
Energy-Aware Server Provisioning by Introducing
Middleware-Level Dynamic Green Scheduling

Daniel Balouek-Thomert⇤†, Eddy Caron† and Laurent Lefèvre†
⇤NewGeneration-SR, Paris, France

†LIP Laboratory, UMR CNRS - ENS de Lyon - INRIA - UCB Lyon 5668
University of Lyon, France

{daniel.balouek-thomert, eddy.caron}@ens-lyon.fr, laurent.lefevre@inria.fr

Abstract—Several approaches to reduce the power consump-
tion of datacenters have been described in the literature, most
of which aim to improve energy efficiency by trading off
performance for reducing power consumption. However, these
approaches do not always provide means for administrators
and users to specify how they want to explore such trade-offs.
This work provides techniques for assigning jobs to distributed
resources, exploring energy efficient resource provisioning. We
use middleware-level mechanisms to adapt resource allocation
according to energy-related events and user-defined rules. A
proposed framework enables developers, users and system ad-
ministrators to specify and explore energy efficiency and perfor-
mance trade-offs without detailed knowledge of the underlying
hardware platform. Evaluation of the proposed solution under
three scheduling policies shows gains of 25% in energy-efficiency
with minimal impact on the overall application performance. We
also evaluate reactivity in the adaptive resource provisioning.

Keywords: Distributed computing, energy-efficiency, work-
load placement, resource provisioning

I. INTRODUCTION

IT systems have been relying on distributed computing to
provide customers with the resources they need [1]. Many of
the services that organizations utilize nowadays, depend on
large computing infrastructures that are hosted either locally
or at remote datacenters. A popular business model for renting
out resources of a datacenter is provided by cloud computing,
which enables customers to allocate computing, storage and
network capacity over the Internet and pay by the hour of use.
Though clouds benefit from savings derived from economies
of scale, they often consume large amounts of energy to power
and cool the datacenter on which they rely [2].

Although users of these centers are driven by factors such
as cost and reliability, concerns about energy consumption
have increasingly become common. In certain domains such as
High Performance Computing (HPC), where efforts have tra-
ditionally been made towards improving performance1, energy
consumption has become a key factor as it limits the growth
and the ability of these systems to achieve the exascale [3].

This work tackles the challenges of specifying trade-offs in
order to improve the energy efficiency of server provisioning
and workload management. It introduces a metric allowing in-
frastructure administrators to specify their preferences between
performance and energy savings. We describe a framework for

1Within 20 years, the performance of the top supercomputer improved by
a factor of 100, http://www.top500.org.

resource management which provides control for informed and
automated provisioning at the scheduler level while providing
developers (administrator or end-user) with an abstract layer
to implement aggregation and resource ranking based on
contextual information such as infrastructure status, users’
preferences and energy-related external events occurring over
time. We integrate our solution in the DIET [4] project which
allows for managing heterogeneous nodes at the middleware
layer. The evaluation is performed by means of simulations
and real-life experiments on the GRID’5000 testbed. Results
show improvements in energy efficiency with minimal impact
on application and system performance.

II. BACKGROUND AND RELATED WORK

In this section we provide an overview of the DIET mid-
dleware, used to validate the techniques proposed in this work,
and discuss related work on energy efficiency and scheduling.

A. The DIET Middleware

DIET is an open-source middleware that enables scalable
the execution of applications via tasks that are scheduled
on distributed resources using a hierarchy of agents. DIET
comprises several elements, including:

• Client application that uses the DIET infrastructure for
remote problem solving.

• Server Daemon (SED), which acts as a service
provider exposing functionality through a standardized
computational service interface. A single SED can
offer any number of computational services.

• Agents, deployed alone or in a hierarchy, facilitate
service location and invocation interactions between
clients and SEDs. Collectively, a hierarchy of agents
provides high-level and scalable services such as
scheduling and data management. The head of a
hierarchy is termed as Master Agent (MA) whereas
the others are Local Agents (LA).

Applications are given a degree of control over the schedul-
ing subsystem using plug-in schedulers (available in each
agent) that use information gathered from resources via esti-
mation functions (filled by each SED). When a SED receives
a user request, by default it uses a pre-defined function to
populate an estimation vector with system related information.
A developer can create his own performance estimation

function and include it into a SED so that when the SED
receives a user request, the custom function is called to
populate an estimation vector.

