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Abstract. This work aims to make a survey on high
availability mechanisms in both local and distributed cluster
based architectures. We address both scalability and failover
mechanisms for IP Network data applications. We investigate
in comparing the major layer 4 and layer 5 level switching
solutions as well the undergoing load balancing policies used
to achieve a better distribution of the incoming requests.

We raised issues for both stateless and staltefull proxy designs.
These issues do concern essentially session's integrity and fair
load distribution.
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1. Motivations

One of the most ever been challenging issues for all
service architectures is high availability. Basic high
availability addresses service non interruption by
reducing the impact of failures thourough redundancy
and failover techniques. But service downtimes can
occur when a growing number of demands cannot be
handled due to hardware or software limitations.
Hardware and software scaling up is a mean to overcome
such limitations.
Scalability can be implemented on cluster based
architectures to improve the throughput as well as the
processing speed within the highly available architecture.
Moreover, when  implemented on  distributed
architectures, it addresses site availability.

In both architectures, it is important to improve ressource
utilization. Load balancing techniques aim to distribute
efficiently and fairly inbound requests on the available
ressources, by reducing the processor's idle time.
Nonetheless, maximizing the throughput should keep
reasonable response times.

Many load distribution policies have been proposed,
ranging from static to dynamic algorithms. Dynamic
policies are based on the load evaluation on each node of
the cluster. The load evaluation takes into consideration
the usage of the different node's ressources, like the
CPU, the memory, etc. Some predictive schemes, basing
their load evaluation on the server's response time, have
also been proposed.

Basic comparison metrics used to evaluate these policies
are all about measuring the CPU overhead introduced by
the load evaluation and the accordingly best matching

decision, vs. the reached throughput improvement while

keeping reasonable response times. These comparisons
are conducted regardless from the effectiveness of the
load distribution operation on the upper layer traffic
handled.

These upper layer flows of data can be load balanced
over homogeneous or heterogeneous servers offering the
same service processings. They can be classified in
signaling non elastic data, and in non signaling elastic
data.

Typical elastic flows include file transfers such as those
in email and in the world wide web services. Typical
signalling non elastic flows are used to control voice or
video sessions established over different types of
networks. These are different from elastic signaling
protocols used within session oriented Internet protocols
such as ftp or telnet, in that they are latency and jitter
sensitive. A sample of signaling protocols used to
establish and control real time streams over IP networks,
is the Session Initiation Protocol [1].

The most widely used request distribution of these flows
of data happens at the layer 4, because the TCP/IP
headers contain the ultimate necessary information
needed to identify a service.

Regardless from the distribution nature, which may be
statefull or stateless, things would have done if each
handled packet was processed at the upper layers as a
single independent transaction. But this is not the case for
most of the application level protocols. Thus, applying
the dispatching policies blindly to the inbound packet's
content may result in some session non integrity
scenarios. Typical non integrity uses cases that we will
discuss later, are relevant to routing SIP control messages
in a cluster based VolIP architecture based on layer 4
switching schemes. They result in a retransmission
behavior at the client side, as if the original messages
were lost, leading to an additional latency that, typically,
VoIP architectures should avoid to compete with the
Public Switched Telephone Networks, known for their
efficient routing.

This work addresses high availability in both local
cluster based and distributed based architectures. We first
address scalability and efficient load balancing within
layer 4 and layer 5 switching mechanisms. Then we
investigate in failover requirements and solutions for IP
Network data applications.



2. Scalability requirements and solutions

The earliest efforts toward scaling architectures were
done through hardware and software scale-up over a
single node, when bottlenecks were observed. Hardware
scale up is done by upgrading machines with larger and
faster components, by incrementally adding ressources
like CPUs, disks, memory or network cards. Software
scale up is operating system and application parameter's
tuning. A walk through the proc virtual filesystem or the
use of the sysct/ facility are means to tune kernel runtime
parameters under Linux. But some of these upgrading
scenarios need temporary service interruption and still
fail under pick loads. Thus, scaling-out servers was
introduced. Scaling-out achieved both service and site
availability cluster and

