Vector
softwareDetails : Vector
storageDetails : Vector

getCPUUsed ()
getMemoryUsed ()
getStorageAvailable ()
getInOctets ()
… ()
… ()

SblomarsAgent

memoryParameter : Vector
cycle_duration : int
average_cycles : int

storageParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

agent.start ()
agent.getParameters ()
agent.sleep ()

StorageAgent

MemoryAgent

softwareParameter : Vector
cycle_duration : int
average_cicles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

SoftwareAgent

networkParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

NetworkAgent

ResourceSubAgents

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

Dynamic Software Structures
[0] “Number of Element”

[0] Element ID (String)

[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used (Long – Bytes)
[5] … (Available when it could be
requiered)
…

[N] (As long as the number of resource elements
exits on the monitored node)

Users

1
3

25

4

Network
Map

6

7

8

XML Monitoring Service
<Monitoring_Storage_Available_Information>

<Device_Type>Storage</Device_Type>
<Storage_Device>
<Label>C:\ </Label>
<Space_Total>21476171776</Space_Total>
<Space_Available>6833168384</Space_Available>
<Space_Used>14643003392</Space_Used>
<Space_Used_Percent>68</Space_Used_Percent>

1

∞ ∞∞

∞ ∞ ∞

1

1

1

1
1PrincipalAgentDeployer

software.start ()
processor.start ()
memory.start ()
network.start ()
storage.start ()

ResourceDiscovery

getCommunity ()
getHostName ()

addressIP : String

HistoricalReport

software_elements : int
processor_elements : int
memory_elements : int
storage_elements : int
network_elements : int

getting_elements ()
write ()
print ()
buffwrite.flush ()
… ()

processorParameter : Vector
cicle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

ProcessorAgent

memoryDetails : Vector
processorDetails : Vector
networkDetails : Vector
softwareDetails : Vector
storageDetails : Vector

getCPUUsed ()
getMemoryUsed ()
getStorageAvailable ()
getInOctets ()
… ()
… ()

SblomarsAgent

memoryParameter : Vector
cycle_duration : int
average_cycles : int

storageParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

agent.start ()
agent.getParameters ()
agent.sleep ()

StorageAgent

MemoryAgent

softwareParameter : Vector
cycle_duration : int
average_cicles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

SoftwareAgent

networkParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

NetworkAgent

ResourceSubAgents

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

Dynamic Software Structures
[0] “Number of Element”

[0] Element ID (String)

[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used (Long – Bytes)
[5] … (Available when it could be
requiered)
…

[N] (As long as the number of resource elements
exits on the monitored node)

Users

1
3

25

4

Network
Map

6

7

8

XML Monitoring Service
<Monitoring_Storage_Available_Information>

<Device_Type>Storage</Device_Type>
<Storage_Device>
<Label>C:\ </Label>
<Space_Total>21476171776</Space_Total>
<Space_Available>6833168384</Space_Available>
<Space_Used>14643003392</Space_Used>
<Space_Used_Percent>68</Space_Used_Percent>

1

∞ ∞∞

∞ ∞ ∞

1

1

1

1
1

Fig. 1. SBLOMARS Architecture and Interfaces

3.1 Implementation Aspects

The monitoring agents are a set of different types of sub-agents, one per kind of
resource to monitor. Our design provides real-time and historical statistical resources
availability information. SBLOMARS has two main properties and advantages.
Initially, it deploys a monitoring sub-agent per kind of resource to monitor (processor,
memory, storage, etc.). This means that nodes forming the Grid, could share just some
of their resources and not all of them. Secondly, SBLOMARS is able to monitor any
amount of shared resources. This means that no matter how many types of resources

1372 E. Magaña et al.

are available, the distributed agents will monitor their behavior. This is possible
because SBLOMARS automatically handles its memory buffers to be as long as
should be required. Therefore, it could be deployed in a wide range of nodes ranging
from simple desktop computers to complex multi-processor servers.