These estimation vectors are used by agents to locate
and invoke services required to execute a user application.
Typically, a client request is made to a MA, which in turn
broadcasts it to its agent hierarchy. This work describes the
design of a new DIET plug-in scheduler to express information
about servers performance and power consumption, which
is then taken into account when servers are provisioned to
applications. Estimation vectors are used to determine the
suitability of different SEDs for executing the application
while considering energy efficiency.

B. Related Work

Cloud computing infrastructures are seldom fully utilized
[5], mostly as result of overprovisioning to handle peak de-
mands. Workloads with large variations in demand can lead to
periods of low resource utilization. As resources are generally
not energy proportional [8], the energy efficiency of an infras-
tructure is reduced during periods of low utilization [6]. Power
saving techniques proposed to circumvent such problems con-
sist in slowing down certain server components [7] during
periods of light load — techniques that according to Le Sueur
et al. are becoming less attractive on modern hardware [8] —
or using software schemes to put idle servers into low power
consumption modes [9]. These techniques are well suited to
Clouds where virtualization is mainstream.

In more traditional infrastructures such as Grids [10] and
clusters, shutting servers down is generally more difficult as
management tools interpret powered-off resources as failures
that can compromise the execution of services and applica-
tions. Existing work in this domain used load concentration
[11] and consolidation [12] when the nature of running tasks
(or virtual machines) allows.

Moreover, existing work [13] commonly assume that nodes
from a homogeneous cluster consume the same amount of
power, which is not always true in practice. Due to their
different uses, nodes from a cluster can present different
ranges of performance and power consumption. Causes of
such differences include external environment factors, such as
temperature and node location in a rack, aging of hardware
components due to intensive use and leakage power that varies
over time [14] [15].

From a resource management perspective, Grids use meta
schedulers to schedule jobs across multiple sites and local re-
source managers that control compute resources at a site level.
Users commonly submit batch jobs to request resources over
a period [16]. Cloud aggregators such as RightScale2 provide
application-specific Cloud management and load balancing.
At an application level, distributed OS such as [17] offer
programming models that allow OS services to scale to match
demand. Most of these systems, however, neither take energy
efficiency into account nor offer means for users to specify
how they want to schedule their applications while exploring
trade-offs between energy efficiency and performance [18].

2Rightscale: http://www.rightscale.com/

Hsu et al. compared several metrics in [19] and concluded
that the performance-power ratio was appropriate to represent
energy efficiency. A metric to aggregate the energy efficiency
of all components of a system in a single number has been
proposed in [20], using benchmarks which produces different
metric as output.

III. FRAMEWORK FOR MIDDLEWARE-LEVEL
GREEN SCHEDULING

We aim to provide a framework for resource management
that provides control for informed and automated provisioning
at the scheduler level. The framework provides developers
(administrator or end-user) with an abstract layer to implement
aggregation and resource ranking based on contextual infor-
mation such as infrastructure status, users preferences, and the
energy-related external events that can occur over time.

The proposed framework establishes relationships between
the physical infrastructure and its logical behavior. We consider
that the sizing and selection of computing nodes must balance
the user’s requirements expressed in requests and the provider’s
(who manages the physical machines). We aim to offer the
ability for users and providers to express levels of preference
between energy consumption and performance when allocating
resources. This section describes the metric used to rank
resources, how it is incorporated into DIET, and how the
proposed framework handles energy related events (e.g. energy
price changes and overheating) and server selection.

A. Metric and Infrastructure for Workload Placement

The overall energy that a system consumes is highly
influenced by how resources are assigned to task execution.
Administrators can control the level of performance required
and prioritize energy-efficient resources under certain scenar-
ios. Factors such as idle consumption of nodes [15], use rate
[21] or power specifications [22] can be taken into account
to select nodes for performing tasks. We consider the node’s
efficiency during active periods, propose a metric termed as
GreenPerf to sort available computing nodes according to their
power consumption, and use a secondary parameter, hereafter
considered to be the node’s performance.

GreenPerf metric seeks to optimize power consumption
while maintaining throughput requirements imposed by the
application. We evaluate the trade-offs between reducing en-
ergy consumption and matching performance objectives. We
consider a problem with independent tasks on heterogeneous
computing nodes whose power consumption is monitored and
assume that tasks are not assigned priorities. Using the ratio:

Power Consumption
Performance

of each computing server, a ranking of available nodes is
defined. Figure 1 depicts a simple example with 5 servers
and 7 tasks, where the most energy-efficient servers are given
priority; S0 being the “best” server under the GreenPerf metric.

