
Packet classification in the NIC for improved SMP-based Internet servers

Éric Lemoine† CongDuc Pham‡ Laurent Lefèvre‡

† Sun Microsystems Laboratories
180 Avenue de l’Europe - ZIRST de Montbonnot - 38334 St Imier - France

Eric.Lemoine@Sun.com

‡ LIP Laboratory (UMR 5668 CNRS - ENS Lyon - UCB Lyon - INRIA) RESO team
46, allée d’Italie - 69364 Lyon Cedex 07 - France

Abstract

This document describes a new networking subsystem
architecture built around a packet classifier executing in the
Network Interface Card (NIC). By classifying packets in the
NIC, we believe that performance, scalability, and robust-
ness can be significantly improved on shared-memory mul-
tiprocessor Internet servers. In order to demonstrate the
feasibility and the benefits of the approach, we developed
a software prototype (consisting in extensions to the Linux
kernel and modifications to the Myrinet NIC firmware and
driver) and ran a series of experiments. The obtained re-
sults, presented therein, show the relevance of the approach.

1 Introduction

The explosive growth of the Internet, both in terms of
number of users and speed of its constituents (links and
routers) results in increasing absolute network loads on In-
ternet servers1, with large deviations around the mean net-
work load. In addition, network speed tends to increase
faster than CPU and memory speeds. For example, there
is a common conception that 1 megahertz (MHz) of CPU
speed is required to drive 1 megabit per second (Mbps) of
network throughput. Following this paradigm, 10 gigahertz
(GHz) processors are required to drive 10 gigabit per second
(Gbps) network technologies (e.g. 10Gbps Ethernet [1]). At
time of this writing, 10Gbps Ethernet products start being
commercialized [2] and 10GHz processors are unlikely to
be available anytime soon. Therefore, Internet servers must
deal with increasing network loads relative to their compute
power.

This gap between network and end-system speeds causes

1By Internet servers, we mean server machines connected to the Inter-
net, therefore potentially serving a large number of clients.

performance and robustness issues on Internet servers. In-
deed, Internet servers must provide high performance for
the mean network load, and delivered performance must
not degrade when the offered network load exceeds their
capacities. Maintaining a constant level of performance un-
der overload is not obvious. For instance it is well known
that many Unix and non-Unix based networking subsystems
suffer from poor network overload behavior [3].

One way to alleviate the performance problem is parallel
network protocol processing, i.e., using multiple processors
for the execution of the protocol stack. Parallel network
procotol processing has generated considerable interest in
academia and industry this last decade (e.g. [4, 5, 6]). Al-
though many approaches to parallel network protocol pro-
cessing have emerged, two have gained favor: packet-level
parallelism and connection-level parallelism. In packet-
level parallelism, the packet is the unit of concurrency. Par-
allelism is achieved by dispatching packets among process-
ing elements. In connection-level parallelism, the unit of
concurrency is the connection. Parallelism is achieved by
demultiplexing packets early—before they enter the net-
work stack—to their respective connection and dispatching
connections among processing elements. Packet-level par-
allelism allows parallelism within a single connection. With
connection-level parallelism, there is no parallelism with a
single connection but contentions on memory (cache lines)
and locks are less likely to happen than with packet-level
parallelism, thereby yielding better performance.

Networking subsystems’ robustness problems have been
quite studied in the past. A a few solutions to have been pro-
posed [3, 7, 8], with some of them implemented in today’s
mainstream operating systems [9].

Large-scale Internet servers must deal with huge num-
bers of connections, thus, we believe that connection-level
parallelism is the most appropriate approach to parallel net-
work protocol processing on Internet servers. However,

building a network subsystem based on connection-level
parallelism that behaves gracefully under input overload is
not obvious. In this paper, we argue that classifying pack-
ets off-kernel, in the NIC, is a good solution to building
efficient and robust network subsystems. We present the
KNET networking subsystem built around a packet classi-
fier in the NIC, and provide experimental results showing
the relevance of our design.