respectively  thourough

distributed based architectures [Figure 1].
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Figure 1 — Scalable Architectures
2.1 Efficient switching in cluster-based architectures
Different types of clusters exist, ranging from massive
parallel processing clusters to clusters of individualy
working nodes.
MPP clusters provide a scalable environment thourough
solving heavy  computational problems  whose
components can be worked in parallel. SMP [2] and
NUMA [2], and their variations, provide larger clusters,
respectively via CPU and memory bus interconnects.
The effectiveness of scalability over these clusters
depends on the job scheduling and migration operation
effectiveness, as well as on fault detection and
checkpointing.
Clusters of independent working nodes are based on
commodity hardware and on general purpose kernels.
They provide scalability through intelligent request
switching to efficiently use cluster ressources.
Switching designs can be statefull or stateless, and
applying to both layer 4 and layer 5 switching.
2.1.1 Stateless switching design
Stateless switching aims to achieve a better latency by
processing each inbound PDU independently from its
predecessors and regardless from any state information.
To achieve session integrity, a stateless design is based
on a hash function, that computes the same destination
cluster node for all PDUs issued from the same source IP

address and port number, within the same transport

protocol. Robust hash functions avoid collisions [3].
Among the main limitations of stateless switching is the
fair load distribution. In fact, stateless switching is unable
to state upper layer session average duration and does not
implement any mechanism to prevent from forwarding
PDUs belonging to the same long sessions to the same
cluster nodes, resulting in an unfair load distribution. A
typical sample of long sessions are SIP sessions, where
the average duration is closely relevant to client's
practice.
The second main limitation of stateless designs is node's
fault handling. In fact, the hash function should be able to
learn about a node's crash whenever it happens. This is
very important to avoid datagram losses. In fact, when
switching handles TCP based traffic, datagram losses
cause the client sending rate to fall, due to the TCP
AIMD processings. Besides, the hash function should be
robust enough to avoid replaying all sessions when
processing a node crash. In fact, suppose that datagrams
originated from client ¢; whithin the session s; were
forwarded to node d;. If the hash function depends on the
number of active nodes, it may forward datagrams c;
belonging to the session s; to some other node d; where
i#j
2.1.2 Statefull switching design
The main idea behind statefull switching is to address
both upper layer session's integrity as well as fair
distribution of inbound PDUs, by keeping in memory
state informations. State informations are connection
state or application layer session informations, depending
on whether switching is done at layer 4 or 5.
Connection state informations include at least the source
and destination IP address, the source and destination
port number, and the underlying transport protocol.
For UDP based traffic, there is not a particular semantic
to identify the beginning and the end of a UDP session,
thus, upper layer protocol dependant header informations
may also be kept for the safe of session integrity.
Additional fields, such as multiple purpose timers, may
also be kept as part of the state informations. They are
used as an optimisation of the memory usage or as DDoS
counter measures, by avoiding keeping state informations
for inactive sessions. Timers can also be used to maintain
statistics on the average of a client session's duration.
The load balancing decision is taken only for the first
datagram within a connection or a session. All the
subsequent packets need to be looked up within the state
information structure. Thus, the performance of the
statefull design depends on the lookup operation, which
we can speed up using a hash function.



2.1.3 Layer 4 switching mechanisms
Layer 4 switching works at the TCP/IP level and
performs a content blind switching of inbound packets.
A broad classification of layer 4 switching mechanisms
distinguishes between one way and two way
architectures, where PDUs are respectively handled once

and twice by the switching entity [Figure 2].
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Figure 2 — Layer 4 switching taxonomy

2.1.3.1 Double packet rewriting
Double packet rewriting is based on Network Address
Translation [4]. The layer 4 switch rewrites the source IP
address and port number of each inbound packet to the
virtual IP address of the cluster and to an arbitrary port
number available on the switching entity. The destination
IP address and the port number of each inbound packet,
initially set to the VIP address of the cluster and the
service port number, are rewritten to the IP address and
port number of the choosen real node. The consequent
checksum updates are applied to headers before
delivering the packet to the outgoing interface. The
reverse operations are performed on outbound PDUs.
Thus, double packet rewriting becomes rapidly the
bottleneck due to this double processing overhead.
2.1.3.2 Single packet rewriting
One way architectures use single packet rewriting to
reduce the overhead of handling twice a datagram. The
switch operations are simpler because changes are made
only on the destination IP address and port number of the
inbound packet, keeping the source identifiers of the
connection unchanged. Real servers are then able to send
back responses directly to the original clients after
rewriting the source connection identifiers, set to theirs,
to the VIP identifiers of the cluster.