SBLOMARS deploys a single thread per type of resource to be monitored,
independently of the amount of such resources. This is worthy to mention because,
many monitoring systems fail when they try to handle new “hot-plug resources” that
have been added to the system. As we mentioned before, every resource is monitored
by independent software threads that start again at certain lapse of time becoming an
infinite cycle. The cycle-timing is defined by local or remote administrators through
booting parameters at the beginning of its execution.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Edited with Agent BLOMERSXML v1.0 …

<!-- Monitoring Resources Service xmlns:xsi= …

<Monitoring_Storage_Available_Information>
<Device_Type>Storage</Device_Type>
<Number_of_Elements>3</Number_of_Elements>
<Storage_Device>
<Label>C:\ Label: Serial Number f010b634</Label>
<Space_Total>21476171776</Space_Total>
<Space_Available>6833168384</Space_Available>
<Space_Used>14643003392</Space_Used>
<Space_Used_Percent>68</Space_Used_Percent>
</Storage_Device>

<Storage_Device>
<Label>G:\ Label:Disco local Serial Number 302e</Label>
<Space_Total>10733957120</Space_Total>
<Space_Available>3095842816</Space_Available>
<Space_Used>7638114304</Space_Used>
<Space_Used_Percent>71</Space_Used_Percent>
</Storage_Device>

<Storage_Device>
<Label>H:\ Label:SHARED Serial Number 48f893</Label>
<Space_Total>34290843648</Space_Total>
<Space_Available>13172244480</Space_Available>
<Space_Used>21118599168</Space_Used>
<Space_Used_Percent>61</Space_Used_Percent>

</Storage_Device>
</Monitoring_Storage_Available_Information>

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Edited with Agent BLOMERSXML v1.0 …

<!-- Monitoring Resources Service xmlns:xsi= …

<Monitoring_Storage_Available_Information>
<Device_Type>Storage</Device_Type>
<Number_of_Elements>3</Number_of_Elements>
<Storage_Device>
<Label>C:\ Label: Serial Number f010b634</Label>
<Space_Total>21476171776</Space_Total>
<Space_Available>6833168384</Space_Available>
<Space_Used>14643003392</Space_Used>
<Space_Used_Percent>68</Space_Used_Percent>
</Storage_Device>

<Storage_Device>
<Label>G:\ Label:Disco local Serial Number 302e</Label>
<Space_Total>10733957120</Space_Total>
<Space_Available>3095842816</Space_Available>
<Space_Used>7638114304</Space_Used>
<Space_Used_Percent>71</Space_Used_Percent>
</Storage_Device>

<Storage_Device>
<Label>H:\ Label:SHARED Serial Number 48f893</Label>
<Space_Total>34290843648</Space_Total>
<Space_Available>13172244480</Space_Available>
<Space_Used>21118599168</Space_Used>
<Space_Used_Percent>61</Space_Used_Percent>

</Storage_Device>
</Monitoring_Storage_Available_Information>

Vectorial JAVA Structure “Storage”

[0] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used Percentage (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

[1] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used Percentage (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

…
…
[N] (As long as the number of resource elements

exits on the monitored node)

Vectorial JAVA Structure “Storage”

[0] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used Percentage (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

[1] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used Percentage (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

…
…
[N] (As long as the number of resource elements

exits on the monitored node)

Fig. 2. (a) XML-based Reports and (b) Dynamic Software Structures

3.2 Real Time and Historical Resources Availability Reports

SBLOMARS presents real time and historical statistical resource availability
information in two formats which are illustrated in Figure 2. The first one is based on
XML standard [3]. These documents show real time resource availability information
but SBLOMARS also produce additional XML-based documents with statistical
information per resource. This statistical information is important to feed the genetic
resource selection algorithm as described in the next section. Both documents are
stored in an internal database that makes them accessible provided that the requesting
entity has the appropriate access rights.

The second output format to present monitored information is through “Dynamic
Software Structures”. They are not physical documents like the previous ones. These
are software structures developed to keep in memory buffer for each type of resource
both, the amount of used and the amount of available resources since the last refresh.
The refreshing period is also assigned by the local or remote administrators when

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1373

SBLOMARS is bootstrapping. This is another advantage of this approach; the
scheduling system could get this information from the memory buffer in a faster way
than accessing the XML reports because parsing activity is then avoided and then
saving scheduling time.