To compute GreenPerf, information on power consumption
and performance of each server must be obtained. Two ap-
proaches are possible to determine the power consumption of
servers when executing a type of service/task. The first, a static
method, would require benchmarking nodes by computing a

Fig. 1. Example of task placement using the GreenPerf metric.

job on each node, measuring the energy spent to complete it,
and then dividing the amount of energy by time. This method
may not be accurate over long periods since the power a
machine consumes may vary according to recent load and its
physical location in a rack. We hence favor a second, more
dynamic approach, where the energy consumed by a server
while computing a number of past requests is used to compute
its average power consumption. It hence results on a value
based on recent activity rather than on an initial benchmark.

These metrics are incorporated into DIET SED to populate
its estimation vector using new tags. Every time a client
submits a request for a specific application, each server
retrieves its energy consumption over the execution of all
past requests. Once this information is collected, servers are
advised to populate and forward an estimation vector to the
distributed scheduler (a scheduler tree in the case of DIET for
scalability reasons), which in turn uses an aggregation method
to sort server responses according to the GreenPerf metric
(i.e. an instance of a DIET’s plug-in scheduler) and select the
appropriate resource to execute the client request. Each DIET
agent of the hierarchy performs the selection following the
plug-in scheduler.

The steps of the scheduling process are detailed as follows:

1) Problem submission: a client issues a request describ-
ing a problem. If no server is able to solve it, an error
message is returned.

2) Request propagation: the Master Agent communi-
cates with all agents to forward the request to ap-
propriate SEDs.

3) Collection of estimation vectors: each server com-
putes and gathers its performance and power con-
sumption metrics. A reply containing an estimation
vector is sent back to one agent at the upper layer
(and so on until a list of candidates is received at the
master agent).

4) Sorting of candidates: at each level of the hierarchy,
agents retrieves estimation vectors and proceeds to
sort servers according to a specific criterion. Selected
servers along with their estimation vector are gathered
by the Master Agent. At the end (at the Master Agent
level), the first SED from the resulting list is then
elected and notified.

5) Problem solving: the client contacts the elected SED,
which starts computing the problem.

B. Expressing Provider and User Preferences

Providers indicate their preference about the energy effi-
ciency of the infrastructure according to specific periods of
time or events. It enables the management of budget limits
and can be used to take advantage of fluctuations in energy
price or prevent intensive use of specific machines.

We model a provider’s preference according to:

• Resource usage forecast: using historical data to iden-
tify patterns and ensure the responsiveness of the
platform during peak periods.

• Electricity costs: minimizing the cost of computation
by using low cost periods.

We define the provider preference as a weighted average
between resource usage and electricity cost. Let c be the cost
of electricity defined as a ratio between the cost over a given
period and the theoretical maximum cost, and u be the resource
utilization defined as a ratio between the energy consumption
over a given period and the total consumed energy.

Let c, u 2 [0, 1] for each time period:

Preference
provider

(u, c) ! ↵(1� c) + �u (1)

We obtain a Preference
provider

(u, c) 2 [0, 1]. By ad-
justing the multiplying factors ↵,�, one can favor a specific
metric. The higher the value of Preference

provider

(u, c), the
larger the number of available servers for a time period.

A user interest to take energy efficiency into account when
executing an application is defined by Preference

user

, which
is set during request submission as

Preference
user

8
<

:

�1 : maximize performance
0 : no preference
1 : maximize energy efficiency

(2)

Under Preference
user

= 1, a user favors the maximiza-
tion of energy efficiency. In practice, however, it is better to
restrict the value to [�0.9, 0.9] because if all users choose
1, it would result in waiting queues on the most energy-
efficient nodes. The user preference is then weighted by the
administrator’s as follows:

(P
provider

, P
user

) , P
provider

(P
user

� 1) (3)

C. Management of Power Events and Server Selection

The proposed framework aims to adapt resource provision-
ing according to energy-related events, such as fluctuations of
energy cost or heat peaks. We propose to use provisioning
planning as a mechanism to facilitate monitoring of utilization
metrics over time. This enables the scheduler to perform
operations in an autonomic fashion before executing placement
and/or provisioning decisions with consideration of thresholds.

This information can be obtained by predicting future
usage from historical data, checking schedules provided by the
energy provider or using the infrastructure monitoring system.