The remainder of this document is outlined as follows.
Section 2 and 3 formulate the problems we address in this
work. More specifically, Section 2 discusses performance
issues, and Section 3 discusses robustness issues. Section 4
describes our prototype’s design and implementation in de-
tails. In Section 5 , we describe the software and hardware
environments used for our measurements, then present the
obtained results along with an analysis of these results. Fi-
nally we provide conclusions and future work in Section 6.

2 Performance issues

With the increasing number of Internet users, there is
huge demand for high bandwidth networks. However, as
network bandwidth increases, CPU and memory systems of
Internet servers become bottlenecks, making it impossible
for an Internet server to deliver the maximum bandwidth,
i.e., that of the underlying network medium. One solution
to this problem is to have multiple processors that simulta-
neously transfer data towards the network.

In this section, we begin by giving a quick overview of
the working of a Internet server on a Unix-based platform
in order to highlight issues relative to performing simulta-
neous transfers. We then present a simple model allowing
to predict when having multiple processors simultaneously
executing the network stack can lead to performance gains.

Internet servers typically use the HTTP protocol [10, 11],
itself layered atop the TCP protocol [12]. From now on,
we will use the terms Internet servers and HTTP servers in-
terchangeably. Communications between Internet clients
and servers follow the client/server model: upon recep-
tion of an HTTP request from a client, an HTTP server
parses the request, forms the HTTP response2 and initiates
the transfer of the response towards the client by calling
operating system’s transmit primitives (e.g. sendmsg(),
sendfile()). The server TCP stack sends as much data
as the TCP congestion window (cwnd) allows in the context
of the system call. The remainding of the output data will be
sent as soon as cwnd widens, when TCP acknowledgements
(ACKs) are received [13].

Thus, since some data is sent due to received ACKs, i.e.,

2The response is either directly retrieved from disk or memory, or dy-
namically generated. In the former case, the request is said static, it is said
dynamic in the latter case.

in the context of the thread3 receiving packets, having multi-
ple processors simultaneously sending data into the network
requires having multiple processors simultaneously receiv-
ing packets from the network. Furthermore, the ratio

number of packets sent in the thread receiving ACKs
number packets sent in the transmit system calls

determines to what extent having multiple processors si-
multaneously receiving packets can lead to better perfor-
mance. In effect, we see two factors that contribute to vary-
ing this ratio: network latency and zero-copy transfers. For
a given connection, the higher the network latency between
the server and its client, the more likely the output data will
be in the TCP output queue by the time the ACKs arrive, so
the lower the ratio. And also, with zero-copy transfers, i.e.,
without copying output data between user and kernel spaces
(e.g. using sendfile()), the output data is guaranteed to
be in the TCP output queue by the time ACKs arrive, so most
segments will be sent out due to received ACKs.

In order to better understand where performance gains
are to be expected we derive a simple model. Let T be the
total processing time for a given HTTP request. Let Te be
the fraction of T spent due to network receive events (in
the thread receiving packets), and Ta the fraction of T spent
in the application (including both user and kernel modes).
We neglect processing time spent in timers and therefore
assume that T = Te+Ta. Let p be the number of processors
in the server machine.

If only one processor executes the network stack at a
time, then the maximum achievable rate (in number of con-
nections per second) equals:

R1 =

{

1

Te

if p > 1 + Ta

Te

,
p

Te+Ta

otherwise.
(1)

Note that R1 = 1/Te corresponds to the best case, when
the number of processors is sufficient for the application to
keep up with the network stack (p > 1 + Ta/Te). If the
number of processors is insufficient for the application to
keep up (p ≤ 1 + Ta/Te) the maximum achievable rate is
equal to p/(Te + Ta), which is lower that 1/Te.