3.3 Graphical Interface

SBLOMARS offers real-time and historical data by means of sockets’ connections to
any sub-agents running at any time. This information could appear quite crude or
unfriendly for customers, network administrator or resources owners. Therefore, we
have integrated a graphical interface to bring user friendly information regarding
resource availability to any third party on the Grid. This graphical interface does not
impact the performance of the SBLOMARS agents due to the fact that it collects the
already available information from the local database. In figure 3, we show a snapshot
of this graphical interface. In this example the graph is plotting several nodes from
GRID5000 test-bed which are distributed in Nancy, Bordeaux and Lyon (France).

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

Fig. 3. SBLOMARS Graphical Interface

4 BLOMERS - Resource Scheduler

The second phase in Resource Management Systems is resource selection, which
searches and matches job's requirements with resource availability. In other words, it
involves determining which resources are the best ones for executing a specific job,
application, service, etc. Our approach covers this phase by introducing the Balanced

1374 E. Magaña et al.

Load Multi-Constrain Resource Scheduler (BLOMERS). This scheduler makes use of
the statistical resource availability information generated by SBLOMARS monitoring
agents. In the following sub-sections we will thoroughly explain the motivation and
details of this scheduler.

4.1 Motivation of the Heuristic Resource Scheduler

The main goal of a resource scheduling system is the mapping of job requiring
resources onto available computational resources in a way that satisfies the users and
resource administrator policies. The scheduling problem is represented by a set of
independent jobs J={j1,j2,...,jn}. Each job has an operation sequence represented by Ci
(precedent constraints). Each job Ji consists of a set of tasks Ti={ti1, ti2,...,tik} which
must be performed between a starting time (Ts) and deadline time (Td). The execution
of each job requires the use of a set of computational resources R={R1,R2,...,Rm} in a
local/wide area network. In practice we may assume the network constituted by a set
of nodes N={N1, N2,...,Nn} sharing their resources (memory, processor, storage,
network and software). The objective is to find a schedule with the shortest makespan.
The makespan of a schedule is the time required for all jobs to be processed when no
one job could be interrupted during its execution and each node can perform at most
one operation at any time.

The scheduling search procedure is at the core of the scheduling methodology. This
procedure examines the set of available resources, generates a number of candidates
and evaluates the candidate resources to select a final subset to be allocated and
communicates the results. The inputs of the search procedure are the set of resources
as well as the scheduling policies. The number of candidate subsets Cr to be evaluated
is given by expression (4.1), given that we have a set of n number of available
resources and k number of possible assignations that fulfill the requested requirements
from all the requirements’ sources defined in the first section of this paper. To
guarantee that the optimum Cr will be identified, an exhaustive search over all
possible unique resource combinations would be required. However, the cost of such
search is prohibitive. For an exhaustive search, all subsets from size one to the size of
the entire resources set must be considered in the search.

() ⇒+=⎟
⎠
⎞

⎜
⎝
⎛∑

=

n
n

k

n xx
k

n
1

0

 12
1

−=⎟
⎠
⎞

⎜
⎝
⎛∑

=

n
n

k k

n
 (4.1)

4.2 Methodology Proposed and Resource Selection Algorithm

We have highlighted the search problem in large-scale Grids with uncountable
number of resources. We have shown that if we have n resources, and if a job can be
scheduled into any number of resources from 1 to n, the total number of possible
allocations grows exponentially. Thus, it is computationally very expensive to analyze
all possible allocations and solve an optimization problem. In the BLOMERS
approach, we propose to find a sub-optimal solution to the problem of scheduling
computational resources. This is based on a genetic algorithm, in charge of resource

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1375

selection, as a part of the resource manager system, which is embedded into a Policy-
based Grid Resource Management Architecture, which has been presented in [6]. In
Figure 3 we present the pseudo code of the heuristic resource scheduling algorithm.

Genetic Algorithm for Resource Selection. The genetic algorithm for resource
selection has to deal with several conditions [8]. Basically, it should select a set of
candidate resources from a poll, keeping individual resource performance
comparatively equal in all nodes of the distributed system. This condition has been
added in order to satisfy the computational resource load balancing. Finally, the
resource selection algorithm needs to keep the relative operations’ sequences, known
as precedence constrain of the type i j. This constrain is defined to mean that data
generated by task i are required to start task j.