We consider that administrators set limits to the number of
active nodes in case of out-of-range values according to the
following variables:

• Cost of energy for a given time period

• Temperature conditions.

Using these variables, the scheduler forecasts the future
resource usage to adapt the number of available nodes for
computation. We call these resources candidate nodes.

When handling energy events, the scheduling process de-
scribed in Section III-A is adjusted as follows:

1) Master Agent receives a request describing a task and
a value for Preference

user

.
2) A request is propagated and estimation vectors are

retrieved.
3) The scheduler checks the temperature and energy

costs thresholds defined by the administrator and
adjusts the number of candidate nodes according to
Preference

provider

(u, c).
4) The list of candidates is sorted according to the

scheduling criteria (at each level of hierarchy of
agents).

5) When the Master Agent is reached, the candidates
remaining is returned to the client.

To select the appropriate node based on a client request, we
consider the ability to estimate the duration of pending tasks.
The following information is assumed to be known for each
server at any time:

f
s

Number of FLoating-point Operations Per Second
(FLOPS) for the server s

c
s

Average power consumption when the server s is
fully loaded (Watts).

bc
s

Consumption during the boot process of server s
(Watts).

bt
s

Boot time for server s (seconds).
w

s

Estimation of tasks waiting queue on server s
(seconds).

P Preference
user

n
i

Number of FLOPS to perform the task i.

The knowledge of these variables enables the scheduler
to consider inactive nodes in the decision process and thus
evaluate the costs of turning servers on if necessary. The
execution time of a task i is defined by the number of
operations and the performance of server s is (ni

f

s

). Both the
total computation time and the energy consumed to perform a
task depend on the state of the assigned server at the moment of
the scheduling decision. The computation time (4) and energy
consumption (5) of a task i on a server s can be divided into
two cases, depending on the state of the server.

computation

time

=

(
w

s

+

n

i

f

s

active server
bt

s

+

n

i

f

s

inactive server (4)

energy

consumption

=

(
c
s

⇥ n

i

f

s

active server
bt

s

⇥ bc
s

+ c
s

⇥ n

s

f

s

inactive server (5)

Using these two functions, the scheduler can assign a score
Sc to each server and establish a sorting (6).

Sc : P ! (

computation

time

)

2
P+1�1 ⇥ (

energy

consumption

) (6)

This score is coherent with our expectations re-
garding the previous definitions of Preference

user

and
Preference

provider

(7):

Sc :

8
<

:

P ! �0.9) Sc ⇠ computation time

P ! 0) Sc ⇠ (

computation

time

)⇥ (

energy

consumption

)

P ! 0.9) Sc ⇠ energy consumption

(7)

When creating a list of candidate nodes, we aim to min-
imize the total energy consumed by the active servers by
maximizing the use of the most energy efficient servers. We
do not consider any bound for makespan and assume that
servers have steady performance. We use a greedy algorithm
for selecting candidate servers with the objective of minimizing
the power consumed by servers (Algorithm 1).

Let T be the list of servers sorted according to GreenPerf,
RES be the result set of servers, P

Total

be the accumulated
power of each server and P

required

be the required power
among the candidate nodes.

Algorithm 1: Selection of candidate servers considering a
power consumption cap.

1 P

Total

 0
2 for server 2 T do
3 P

Total

+ = server.get power()
4 end
5 P

required

 Preference

provider

⇥ P

Total

6 P 0
7 RES []
8 while P < P

required

do
9 P+ = T.get first element().get power()

10 RES.add(T.get first element()))
11 T.remove first element()
12 end
13 return RES

IV. EXPERIMENTAL SETUP AND RESULTS

Experiments used resources from GRID’5000, a testbed
designed to support experiment-driven research in parallel and
distributed systems. Located in France, GRID’5000 comprises
29 heterogeneous clusters, with 1,100 nodes, 7,400 CPU cores
with various generations of technology spanning 10 physical
sites interconnected by a dedicated 10 Gbps backbone network.
By providing bare-metal resource deployment, GRID’5000
enables users to experiment on all layers of the software stack
of distributed infrastructures, including high-performance com-
puting, grids, peer-to-peer, and cloud computing architectures.