2.1.3.3 Packet tunneling
IP tunneling consists of encapsulating IP packets within
IP packets, allowing packets destinated to one IP address
to be wrapped and redirected to another IP address [5].
The old header and data are the new IP packet's payload.
Tunnel switches wrap inbound packets into IP packets
the
respectively the VIP and the real server's IP address. The

where source and destination addresses are
receiving side would strip the IP packet's header off and

check whether the encapsulated packet has as destination

IP address the VIP address already configured on its
tunnel device. If so, it processes the request and sends
back the response directly to the client.

2.1.3.4 Packet forwarding
Packet forwarding can be performed only within a LAN.
The nodes of the cluster must share the same VIP through
aliasing on their secondary IP addresses. In order to
ensure that all inbound frames are received by the
switching entity, the ARP protocol must be disabled on
the cluster's nodes. When a cluster node is choosen to
process an inbound packet, the corresponding frame is
generated such that the destination MAC address is the
MAC address of the target real server. Then the frame is
transmitting on the wire. Thus, the processing node have
all the needed informations to send back responses
directly to clients.

2.1.4 Kernel implementations of layer 4 switching
The IP Virtual Server [6] implemented the major layer 4
switching techniques as addon modules in the networking
layer of the linux kernel. IPVS is a collection of kernel
patches that turns an IPVS enabled node into a layer 4
load balancer. It implements NAT, Direct Routing, and
Tunneling, in conjunction with load balancing policies.
Its implementation is based on both the linux packet
filtering and on the linux kernel routing capabilities.
The Linux Virtual Server [7] is a cluster of independantly
working nodes, using the IPVS load balancer to handle
inbound and outbound traffic.

2.1.4.1 The Netfilter capabilities
Netfilter [8] is a packet filtering engine in the Linux
kernel from version 2.4, that works outside the Berkley
socket interface. It provides extensible NAT and packet
mangling facilities and allows filtered or modified
packets, by userspace processes, to be reinserted back
again into the kernel. These capabilities are implemented
by including additional sanity checks within the kernel
routing processings. The Netfilter architecture [Figure 3]
defines 5 hooks for IPv4 [Table 1].
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Figure 3 — The Linux Netfilter architecture



Hook Use
NF_IP_PRE_ROUTING After sanity checks, before routing decisions.
NF_IP_LOCAL_IN After routing decisions if packet is for this host.
NF_IP_FORWARD If the packet is destined for another interface.

NF_IP_LOGAL_OUT For packets coming from local processes on their
way out.

NF_IP_POST_ROUTING
Table 1 - Available IPv4 hooks

Any kernel module can register a callback function that

Just before outbound packets "hit the wire".

will be called every time a packet traverses the
corresponding hook. A kernel module can then lookup,
manipulate any packet before it continues its path down
the routing chain. Then, it must returns one of the
predefined Netfilter return codes [Table 2].

Return Code Meaning

NF_DROP Discard the packet
NF_ACCEPT Keep the packet
NF_STOLEN Forget about the packet
NF_QUEUE Queue packet for userspace
NF_REPEAT Call this hook function again

Table 2 - Netfilter return codes
2.1.4.2 The IPVS architecture
IPVS is based on only three of the five Netfilter hooks.
They are the PRE_ROUTING, the LOCAL_IN and the
POST_ROUTING hooks [Figure 4]. The routing rules
inside the kernel send all incoming packets to the
LOCAL_IN hook, where the registered IPVS callback
function checks that the packet holds a request to a
virtual service and causes the packet continues its path
down the POST_ROUTING hook. The corresponding
registered callback function would then perform the
alteration of the packet according to the choosen layer 4
switching mechanism.
The LVS Director can work statefully to ensure level 4
integrity. By maintaining a connection tracking table,
IPVS ensures that all packets related to an already
established connection are sent to the same node.
Performance measures have been conducted [9] and
showed that LVS-DR performs better than LVS-NAT.
2.1.4.3 Persistancy design
Persistancy ensures that connection requests originated
from a client go to the same real server. It can be

achieved using the Netfilter marked packets [Figure 4].
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Figure 4 — Netfilter Marked packets and LVS