Cleaning Buffer (Bk);

Initialize (k, Pk);

Evaluate (Pk);

Do (Always)

Select_Resource_Candidates (Pk);

Recombinate (Pk);

Crossover (Pk);

Mutation (Pk);

Evaluate (Pk);

Deliver (Solutionk);

Return;

Cleaning Buffer (Bk);

Initialize (k, Pk);

Evaluate (Pk);

Do (Always)

Select_Resource_Candidates (Pk);

Recombinate (Pk);

Crossover (Pk);

Mutation (Pk);

Evaluate (Pk);

Deliver (Solutionk);

Return;

Fig. 4. BLOMERS Genetic Algorithm Pseudo Code

BLOMERS and SBLOMARS Interfaces. BLOMERS uses a collection of solutions
(population) from which better solutions are produced using selective breeding and
recombination strategies [15]. The first population is created randomly by means of
the Initialize (k, Pk) method. Every node forming the Grid is identified by a unique
ID. These IDs are stored in a configuration file (network map), which is dynamically
updated when new nodes are added or removed from the network. This file is the
source of information that BLOMERS uses to know which nodes could be asked
about their resource availability. We have explained in Section 2 that every node in
the network has a monitoring agent (SBLOMARS) running all the time. The
presented genetic algorithm works with several threads in parallel, one for each
resource available. SBLOMARS offers a socket connection for resource and for node.
Therefore, BLOMERS needs to know which nodes are on line and which ports are
been using by each node to reach the resource availability information.

BLOMERS accesses to dynamic software structures through open sockets that have
been configured by the monitoring agents. Figure 5 depicts with a triangular-shaped
icons the SBLOMARS monitoring agents and with star-shaped icons the BLOMERS
resource scheduler. In other resource manager approaches for distributed systems,
monitoring activity is controlled by the same instances of the resource manager,
making thus the scalability problem a big issue. Nevertheless, in our case we have
independent agents to support the growth of network nodes without compromising
scalability. BLOMERS resource scheduler is always generating new populations

1376 E. Magaña et al.

(solutions) in advance to be assigned when new jobs or applications request resources
in the network.

Generation and Selection of Candidate Population. Once the first population has
been initialized, a first simple evaluation of this population is done. Normally, the
first population is never selected as a candidate solution, but it is the main entry to
create new populations. The Select Resource Candidates (Pk) method bounds the
initial populations and applies two simple genetic operators, such as Crossover (Pk)
and Mutation (Pk). These methods are used to construct new solutions from pieces of
old ones in such a way that the population (Pk) steadily improves. This algorithm
compares faster versus other heuristic methodologies and could be better adapted to
heterogeneous parameters, but the two most important advantages are that it avoids
failing into a local minimum solution and that it can be running in parallel to schedule
more than request at the same time. We made use of these advantages to design our
genetic algorithm with many threads as different types of resources have to be
controlled on the Grid. The genetic algorithm needs to be adapted according to the
requirements of the application and the environment in which it will be working. The
information to analyze for each search will be adaptable to resource availability and
the conditions for this adaptation are completely different in each design which
assures the novelty of this approach.

Public
Network

Inter-Domain Router

192.168.88.0

192.168.88.21

1
9
2
.
1
6
8
.
2
2
.
0

192.168.14.14

private_2.net

Inter-Domain Router

192.168.1.0

128.40.42.180

192.168.3.3

192.168.1.10

192.168.3.0

192.168.11.11

192.168.3.4

private_3.net

1
9
2
.
1
6
8
.
1
1
.
0

192.168.11.12

private_n.net

192.168.22.23

192.168.14.15

128.40.38.94

192.168.22.24

192.168.1.1

192.168.3.5

POLICIES
DB

Data

Data

192.168.22.22

192.168.1.88

192.168.14.0 192.168.1.2

private_1.net

POLICIES
DB

BLOMERSBLOMERS BLOMERSBLOMERS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