The power measurement in the studied clusters is per-
formed with an energy-sensing infrastructure composed of
external wattmeters produced by the SME Omegawatt. This
energy-sensing infrastructure, also used in previous work [23],
collects at every second the power consumption in watts of
each monitored node [24]. A node’s consumption is deter-
mined by averaging past consumption over more than 6,000

measurements, whereas its performance is given by the number
of FLOPS achieved when using all CPU cores to execute
benchmarks are using ATLAS3, HPL4 and Open MPI5.

A. Workload Placement

The first evaluation aims to compare the distribution of
tasks among nodes on GRID’5000 considering three different
policies, namely PERFORMANCE, POWER and RANDOM.
PERFORMANCE and POWER correspond, respectively, to
giving priority to the fastest and to most energy-efficient nodes
to hence establishing the bounds of the GreenPerf metric. The
RANDOM policy selects servers at random.

A client submits a set of tasks, wherein a single task
is a CPU-bound problem which consists in 1e8 successive
additions, enabling the distinction of nodes in terms of per-
formance. As each task uses a single core, a server cannot
execute a number of tasks greater than its number of cores.

TABLE I. EXPERIMENTAL INFRASTRUCTURE.

Cluster Nodes CPU Memory Role

Orion 4 2x6cores @2.30Ghz 32GB SED

Sagittaire 4 2x1core @2.40Ghz 2GB SED

Taurus 4 2x6cores @2.30Ghz 32GB SED

Sagittaire 1 2x1core @2.40Ghz 2GB MA

Sagittaire 1 2x1core @2.40Ghz 2GB Client

The total number of client requests depends on the number
of available cores. We consider a number of 10 client requests
per available core in this experiment.

The temporal distribution of jobs contains a burst phase,
when the client submits r simultaneous requests and a con-
tinuous phase when the client submits requests at an arbitrary
rate of two requests/second.

We deploy the DIET middleware on 14 physical nodes
as follows: 12 dedicated nodes for SED’s, 1 dedicated node
for the Master Agent and 1 dedicated node for the Client.
The machines are picked among three different clusters as
presented in Table I. The nodes are connected to a switch with
a bandwidth of 1Gbit/s and run the Debian Wheezy operating
system.

Considering that the scheduler does not have specific
information on the nodes and does not make assumptions about
the hardware, the dynamic information is gathered as tasks
are computed by the servers. Figures 2, 3 and 4 show the
results of this experiment. The x-axis presents the different
nodes available to solve the problem; the y-axis shows the
number of tasks executed by the node.

Figure 2 shows the distribution according to energy con-
sumption. We observe that most jobs are computed by Taurus
nodes, which appear to be the most energy-efficient. Execution

3Automatically Tuned Linear Algebra Software: http://sourceforge.net/
projects/math-atlas/

4Portable Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers: http://www.netlib.org/benchmark/hpl/

5High Performance Message Passing Library: http://www.open-mpi.org/

Fig. 2. Tasks distribution using power consumption as placement criterion.

on Orion and Sagittaire occurs during the “learning” phase or
when Taurus nodes are overloaded.

Fig. 3. Tasks distribution using performance as placement criterion.

Figure 3 shows the distribution of tasks when performance
is the criterion for selecting a node. The load balancing of jobs
is similar to Figure 2, with the majority of tasks executed on
Orion nodes. In Figure 4, despite a random distribution of jobs,
Sagittaire nodes compute less tasks than other nodes. That is
explained by the fact that a single task is computed slower
on those nodes, thus, they are less frequently available when
decisions are made.

Fig. 4. Tasks distribution with random placement.

Figure 5 presents the energy consumption of the whole
infrastructure grouped by clusters. The energy consumption
measured on the DIET agents was constant when executing

Fig. 5. Energy consumption per cluster.

the three algorithms and does not present any influence on
the comparison. We can observe that distributing the workload
using the RANDOM policy is not particularly energy efficient
as it guarantees that all the resources are in use during the
experiment.

TABLE II. EXPERIMENTAL RESULTS

RANDOM POWER PERFORMANCE

Makespan (s) 2,336 2,321 2,228

Energy (J) 6,041,436 4,528,547 5,618,175

Table II compares makespan and energy consumption met-
rics among the scheduling policies. Considering performance,
the best case is giving priority to nodes with higher number
of FLOPS (PERFORMANCE). Comparing that value with the
POWER makespan, we noticed a loss of performance of up
to 6%. In terms of energy consumption, POWER presents a
gain of 25% when compared to RANDOM, and up to 19%
compared to PERFORMANCE.