Now, by assuming that both the network stack and the
application scale linearly with the number of processors,
if p processors can simultaneously process network re-
ceive events, the number of connections per second one can
achieve is:

Rp =
p

Te + Ta

(2)

Therefore, using p processors results in a speedup equal
to:

α =
p

1 + Ta

Te

(3)

3We are not referring to any operating system’s execution context here,
so the term ”thread” must be understood in its broad sense.

MLFRR

MLFRR

Delivered throughput

Well−designed system

Ill−designed system

A

Input load

B

Figure 1. Well-designed vs ill-designed systems.

We note that the speedup α increases with the ratio
Te/Ta. This ratio corresponds to the percentage of CPU
time spent in the kernel thread(s) processing incoming net-
work packets over the percentage of CPU time spent in the
application thread(s). It is akin to the ratio presented previ-
ously: the factors contributing to increasing/decreasing both
ratios are similar. So, again, the higher the network latency,
the more TCP segments are sent due to received ACKs, so
the higher the ratio(s). And avoiding the memory copies be-
tween user and kernel spaces contributes to increasing the
ratio(s) as well.

3 Robustness issues

Robustness problems can arise when a system is sub-
jected to input overload. Ideally, the machine is sized in
such a way it is able to handle the maximum input load the
network on which it is attached can deliver. In real life, for
cost considerations, server machines are sized to support a
given mean input load. However, it is crucial that such ma-
chines behave gracefully under input loads above the mean
load. This is especially true for Internet servers since Inter-
net traffic is bursty in nature, with peak loads exceeding the
average load by factors of 10 [14].

The throughput delivered by a server system must keep
up with the input load until the server saturates. The server’s
peak throughput reached at the saturation point is called the
Maximum Loss Free Receive Rate (MLFRR) [3]. Beyond
the saturation point, the delivered throughput is expected
not to drop below MLFRR. Figure 1 illustrates this. Point
A corresponds to the saturation point. Beyond A, the well-
designed server maintains constant throughput whereas the
ill-designed one severely degrades. B corresponds to the
point from which the ill-behaved server is no longer able
to do any useful work, i.e., its delivered throughput is nil.
Mogul et al offered first a complete study of this effect, they
refer to it as receive livelock [3].

Kernels of operating systems execute in different con-
texts: scheduler context, interrupt context. In the rest of
this section, we will refer to kernel control paths running in
scheduler context and interrupt context as scheduler threads
and interrupt threads, respectively. The kernel executes in

scheduler context when it either executes on behalf of a user
thread, as a result of a system call, or in a kernel thread4.
The kernel executes in interrupt context when responding
to a hardware interrupt. In Linux, scheduler threads (user
threads either in user mode or kernel mode, and kernel
threads) can be preempted by interrupt threads whereas in-
terrupt threads cannot be preempted by scheduler threads.

NICs generate interrupts to notify the host operating sys-
tem of incoming packets. Then, most operating systems,
such as Linux and Solaris, process the incoming packets
in interrupt context, thereby with the highest priority. The
receive livelock becomes effective when the Receive Inter-
rupts (RINTs) rate is so high that all CPU resources are
spent handling RINTs and eventually dropping packets.

Mogul et al. first highlighted the receive livelock ef-
fect, and proposed a solution to eliminate it [3]. Their solu-
tion consists in combining the interrupt and polling modes.
The NIC driver’s Receive Interrupt Service Routine (RISR),
which is responsible for taking care of interrupts caused
by arriving packets or RINTs (Receive INTerrupts), dis-
ables the RINTs on the NIC so that subsequent arriving
packets will not cause RINTs, and schedules the so-called
polling thread for execution. When scheduled, the polling
thread takes all packets present in the driver’s receive queue
through the network stack, each packet in turn. Once the
polling thread has emptied the queue, it re-enables RINTs
on the NIC. If the driver’s receive queue fills up, i.e., the
polling thread cannot keep up with the network, then the
NIC drops packets, without consuming any CPU resources.
We will describe these operations again shortly while pre-
senting an implementation of this technique (NAPI).