When the packet hits the PRE_ROUTING hook, the
Netfilter mark number is placed inside the sk_buff
structure. Then, the packet completes with the routing
process and is delivered to the LOCAL_IN hook, where
the corresponding registered callback function uses the
Netfilter mark to determine which IPVS to use.

2.1.4.4 Load balancing policies

Layer 4 routing mechanisms smooth out peack loads
using static and dynamic content unaware request
distribution policies. Static policies do not need server's
load information. They include the Random, the Round
Robin, the Weighted RR, and the source hashing
partitionning policies. Their use within layer 4 switching
results in a rapid disptaching, since they do not rely on
any external entity to make a decision. However, their
stateless nature may result in poor assignments as
discussed in section 2.1.1. Some other issues remain open
and are close to the signaling protocol handled by the
switching entity. As a representative example, let's
assume a SIP session where two parties, a caller and a
callee, are made able to exchange voice streams over the

unreliable IP network [Figure 5].
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Figure 5 — A simple SIP call flow
Since a SIP session is based on different SIP transactions,
it may involve different transport connections, that would
be handled differently by the LVSDirector. Besides, the
random nature of clients make it impossible to get help
thourough persistancy. Thus, routing SIP messages based
on the layer 4 switching could result in non integrity,
when for example, the shutting down message happens to
be sent to the wrong SIP proxy server during the session.
Hence, to prevent upper layer non integrity, the use of
application level information may be advantageous,
because additional informations, such as the session
identifier, may be used within the statefull switch design
to achieve a content aware distribution of the requests.
2.1.5 Layer 5 switching mechanisms
It is also called delayed binding because of the additional
overhead due to analysing the upper layer headers and to



the context switchings between kernel and user spaces.
One way and two way layer 5 switch designs exist,
where packets are handled respectively once and twice
by the switching entity.

2.1.5.1 TCP Gateway

An application level proxy running on the layer 5 switch
mediates the communication between the client and the
server by making separate TCP connections to client and
server [Figure 7].
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Figure 7 — Feedback loop of a TCP Gateway connection

2.1.5.2 TCP Splicing

TCP splicing is a two way mechanism [10] that reduces
TCP Gateway overhead by splicing the client and the
server side sockets [Figure 8], by mapping sequence
number space of client-switch packets to that of switch-
server packets. Changes also affect IP header fields as
well as socket options. TCP Splicing has also been
implemented on hardware-based switches [11].
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Figure 8 — Feedback loop of a spliced TCP connection
2.1.5.3 TCP connection hop

It is a one way proprietary solution proposed by [12] that
handles
connection is established with the switch, the latter

session persistancy. Once the client side
encapsulates the IP packets in an RPX packet and send it
to the server.

2.1.5.4 TCP Handoff

TCP Handing off [13] is a one way mechanism. It
requires that the receiving host supports the handoff
protocol. It is implemented by setting up a new TCP
connection with sequence number specified by the proxy
in a TCP option during handshaking.

2.1.5.5 Load balancing policies

Server state aware policies provide a better request
assignment. Indeed, special care have to be done to avoid
that load updates become the bottleneck. Typical server
state informations include the CPU, the memory, the disk
and I/O storage utilization, as well as the number of
active  connections

instantaneous and processes.

Predictive policies use an approximate value of the

amount of time needed to complete the request
processing. Typical dynamic policies are the least
connection and weighted least connection scheduling, the
shortest expected delay scheduling, the minimum miss
scheduling, and so on. None of the policies above does
Indeed,

admission control policies [14] do this by scheduling

prevent from overloading cluster nodes.
requests to nodes with an utilization value under a given
threshold. They include locality based least connection
and locality based least connection with replication
scheduling.