RANDOM appears to be the worst case because it ensures
that all the nodes are in use, resulting in higher energy
consumption. The use of slow nodes is also impacting the
performance, but this effect is hidden by the fact that fast nodes
will compute more tasks in parallel.

B. GreenPerf evaluation

We evaluate the GreenPerf metric as a means to establish
the relevancy of the ratio Power Consumption

Performance in high and low het-
erogeneity environments. We use a simulation to manage the
level of heterogeneity. After performing an initial benchmark
on the physical nodes of GRID’5000, we obtained for each
server its mean computation time for a single task along with
its peak and idle power consumptions. These values are used to
compute the energy consumed by the whole infrastructure dur-
ing the simulations. Each task is computed with the maximal
performance and power of the servers. During the simulation,
each server is limited to the computation of one task.

Figure 6 shows the comparison of metrics for a low hetero-
geneity environment. In this scenario, we use 2 different types
of servers with similar specifications (Table I). The coordinates
of G, GP and P represent the average values obtained of,

Fig. 6. Comparison of metrics with 2 different types of servers and 2 clients
submitting requests.

respectively, the POWER, GreenPerf and PERFORMANCE
metrics. The shadings represent the area of RANDOM values.

In a second scenario, we consider two other types of
clusters (Table III) to increase the heterogeneity of the plat-
form. Figure 7 shows a better tradeoff between POWER
and PERFORMANCE, highlighting the need for a sufficient
diversity of hardware to efficiently use GreenPerf.

Fig. 7. Comparison of metrics with 4 different types of servers and 2 clients
submitting requests.

TABLE III. ENERGY CONSUMPTION OF SIMULATED CLUSTERS

Cluster Idle consumption Peak consumption

Sim1 190 230

Sim2 160 190

C. Adaptive Resource Provisioning

The third experiment intends to demonstrate the reactivity
of the scheduler by considering fluctuations of two metrics
over time, namely the cost of electricity and temperature.
We inject energy-related events at the scheduler level while
a client, aware of the number of available nodes, submits a
continuous flow of requests intending to reach the capacity
of the infrastructure. Requests are scheduled as they arrive to
ensure dynamicity.

For the sake of simplicity, the cost of energy is defined as
a ratio between the cost over a given period and the theoretical

maximum cost. Related to the cost of energy, we defined three
states:

• Regular time, when the electricity cost is the highest
(1.0).

• Off-peak time 1, when the electricity cost is less
expensive than during regular time (0.8).

• Off-peak time 2, when the electricity cost is the least
expensive (0.5).

Heat measurements are defined through two states, de-
pending of the temperature of utilization: in-range temperature
(< 25 degrees) and out-of-range temperature (> 25 degrees).

The status of the platform corresponds to the value of
the exploited metrics at t time. The master agent checks the
status of the platform every 10 minutes, with the ability to get
information about the scheduled events occurring at t + 20.
Figure 8 presents a sample of provisioning planning, which is
a shared XML file using a readers-writers lock that refers to
a specific time-stamp. For each sample, we defined three tags,
namely temperature, candidates and electricity cost. At each
time interval, the scheduler performs decisions according to the
value of the tags. Thus, future information, such as forecasts,
can be added to the provisioning planning, ensuring a dynamic
behavior regarding to the various contexts. The tags and time
interval are customizable variables that can be adjusted to fit
specific contexts.

<timestamp value="1385896446">

<temperature>23.5</temperature>

<candidates>8</candidates>

<electricity_cost>0.6</electricity_cost>

</timestamp>

Fig. 8. Sample of the server status.

We set thresholds whose values trigger the execution of
actions. Actions can be defined through scripts or commands
to be called by the scheduler. In this example, we implemented
five behaviors associated with the experiment metrics. Let c be
the cost of energy for a given period and T the temperature
measured at t.

• if T > 25 then candidate nodes = 20% of all nodes

• if 1.0 � c > 0.8 then candidate nodes = 40% of all
nodes

• if 0.8 � c > 0.5 then candidate nodes = 70% of all
nodes

• if c < 0.5 then candidate nodes = 100% of all nodes

Four different types of events are injected in the provision-
ing planning made by the scheduler. These events, in turn, fall
into two categories, namely scheduled and unexpected. Figure
9 presents how the number of candidate nodes and the energy
consumption evolve over time. The left y-axis shows the total
number of nodes in the infrastructure; The plain line presents
the number of candidates during the experiment; The line with
crosses is the evolution of the energy consumption, using the
right y-axis. Each cross describes an average value of energy
consumption measured during the previous 10 minutes. The
x-axis represents the time with a total of 260 minutes.