Other more specialized solutions also exist: LRP[7] and
SRP[8]. Basically, these techniques process incoming pack-
ets in low priority threads, namely in process or kernel-
thread contexts. In addition to eliminating receive livelock,
LRP and SRP aims to ensure fair allocation of system re-
sources among the various applications that utilize the net-
work. They achieve this by accounting and charging re-
sources spent in protocol processing to the application on
whose behalf this processing is performed.

Recently, Salim et al. implemented the solution pro-
posed by Mogul et al. in Linux, they named their imple-
mentation NAPI (New API) [9]. NAPI adopts all the mech-
anisms proposed by Mogul et al.

Figure 2 shows the various components that come into
play in NAPI. Upon receiving the packet, the NIC copies
it into the receive queue in the driver’s memory, and gener-
ates a RINT (Receive INTerrupt) if RINTs are enabled. The
processor that takes the interrupt executes the driver’s RISR

4Some kernels such as Linux and Solaris(TM) implement kernel
threads. Kernel threads are scheduler’s entities, they differ from user thread
running in kernel mode in the sense that they do not run on behalf of a user
thread, as a result of a system call.

User space

NIC

CPU0 CPU1

TCP
IP

Driver

Kernel space

Data Movement

Receive queue

Figure 2. NAPI components.

(Receive Interrupt Service Routine)5. The RISR disables
RINTs on the NIC so that subsequent incoming packets de-
livered by the NIC will not cause an RINT, indicates to the
kernel that there is work for this device (by enqueueing the
structure variable representing the device in the interrupted
processor’s device queue), and schedules a softirq6 for fur-
ther processing (TCP/IP processing). The softirq, which
also runs on the interrupted processor, pulls the device off
the device queue, and calls the poll() primitive on this
device (dev->poll()). The poll() primitive, imple-
mented by the NIC driver, is responsible for taking all pack-
ets present in the driver’s receive queue through the network
stack, each in turn. When the poll() primitive finds an
empty entry in the queue, it re-enables RINTs in the NIC,
removes the device from the device queue, and returns.

It is interesting to note that even though interrupts are
distributed among the processors, no two packets are simul-
taneously processed with NAPI. Instead, a packets burst is
processed by one processor, and once the entire burst has
been processed, another burst may be processed by another
processor7; but packet processing does not execute in paral-
lel.

In addition to eliminating receive livelock, the solution
proposed by Mogul et al. and implemented in Linux by
Salim et al. provides other benefits. Under high input
load, the polling thread happens to pull few packets off
the driver’s receive queue before re-enabling RINTs in the
NIC, thus ensuring low latency. In contrast, under high in-
put load, the polling thread can process lots of packets be-
fore re-enabling RINTs in the NIC, therefore increasing the

5Recent x86-based SMP machines include a so-called I/O APIC (I/O
Advanced Programmable Interrupt Controller). By default, Linux pro-
grams the I/O APIC in such a way that each interrupt vector is distributed
in a round-robin manner among the various processors.

6In Linux, packet processing occurs in softirq context, softirq corre-
sponds to interrupt context with the serviced hardware device’s interrupt
vector re-enabled in the machine’s interrupt controller.

7E.g. due to the interrupt round-robin algorithm in the I/O APIC.

number of packets per interrupt ratio and hence the through-
put of the system. Also, not re-enabling RINTs during net-
work processing allows to ensure fairness among the vari-
ous NICs in the machine. Detailing all benefits of this solu-
tion is beyond the scope of this paper, interested readers are
invited to refer to the appropriate documents [3, 9].

4 New networking subsystem proposal

In this section, we first list the requirements of our net-
working subsystem, present our design choices to meet
those requirements, and then describe our implementation,
KNET.