BLOMERSBLOMERSSBLOMARSSBLOMARS

Public
Network

Inter-Domain Router

192.168.88.0

192.168.88.21

1
9
2
.
1
6
8
.
2
2
.
0

192.168.14.14

private_2.net

Inter-Domain Router

192.168.1.0

128.40.42.180

192.168.3.3

192.168.1.10

192.168.3.0

192.168.11.11

192.168.3.4

private_3.net

1
9
2
.
1
6
8
.
1
1
.
0

192.168.11.12

private_n.net

192.168.22.23

192.168.14.15

128.40.38.94

192.168.22.24

192.168.1.1

192.168.3.5

POLICIES
DB

Data

Data

192.168.22.22

192.168.1.88

192.168.14.0 192.168.1.2

private_1.net

POLICIES
DB

BLOMERSBLOMERS BLOMERSBLOMERS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

SBLOMARSSBLOMARS

BLOMERSBLOMERSSBLOMARSSBLOMARS

Fig. 5. BLOMERS Scheduler and SBLOMARS Monitoring Agents

5 Overall System Evaluation

We have described SBLOMARS and BLOMERS functionality and their
communication workflow. In this section we are going to show the initial results for
both systems and to present an ongoing test-bed for the architecture evaluation in a
real large-scale Grid [9].

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1377

5.1 SBLOMARS Performance Evaluation

We deployed and executed SBLOMARS on Pentium IV system with 512MB of RAM
memory and Windows XP operating system. We have analyzed processor and
memory consumption impact on the system performance. We used Java Profiler to get
the following graphs. In Figure 6(a) we show CPU consumption of SBLOMARS
monitoring agents for a period of twenty-four hours. As it can be observed,
SBLOMARS represents an insignificant impact in the system behavior. It is clear that
only in very small intervals of time (30msec.), as we show in Figure 6(b), system
performance could be affected but in general it does not notice any impact.

30 msec.30 msec.

Fig. 6. (a) Twenty-four Hours and (b) Sixty Seconds Processor Overload by SBLOMARS

Fig. 7. Forty-eight Hours Memory Overload by SBLOMARS

As far as the memory consumption is concerned, Figure 7 reveals an increase of
0.5MB caused by the SBLOMARS monitoring agents. The important information in
this test is that memory consumption remains oscillating below this maximum for
whole test duration. This means that monitoring agents do not affect system
performance despite their continuous resource performance sensing.

1378 E. Magaña et al.

5.2 SBLOMARS Flexibility Evaluation

SBLOMARS reaches a high level of flexibility in two areas: First, it implements
dynamic software structures, which have been described during the third section. In
order to evaluate the reliability of these structures we have deployed SBLOMARS in
a cluster storage server AthlonXP. In Figure 8, we show the total amount of devices
available in this cluster and their performance (horizontal bars). We have plugged at
14:00 an external storage device (red darkness area) and as the graphs show
SBLOMARS is able to automatically identify this new device and start the
corresponding agent to monitor it.

Fig. 8. SBLOMARS Flexibility Evaluation

a) b) c)

Information is missing

a) b) c)

Information is missing

a) b) c)a) b) c)

Fig. 9. (a) Fix Timing vs. (b) Auto-configuration in Monitoring Phase

Second, SBLOMARS automatically re-configures their trapping times (calls to
SNMP daemon) in an autonomous way. SBLOMARS increases or decreases the
interval times between every trap based on the state of the monitored devices. The
following graphs show respectively the CPU performance in a Grid5000 node with

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1379

fixed times between traps 9(a) and the same node but running with auto-configuration
9(b). It is clear that in certain points the fixed configuration just does not detect
certain values. (i.e. between 13:40 and 14:40).

Obviously, the fact of decreasing interval times involves an impact on the
performance of the hosting node. In Figure 10 we show the processor used by
SBLOMARS. It has started trapping every five seconds. Horizontal lines indicate that
our approach has increased the trapping time in: 10, 20, 30, 40, 60 and 120 seconds.

Fig. 10. Auto-configuration Overload

5.3 SBLOMARS Scalability Evaluation

The scalability evaluation of SBLOMARS monitoring agents was performed in the
Grid5000 test-bed. We have used 115 nodes with heterogeneous architectures
between each others. A random process generator was used to dispatch processes to
the Grid Nodes in order to emulate normal “working day” conditions for all the nodes
involved, so as to assure results approaching real Grid environments. Once we have
our set of nodes ready to run our own experiments, we need to execute three activities
to get information from SBLOMARS distributed monitoring system. The first one is
the configuration of the monitoring agents. In this activity is when each node will
receive the parameters to configure its environment. These parameters are initially
trapping times, activation of the flexibility mechanisms and number of traps needed to
generate a statistical report.