Fig. 9. Evolution of candidate nodes and power consumption.

The infrastructure is deployed on GRID’5000, on the nodes
defined in Table I. The experiment starts with an energy
cost of 1.0 and a Preference

provider

(u, c) giving priority
to energy-efficient nodes. The Preference

user

is not having
any influence in the current scenario as the client dynamically
adjusts its flow of request to reach the capacity of available
nodes.

Event 1 (scheduled) is a decrease of the electricity cost
occurring at t + 60 min. The Master Agent becomes aware
of the information at t + 40 min. Observing a future cost of
0.8, the agent plans ahead to provide 8 candidates nodes at
t + 60 min. The set of candidates is incremented slowly to
obtain a progressive start, at t + 50 min and t + 60 min. (It
avoids heat peaks due to side effect of simultaneous starts.)
We observe a linear increase of electric consumption through
the infrastructure. After each request completion, the client is
notified of the current amount of candidates nodes, and is free
to adjust its request rate.

Event 2 (scheduled), similar to Event 1; the electricity cost
allows the use of every available node in the architecture. The
nodes are added to the set of candidates during the following
20 minutes, resulting in a use of all possible nodes between
t+ 120 and t+ 160 min.

Event 3 (unexpected) simulates an instant rise of tempera-
ture, detected by the Master Agent at t+160 min. According
to administrator rules, the predefined behavior is to reduce the
number of candidates nodes to 2. It is performed in 3 steps,
in order to cause a drop of heat and energy consumption. We
allow tasks in progress to complete, resulting in a delayed
drop of energy consumption. The system keeps on working
with 2 candidates until an acceptable temperature is measured
at t+240 min (Event 4 (unexpected)). The master agent then
starts to provision the pool of candidates every 10 minutes to
reach again the value of 12.

The scenario of this experiment shows the reactivity of the
scheduler and its ability to manage energy-related events by
adapting dynamically the number of provisioned resources of
the physical infrastructure, therefore the power consumption.

V. CONCLUSIONS AND PERSPECTIVES

Due to the increasing number and size of datacenters
required to host current services, efficient workload placement
considering energy efficiency is becoming a major concern.
Previous research typically address this problem through power
management techniques that aim at maximizing the utilization
of resources.

In this work, we proposed methods for provisioning re-
sources and distributing requests with the objective of meeting
performance requirements while reducing energy consumption.
We validate our strategy through experiments using the DIET
toolkit and the GRID’5000 experimental testbed. Comparing
three different scheduling policies by enabling users and
providers specify trade-offs between performance and energy
consumption, results show a reduction of energy consumption
of 25% with a minor performance loss (6%).

We propose and evaluate a hybrid metric taking into ac-
count performance and power consumption as a ratio of energy
efficiency. The effectiveness of this metric strongly relies on
the heterogeneity of servers. The work also considered the
provisioning of resources, while taking into account energy-
related events and user preferences. Results show a reactive
scheduling, allowing policy management to be abstracted into
a software layer that can be automated and controlled centrally.
We expect this approach to be very useful when applied to
provisioning servers, using contextual data from third-party
predicting or monitoring tools.

Future work will revolve around fine-grained scheduling
by taking into account spatial information. We intend to lever-
age control over energy consumption by considering budget
constrained scheduling.

ACKNOWLEDGEMENTS

Experiments presented in this paper were carried out using
the GRID’5000 experimental testbed, developed under Inria
ALADDIN development action with support from CNRS,
RENATER and several Universities as well as other funding
bodies6.

REFERENCES

[1] I. Foster and C. Kesselman, “Computational grids,” in Vector and
Parallel ProcessingVECPAR 2000. Springer, 2001, pp. 3–37.

[2] J. Dongarra et al., “The International Exascale Software Project
roadmap,” The International Journal of High Performance Computing
Applications, vol. 25, no. 1, pp. 3–60, Feb. 2011.

[3] W. chun Feng et al., “Green supercomputing comes of age,” IT
Professional, vol. 10, no. 1, pp. 17–23, 2008.

[4] E. Caron and F. Desprez, “DIET: A scalable toolbox to build network
enabled servers on the grid,” International Journal of High Performance
Computing Applications, vol. 20, no. 3, pp. 335–352, 2006.