4.1 Requirements

Our objective is to design and implement a parallel net-
working subsystem (a network subsystem capable of receiv-
ing and transmitting packets coming from and going to a
single interface in parallel) that is efficient and robust. For
our subsystem to be effective, we want to avoid cache and
reordering issues that are of concern when processing net-
work packets in parallel. And for it to be robust, we want to
eliminate all possibilities for receive livelock (explained in
section 3).

4.2 Design

Here we first explain the design choices to make our par-
allel networking subsystem efficient as well as robust, and
then describe the overall functioning of our system by pre-
senting the various steps for receiving packets.

4.2.1 Efficiency

Processing network packets in parallel raises instruction-
cache and data-cache locality issues [15]. In particu-
lar, processing packets of the same connection on dif-
ferent processors results in cache misses when accessing
connection-specific data (TCP Control Block). We maxi-
mize instruction- and data-cache locality by creating per-
processor network threads, binding each network thread to
a particular processor, and classifying incoming packets be-
fore they enter TCP so that it is always the same proces-
sor that processes all packets of a connection. In addition
to maximizing cache locality, connection-level parallelism
minimizes contentions on per-connection locks. Further-
more, processing all packets of a TCP connection on a single
processor avoids reordering issues in TCP. Most TCP im-
plementations use Jacobson’s header prediction technique
[16], which fails if packets arrive unordered.

Data movement

Per−processor
network threads

Per−processor
receive queues

User space

NIC

CPU0 CPU1

TCP

IP

Driver

Kernel space

Packet classifier

Figure 3. KNET components.

4.2.2 Robustness

Ensuring robustness, i.e., designing a livelock-free network
subsystem, while performing connection-level parallelism
as described above is challenging. In previous work on
connection-level parallel network processing [4, 5, 6], in-
coming packets are classified in the kernel, more precisely
in the RISR. As explained in section 3 re-enabling inter-
rupt while processing packets can lead to receive livelock.
We achieve robustness by implementing per-processor re-
ceive queues in the driver, having the NIC classify incoming
packets and deposit the classified packets in the appropri-
ate receive queue, and applying the technique proposed by
Mogul et al. [3] that we have presented in section 3. Figure
3 shows the various components of our design.

4.2.3 Overall functioning

The NIC inputs a packet from the network, and classifies it
to decide which driver’s receive queue the packet should be
copied into. After classification, the NIC copies the packet
in the appropriate receive queue. At this point either the re-
ceive queue is currently being polled by its corresponding
network thread or not. If it is currently polled then the NIC
generates a RINT (Receive INTerrupt) and marks the queue
polled. As long as the queue is marked polled the NIC
will not generate RINTs as packets come in. If an RINT
has been generated, the processor that takes it executes the
driver’s RISR (Receive Interrupt Service Routine), which
retrieves the index of the receive queue, indicates there is
work for this NIC, and wakes up the appropriate network
thread. Once scheduled, the network thread retrieves a ref-
erence to the NIC, and takes all packets present in the cor-
responding NIC driver’s receive queue through IP then TCP,
each packet in turn. Once the receiving threads finds an
empty entry in the polled receive queue it re-enables RINT

in the NIC.

4.3 Implementation

To test the approach, we developed a software prototype
on Linux and Myrinet. The prototype consists in modifica-
tions to the Myricom/Myrinet NIC firmware and driver and
in an implementation of a Linux module.

Myrinet is a full-duplex 2 + 2Gbps proprietary switched
interconnect network commercialized by Myricom [17].
Figure 4 depicts a block diagram of a Myrinet NIC. Myrinet
NICs are built around a RISC processor, namely the LANai.
The firmware executed by the LANai is downloaded in the
NIC memory at the time the NIC driver is inserted into the
kernel. Myricom provides a software suite, GM, and a com-
pilation suite, that, among other things, includes a cross-
compiler for the LANai processor (lanai-gcc). GM pro-
vides drivers emulating Ethernet that can be used under the
regular kernel TCP/IP stack. In our prototype, we modified
GM-1.5’s Linux ”IP driver” and firmware.