The following activity is to send the activations command to every node where
SBLOMARS has been configured. The last activity is to collect some resource
behavior information from different nodes. Therefore, we have also tested how good
the scalability is in each one of these activities. In Figure 11(a) we have measured the
time required in the Grid5000 test-bed to configure all nodes running SBLOMARS. It
is the first activity of the above mentioned. We have started with just five nodes and
then we were incrementing the number of nodes in five until the amount of 115
nodes. We were not able to reserve more nodes. It is because other researchers have
reserved in advanced more nodes and we just were able to use these ones.

The resulting graph shows that SBLOMARS is incrementing the time in a reasonable
way. This steadily increment is due to the network traffic in the test-bed. We can not
control the traffic between clusters which are forming the Grid5000. Fortunately, it is
not affecting our results as we show in the following graphs (Figure 11(a), Figure 11(b)

1380 E. Magaña et al.

and Figure 11(c)). Regarding the activation phase, we have performed the same
experiment. The presented graph shows our results. In this phase is clearer the stability
that SBLOMARS performs where the number of node to activate is increasing.

Finally, we have also tested the scalability the SBLOMARS when it is offering
resource behavior information. This experiment has the same structure that the
previous ones. In this case, the time that SBLOMARS consumes to offer specific
resource behavior information is much more less. Along this experiment, some values
were longer that the expected. It is because network issues between SBLOMARS
monitoring agents and the requesting entity. The requesting entity could be a user or
administrator who wants to know resource behavior information in certain nodes. In
Figure 11(c) is graphed our results. The time to get resource information is really
short, is around twenty and thirty milliseconds. This time remains steady regardless
the number of nodes in the experiment.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110

Number of Nodes

Ti
m

e
(s

)

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110

Number of Nodes

T
im

e
 (s

)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110

Number of Nodes

T
im

e
(m

s)

Fig. 11. SBLOMARS (a) Configuration, (b) Starting and (c) Responding

5.4 SBLOMARS Storage Evaluation

In Table 1, we present the time between each trap to MIB-OIDs values, the total
amount of files generated and the total amount of disk space used. These results are
reporting an interval of time for the first 24 hours due to fact that agents automatically
clean memory buffers up after this period. Therefore, there we avoid the possibility to
fill the system buffer and storage devices with monitoring reports.

5.5 BLOMERS Analytical Evaluation

Evaluating the BLOMERS approach corresponds to estimating the average fitness of
individuals (group of available resources) matching a required schema (conditions for

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1381

resource load balancing and minimizing makespan). Denote by n(H, k) the number of
individuals in the population (Pk) matching schema H at generation k. If fitness
proportional selection is used, and ignoring the effects of crossover and mutation, the
expected number of individuals matching H at generation k + 1 is:

∑
∩∈

=+
HkPi kf

if
kHnE

)()(

)(
))1,(((5.1)

Where (Pk) ∩ H denotes the individuals in Pk matching H, f(i) denotes the fitness of i
and f(k) denotes the average fitness of the population at time k. If we denote by Dc(H)
and Dm(H) the probability that an individual matching H at generation k will be
disrupted by crossover or mutation and not match H at generation k + 1, and assume
crossover and mutation to work independently of each other, a lower bound is
representing by:

))(1))((1)(,(
)(

),(
(...) HDmHDckHh

kf

kHu
E −−≥ (5.2)

Here, we are ignoring the beneficial effects of crossover and mutation. The
disruption probabilities Dc(H) and Dm(H) depend on the details of the operators used,
but for the classical choice of one-point crossover, Dc(H) will increase with the
defining length of H. Assuming the mutation to mutate the individual bits with equal
probability, Dm(H) will increase with the order of H, the number of all possible
solutions in H. Equation (5.2) is known as the schema theorem. More in-depth
discussions of the schema theorem as well as other theoretical approaches to genetic
algorithms and evolutionary computation can be found in [15]. The estimation of the
fitness of individuals is a classical technique to tune fitness function on the genetic
algorithm. It is corresponding to Evaluate (Pk) method in Figure 4.