[5] A. Hawkins, “Unused servers survey results analysis,” The Green Grid,
2010.

[6] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefèvre, “A survey on
techniques for improving the energy efficiency of large-scale distributed
systems,” ACM Computing Surveys (CSUR), vol. 46, no. 4, p. 47, 2014.

[7] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power management and
dynamic voltage scaling: Myths and facts,” in Proceedings of the 2005
Workshop on Power Aware Real-time Computing, Sep. 2005.

6The GRID’5000 testbed. http://www.grid5000.fr
[8] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling:

The laws of diminishing returns,” in Proceedings of the 2010 interna-
tional conference on Power aware computing and systems. USENIX
Association, 2010, pp. 1–8.

[9] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” IEEE Trans. Parallel Distrib. Syst, vol. 24, no. 7,
pp. 1366–1379, 2013.

[10] I. Foster et al., “Cloud computing and grid computing 360-degree
compared,” CoRR, vol. abs/0901.0131, 2009.

[11] F. Hermenier, N. Loriant, and J.-M. Menaud, “Power management in
grid computing with xen,” in Proceedings of the 2006 International
Conference on Frontiers of High Performance Computing and Network-
ing, ser. ISPA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 407–
416.

[12] A.-C. Orgerie and L. Lefèvre, “When Clouds become Green: the
Green Open Cloud Architecture,” Parallel Computing, vol. 19, pp. 228
– 237, 2010. [Online]. Available: http://hal.inria.fr/ensl-00484321

[13] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling of bag-of-
tasks applications with deadline constraints on DVS-enabled clusters,”
in CCGRID. IEEE Computer Society, 2007, pp. 541–548.

[14] G. Varsamopoulos, A. Banerjee, and S. K. S. Gupta, “Energy ef-
ficiency of thermal-aware job scheduling algorithms under various
cooling models,” in Contemporary Computing - Second International
Conference, IC3 2009, Noida, India, August 17-19, 2009. Proceedings,
ser. Communications in Computer and Information Science, vol. 40.
Springer, 2009, pp. 568–580.

[15] M. E. M. Diouri et al., “Your cluster is not power homogeneous: Take
care when designing green schedulers!” in IGCC-4th IEEE Interna-
tional Green Computing Conference, 2013.

[16] N. Capit and al., “A batch scheduler with high level components,” in
Cluster computing and Grid 2005 (CCGrid05), 2005.

[17] D. Wentzlaff et al., “An operating system for multicore and clouds:
Mechanisms and implementation,” in Proceedings of the 1st ACM
Symposium on Cloud Computing, ser. SoCC ’10. New York, NY,
USA: ACM, 2010, pp. 3–14.

[18] C.-Y. Tu, W.-C. Kuo, W.-H. Teng, Y.-T. Wang, and S. Shiau, “A
power-aware cloud architecture with smart metering,” in Proc. Second
International Workshop on Green Computing (2nd GreenCom’10),
2010 International Conference on Parallel Processing Workshops (39th
ICPPW’10) CD-ROM. San Diego, CA: CPS/IEEE Computer Society,
Sep. 2010, pp. 497–503.

[19] C.-H. Hsu et al., “Towards efficient supercomputing: A quest for the
right metric,” in Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International. IEEE, 2005, pp. 8–pp.

[20] B. Subramaniam and W.-c. Feng, “The green index: A metric for
evaluating system-wide energy efficiency in hpc systems,” in Parallel
and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 2012, pp. 1007–
1013.

[21] S.-H. Lim et al., “A dynamic energy management scheme for multi-tier
data centers,” in ISPASS. IEEE Computer Society, 2011, pp. 257–266.

[22] M. Polverini et al., “Thermal-aware scheduling of batch jobs in geo-
graphically distributed data centers,” Cloud Computing, IEEE Transac-
tions on, vol. 2, no. 1, pp. 71–84, Jan 2014.

[23] M. D. De Assuncao, A.-C. Orgerie, and L. Lefèvre, “An analysis
of power consumption logs from a monitored grid site,” in Green
Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on & Int’l Conference on Cyber, Physical and Social
Computing (CPSCom). IEEE, 2010, pp. 61–68.

[24] M. D. De Assuncao et al., “The green grid’5000: Instrumenting and
using a grid with energy sensors,” in Remote Instrumentation for
eScience and Related Aspects. Springer, 2012, pp. 25–42.