SRAM

RISC

Packet
DMA

Network
Interface

DMA Controller
and Bus BridgeNetwork

H
O

ST
 I/

O
 B

us

Figure 4. Block-diagram of a Myrinet NIC.

The modified NIC firmware classifies each incoming
packet in order to determine which receive queue the packet
should be DMAed into. In the current implementation,
the classification function is idx = ip src & (n queues −

1), where ip src is the source IP address of the packet,
n queues is the number of receive queues, and idx the
resulting index of the appropriate receive queue. In addi-
tion to being trivial to implement, this packet classifier has
the advantage of being stateless, yet resulting in good load-
balancing among the processors given the large population
of clients Internet servers must face under high load.

The modified NIC driver implements as many receive
queues and receive buffer descriptors rings as processors.
The new NIC firmware maintains copies of each receive
buffer descriptors ring in its memory, and itself fetches the
rings using DMAs. In the current implementation, the num-
ber of receive queues and rings is defined at compile time
but we believe specifying it at open time should be feasible.

The networking subsystem itself is implemented in a
Linux module8. At startup time, the Linux module creates
as many kernel threads as processors (the network threads)
and binds each to a particular processor. Each network

8Linux modules are objects that can dynamically be linked to a running
Linux kernel.

thread then enters an event loop and goes to sleep waiting
for network receive events from NICs. The driver’s RISR is
responsible for waking up the network threads. In contrast
to NAPI which executes the TCP/IP stack in softirq con-
text, KNET executes it in kernel-thread context. The rea-
son for this is that we do not control onto which processors
interrupts from the NIC arrive (because the I/O APIC is re-
sponsible for this). For example, it may occur that processor
A takes the RINT whereas the packet (or packets burst) that
caused the RINT is to be processed on processor B. In this
situation, the RISR executing on processor A must wake up
the receive thread on processor B. Achieving this would not
be possible if TCP/IP were to execute in softirq context.

5 Experimental results

5.1 Experimental setup

In this section, we describe our software and hardware
setup used for our performance measurements.

5.1.1 Hardware

Four 2-way PIII (600Mhz, 256KB L2 cache, 256MB
SDRAM, ServerWorks CNB20LE Host Bridge) machines
and one 4-way PIII (550Mhz, 512MB SDRAM, Server-
Works CNB20HE Host Bridge) are used throughout the ex-
periments. The 4-way machine acts as the HTTP server and
the four 2-way machines as the clients. The five machines
are networked together through the Myrinet network.

5.1.2 Operating system configuration

All involved machines run a 2.4.20 Linux kernel. On the
client machines, all OS-related settings are left to their de-
faults. On the server machine we change the send socket
buffer to be 32 Kbytes in length. This value is chosen so
that one call to sendmsg() or sendfile() can be suf-
ficient to initiate the transfer of the response file. In all ex-
periments we compare KNET to the NAPI version of the
GM-1.5 Linux driver and firmware, which we implemented
for the purpose of the comparison.

5.1.3 Benchmark programs

Two software programs are used for performance evalua-
tion: Webfs [18] at the server side and a modified version
of Sclient [19] at the clients side. We briefly describe both
in the following.

Webfs is an event-driven HTTP server for purely static
content, it uses the select() system call to wait for
events without blocking. Though Webfs is not a purely
multi-threaded server9, it supports threads, where each

9In the sense that Webfs does not use per-connection threads.

thread runs its own select()/accept() loop. In ad-
dition, to maximize throughput and minimize CPU utiliza-
tion, Webfs uses the zero-copy sendfile() system call.