Table 1. Storage Space Used for The Resource Monitoring Database

Resource Trapping Time (s) Total Reports Space Used (MB)
Processor 10 8640 3,520
Memory 60 1460 0,576
Network 30 2880 1,143
Storage 300 288 0,357
Software 1800 48 0,212

5.6 BLOMERS Performance Evaluation in Grid5000

We have deployed SBLOMARS and BLOMERS on the Grid5000 platform (currently
3000 nodes located in 10 different sites in France) [9]. These nodes are linked through
1 and 10Gbits networks. We evaluate our approach on different Grid scenarios (micro
Grid of nodes geographically located on one site, Enterprise small scale Grids with
few dozens of nodes located on a reduced number of sites (3) and large scale Grids

1382 E. Magaña et al.

with 10 sites and few hundred of nodes). We experiment our tools on different
scenario with different time frame experiments.

We believe that a performance comparison is unfair for others resource manager
approaches. Besides, it is ponderous to deploy the current systems in order to run the
same kind of monitoring and scheduling tests with equal environment in all of them.
Therefore, we have decided to compare BLOMERS genetic resource selection
algorithm versus trivial resource selection algorithms such as round-robin and least
average used. In Figure 12 we have plotted the performance for processor scheduling
with these algorithms in certain Grid5000 node. Because of space limitations we can
not include all of them. The full set of graphs is available in the following reference
[20]. Most of the heuristic approaches solve the selection problem in terms of
reduction of the makespan for the entire scheduling process. BLOMERS is going a
step further because the resource load in all over the Grid is quite better than other
algorithms; horizontal lines show the border between every scheduling algorithm and
the vertical line the threshold for BLOMERS. The perfect case should be when the
number of times that this threshold is crossed tends to zero, then we show than
SBLOMERS is closer to this goal than the other two.

We clearly see that SBLOMARS and BLOMERS together are quite competitive
because they offer a full distributed resource management system. The main facts to
highlight for our approach are: Its ability to handle different resource constrains
(resource requirements sources), the wide range of computational resources to
monitor, its fully distributed architecture, which allows a high level of scalability and
its heuristic implementation in the resource scheduling phase, which increases its
ability to minimize the makespan in every service requested.

6 Conclusions and Future Work

Scheduling computational resources in large-scale Grids is a matter which requires
significant innovations. This is mainly because their behavior is time-varying, the
resource availability is always unpredictable, their performance is highly unstable and
the amount of resources to compute is undetermined in most of the cases. Current
strategies for scheduling resources fail in fulfilling the demands of a wide variety of
distributed applications. The enormous potential of Grids cannot be reached until
fundamental development of new powerful scheduling algorithms has taken place.

This paper presents a novel monitoring and scheduling approach addressing critical
issues such us flexibility and re-negotiation of user requests and will seek to address
the problem of handling uncertainty and imprecision in both computing resources and
user requirements. We have presented SBLOMARS, an open source monitoring
approach, whose monitored information is used by BLOMERS scheduler, which
based on a heuristic algorithm reduce the makespan for scheduling processes and
maintain the load balanced in a large-scale Grid. We have tested both, the monitoring
agents and the heuristic resource scheduling algorithm in a real scenario, obtaining
very promising results. We have shown that the implemented algorithm performs
better than a round-robin and least average used selection mechanisms. The novelty

 SNMP-Based Monitoring Agents and Heuristic Scheduling for Large-Scale Grids 1383

and advantages in our approach are obtained by the synergy of these systems. We
have improved machine utilization, resource scheduling time and scalability.

The presented monitoring and scheduler systems would facilitate resource owners
the provisioning of facilities for turnaround-assured work. Its presents an advantage in
flexibility, due to the fact that it deploys several resource monitoring agents, which
work independently from the scheduler and get real-time and statistical resource
availability. As future work we are planning to improve security issue. Currently we
are working with version two for SNMP server configuration. We have realized that
better security mechanisms should be integrated in this research. We are also planning
to merge SBLOMARS and BLOMERS approaches with autonomic gateways. We
expect that this conception will help Distributed Systems and Grids designers to
evaluate and monitor more precisely the usage of their network resources.