3. Failover and Scalability through redundancy

3.1 Site availability

Site availability was addressed in the DNS ressource
records, the Reliable Server Pooling, the Multicast and
the Unicast schemes. It was also used to achieve failover
in distributed architectures.

3.1.1 Using the DNS Ressource Records
DNS RR resolves machine's names into their IP
addresses. DNS SRV RR is used in service location, such
as localizing available SIP proxies [Figure 9][15]. DNS
request assignments use the round robin policy as well as
the server priority handler, and achieve scalability
through site redundancy. Indeed, the effectiveness of
DNS based scalability and failover are corrupted by the

DNS cache updates frequency.
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Figure 9 — SIP Session establishment using DNS SRV
3.1.2 Using the RSerPool architecture
The reliable server pool architecture [Figure 10][16] is a
framework for load sharing and fault tolerance in small
domains rather than in the Internet.
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Figure 9 — RSerPool architecture



Pool Entities are aset of one or more servers providing
the same application, each identified by a pool handle.
Each PE registers with a specific ENRP server, called the
home Endpoint haNdlespace Redundancy Protocol
Server that will supervises its state. PEs can provide load
informations to the ENRP Server. The latter is
redundant. ENRP servers exchange informations about
the SPs, such as the addition of a PE, the status change of
an existing PE, etc. Besides, an ENRP server monitors
the health of its peers, and takes over the responsibility
of being the home ENRP server for a set of PEs when the
previous corresponding ENRP server hasfailed.

3.1.3 Using the Multicast
In some publications about fault tolerance [17], multicast
is used for communication between redundant entities.
Unfortunately, multicast needs explicit support of all
routers in the path between the communicating hosts.
Thus, its use is restricted to LANs or specifically
prepared networks.

3.1.4 Using IP Anycast
An anycast address is an IP address that may be bound to
one or more network endpoints [18]. Different servers
that are providing the same service can all have the same
anycast address on one of their interfaces. If a server
fails, some routers will update their tables to route
packets to the nearest remaining server with the same IP
address.

3.2 Failover in cluster based architectures
Failure detection through keepalive mechanisms and the

corresponding failover operations make redundant
nodes, subsystem nodes, and applications highly
available. Channel bonding, heartbeat messages

exchange, transport level connection establishments,

application level messages exchange, hardware
watchdog timer are some of the failover mechanisms.
3.2.1 IP address takeover using channel bonding
Channel bonding consists into aggregating multiple
network interfaces at the link layer, giving to the
networking protocol stacks the illusion of a single
interface. This technique is usually implemented in Unix
servers and networking hardware like ethernet switches
and P routers. The same concept is called Etherchannel
by Cisco, and Trunking by Sun.

3.2.2 The Linux watchdog timer interface

A watchdog timer is a hardware circuit that can reset the
computer system in case of a software fault. A userspace
daemon notifies the kernel watchdog driver via the
dev/watchdog special device file that userspace process
is still alive, at regular intervals. If userspace fails, due to

a RAM error, a kernel bug, etc, the driver will inform the

hardware watchdog about the failure and the hardware
watchdog will reset the system, causing a reboot after the
timeout occurs. This solution does cause service
interruption for a period of time.

3.2.3 Linux Heartbeat subsystem

A heartbeat subsystem monitors the presence of nodes in
the cluster through a series of status messages that can be
broadcast, unicast or multicast, which length is not more
than 150 byte. Three types of heartbeat messages are
handled by heartbeat daemons. They are  status
messages, cluster transition messages and retransmission
messages. Status messages use sequence numbers to
ensure that packets are not dropped or corrupted.
Retransmission messages does not include sequence
numbers to avoid flooding the network with control
messages. Cluster transition messages are actions against
a cluster member entry or left within the cluster, handled
by an event trigger within the cluster management
software.

4. Conclusion

In this work, we addressed both sclability and failover to
We raised the

importance of layer 4 and 5 server state persistency, as

build high available architectures.

well as the effectiveness of synchronisation schemes to
achieve application integrity and to avoid long time
service interruption.
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