The client machines run a modified version of Sclient.
Sclient is an HTTP traffic generator specifically designed
to generate HTTP requests rates beyond the capacity of the
server, without employing a huge number of client pro-
cesses. Using Sclient as a starting point, we implemented
a new HTTP traffic generator which functions as follows.
First, a user-defined number of TCP connections is gener-
ated towards the HTTP server. Then, for each open con-
nection, an HTTP request is sent and the corresponding re-
sponse is received. Once the response is received, a new
TCP connection is initiated, etc. The select() system
call is used to avoid blocking in the sendmsg() and
recvmsg() system calls.

5.1.4 Workload

To minimize interactions with the server’s file system each
Sclient instance requests a different file. Since we use 4
Sclient instances in our experiments there are 4 different
files served by the HTTP server, each being 20 or 5 Kbytes
in size. Also, in all experiments, we vary the number of
concurrent connections each client instance opens. We go
up to 80 concurrent connections (4×20), which is sufficient
to drive the server machine to saturation (0% idle CPU time)
for every experiment case we ran.

5.2 Results and analysis

5.2.1 9000-byte MTUs

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
, #

 c
on

ns
 p

er
 s

ec

Number of concurrent connections

NAPI
KNET

KNET RR

Figure 5. Performance results of NAPI, KNET and
KNET-RR, with 9000-byte MTUs, 20-Kbyte requested
files, and sendfile().

Figure 5 reports the aggregated throughput delivered by
the server versus the number of concurrent connections for
9000-byte MTUs. The sendfile() system call is used in
all experiments here. First, we observe that KNET leads to
about 3% improvement over NAPI. For 9000-byte MTUs,

the application and network threads spend about 75% and
25% of CPU time, respectively10. For this sharing in CPU
time and for 4 processors the model presented in section
2 gives a speedup α = p/(1 + Ta/Te) equal to 1, the
TCP/IP stack is therefore not the bottleneck for 9000-byte
MTUs. The experimental results reported in the graph were
therefore predictable. However, it is interesting to note that,
even in cases where one processor suffices to process the
network, KNET does not exhibit worse performance than
NAPI. The curve KNET-RR represents the case where the
NIC does not classify incoming packets. Instead, the NIC
directs incoming packets to processors in a round-robin
fashion. In the KNET-RR case, the processing of packets is
still parallelized but, since packets of the same connection
can be processed by two different processors, data-cache
locality is not as good as with KNET. Peak throughput ob-
tained with KNET-RR is effectively 20% lower than that
obtained with KNET. This shows the benefits of classifying
packets before they enter the network stack.

5.2.2 1500-byte MTUs

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
, #

 c
on

ns
 p

er
 s

ec

Number of concurrent connections

NAPI + sendfile
KNET + sendfile

NAPI + send
KNET + send

Figure 6. Performance results of NAPI and KNET,
for 1500-byte MTUs, 20-Kbyte requested files, with
and without sendfile()

Figure 6 reports the aggregated throughput delivered by
the server versus the number of concurrent connections for
1500-byte MTUs. Here we report results of NAPI and
KNET with and without sendfile(). KNET leads to
34% improvement over NAPI when sendfile() is used,
and to 17% when using the regular sendmsg() system
call. For 1500-byte MTUs, the application and network
threads use roughly 55% and 45% of CPU time, respec-
tively. With 4 processors, the model gives a speedup equal
to 1.8. The experimental speedup (≈ 1.3) is below the
analytical one because we assumed in the model that the
network stack scales linearly with the numbers of proces-
sors, which is untrue in practice. We will go back to this
issue shortly. It is interesting to note that with NAPI using

10The CPU utilization numbers reported here obtained using the top
command.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
, #

 c
on

ns
 p

er
 s

ec

Number of concurrent connections

NAPI 20K
KNET 20K

NAPI 5K
KNET 5K

Figure 7. Performance results of NAPI and KNET,
with 1500-byte MTUs, and sendfile(), for 20-
Kbyte and 5-Kbyte requested files.

sendfile() or sendmsg() does not make any differ-
ence. Indeed, with NAPI the network stack executing only
on one processor at a time is the bottleneck so minimizing
the CPU time spent on behalf of the application threads does
not result in better performance.