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

Fig. 12. BLOMERS Versus Other Resource Scheduling Algorithms

Acknowledgments. This paper is supported by the IST-EMANICS Network of
Excellence (#26854). It is also supported by the Ministerio de Educación y Ciencia
project TSI2005-06413.

References

1. Stallings, W.: Lawrence Berkeley National Laboratory (July 2000), SNMP, SNMPv2,
SNMPv3 and RMON 1 and 2 (Third Edition). Addison-Wesley Professional, pp. 365 - 398
(1999) http://www-didc.lbl.gov/JAMM/

2. Open Grid Forum. Web Site: http://www.ogf.org

1384 E. Magaña et al.

3. Klie, T., Strauβ, F.: Integrating SNMP agents with xml-based management systems. IEEE
Communications 42(7), 76–83 (2004)

4. Nabrzyski, J., Schopf, J.M., Weglarz, J.: Grid Resource Management State of the Art and
Future Trends. Kluwer Academic Publishers, Boston, USA (2004)

5. Subramanyan, R., Alonso, J.M., Fortes, J.: A scalable SNMP-based distributed monitoring
system for heterogeneous network computing. In: Reich, S., Anderson, K.M. (eds.) Open
Hypermedia Systems and Structural Computing. LNCS, vol. 1903, pp. 4–10. Springer,
Heidelberg (2000)

6. Magaña, E., Lefevre, L., Serrat, J.: Autonomic Management Architecture for Flexible Grid
Services Deployment Based on Policies. In: ARCS 2007, Zurich, Switzerland (2007)

7. Legrand, I., Newman, H., et al.: MonALISA: An Agent based, Dynamic Service System to
Monitor, Control and Optimize Grid based Applications. In: CHEP 2004, Interlaken,
Switzerland (September 2004)

8. Garrido, A., Salido, M.A., Barber, F.: Heuristic Methods for Solving Job-Shop Scheduling
Problems. In: ECAI-2000 Workshop on New Results in Planning, Scheduling and Design,
Berlín, pp. 36–43 (2000)

9. Cappello, F., et al.: Grid’5000: A Large Scale, Reconfigurable, Controlable and
Monitorable Grid Platform. In: Grid 2005. 6th IEEE/ACM Grid Computing, Seattle,
Washington, USA, November 13–14 (2005)

10. Zomaya, A., The, Y.H.: Observations on using genetic algorithms for dynamic load-
balancing. IEEE Transactions on Parallel and Distributed Systems 12(9), 899–911 (2001)

11. Massie, M., Chun, B., Culler, D.: The Ganglia Distributed Monitoring System: Design,
Implementation and Experience. Parallel Computing 30(7) (July 2004)

12. Page, A., Naughton, T.: Dynamic task scheduling using genetic algorithms for
heterogeneous distributed computing. In: 19th IEEE IPDPS 2005, Denver, Colorado, USA
(April 3-8, 2005)

13. Ahmad, I., Kwok, Y.K., Dhodhi, M.: Scheduling parallel programs using genetic
algorithms. John Wiley and Sons, New York, USA (2001)

14. GridLab. A Grid Application Toolkit and Testbed, www.gridlab.org/
15. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. McGraw-Hill

Book Company, UK (1995)
16. Baker, M., Smith, G.: GridRM: A Resource Monitoring Architecture for the Grid. In: 3rd

International Workshop on Grid Computing, Baltimore, Maryland, USA (November 2002)
17. Tierney, B., Gunter, D.: NetLogger: A Toolkit for Distributed System Performance Tuning

and Debugging. LBNL Tech Report LBNL-51276 (2002)
18. DeWitt, A., Gross, T., Lowekamp, B., et al.: ReMoS: A Resource Monitoring System for

Network-Aware Applications. Carnegie Mellon School of Computer Science
19. Thain, D., et al.: Distributed Computing in Practice: The Condor Experience. Concurrency

and Computation 17(2-4), 323–356 (2005)
20. BLOMERS Performance Web Page: http://nmg.upc.es/ emagana/sblomars/grid5000.html
21. JAMM Project. Java Agents for Monitoring and Management. Lawrence Berkeley

National Laboratory (July 2000), http://www-didc.lbl.gov/JAMM/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