Figure 7 again reports the aggregated throughput deliv-
ered by the server versus the number of concurrent con-
nections for 1500-byte MTUs, but with two different re-
quested file sizes: 20-Kbytes and 5-Kbytes. sendfile()
is used in all experiments here. For 5-Kbyte requested files,
KNET leads to 6% improvement over NAPI, in contrast to
the 34% improvement for 20-Kbyte requested files. This
performance drop comes from the fact that the ratio Te/Ta

(corresponding to the percentage of CPU time spent in the
kernel threads processing incoming network packets over
that spent in the application threads) is lower for small files
than for large files, because the smaller the response file, the
fewer network packets.

Earlier, we stated that our model is not accurate because
while building it we assumed that the network stack and ap-
plication scale with the number of processors, which is un-
true in practice. Figure 8 shows that the network stack does
not scale because of the listening socket being accessed by
all processors. Indeed, using 4 instances of the web server
with KNET, each listening on a different port, results in
10% improvement over using one instance listening on a
single port. A solution of the 1 port case would be to do
the classification in such a way that all packets destined to
the listening socket (SYN packets) are always processed by
the same processor. The problem with this solution is that it
may lead to a system that is not well-balanced. With NAPI,
it does not make much difference whether having 4 differ-
ent ports or a single one because the network stack is the
bottleneck.

6 Conclusion and future work

In this paper, we claim that classifying incoming packets
before they enter the operating system’s kernel is key to im-

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
, #

 c
on

ns
 p

er
 s

ec

Number of concurrent connections

NAPI
KNET

NAPI 4 ports
KNET 4 ports

Figure 8. Performance results of NAPI and KNET,
with 1500-byte MTUs, 20-Kbyte requested files,
sendfile(), with 1 and 4 webfs instances.

plementing scalable and robust networking subsystem. We
have designed and implemented a Linux networking sub-
system built around a packet classifier in the Myrinet Net-
work Interface Card. The experimental results reported in
this paper show the relevance of our design and implemen-
tation when the network stack is the bottleneck, and that the
performance of our implementation does not degrade when
the network stack is not the bottleneck (e.g. for 9000-byte
MTUs). In addition, we have derived a model allowing to
predict if performance gains are to be expected when pro-
cessing network packets in parallel. In particular, the model
helped us understand our experimental results.

In our implementation, packet processing is achieved in
kernel-thread context as opposed to interrupt context. We
were constrained to resort to this solution because we want
to be able to direct a packet to any processor regardless the
processor that takes the interrupt. Processing the network
in kernel-threads raises scheduling latency issues. Indeed,
even if the kernel-thread has a high priority, it takes some
time (the scheduling latency) for the thread to be sched-
uled by the scheduler. This scheduling latency can be ob-
served at low load (4 concurrent connections) in the graphs
reported in this paper. One solution to this problem is to
design new hardware with which the classification-capable
NIC can choose, based on the classification result, which
processor to interrupt, as opposed to relying only on the
machine’s interrupt controller (I/O APIC in x86-based hard-
ware).

As future work, we plan to further study the implica-
tion in terms of performance of operating the classification
outside the kernel or not. In effect, we want develop to
a software-based classifier and carry out extensive experi-
ments. We also want to address the bottleneck issue due to
the listening socket by proposing new classification algo-
rithms or improving the operating system’s kernel.

Acknowledgments

We would like to thank Erik Nordmark and Roland
Westrelin from Sun Microsystems Laboratories for their in-
valuable help with this work.

References

[1] Ethernet Task Force. IEEE P802.3ae 10Gb/s, June 2002. http:
//grouper.ieee.org/groups/802/3/ae/.

[2] Intel Corporation. Intel PRO/10GbE LR Server Adapter,
2003. http://support.intel.com/support/network/
adapter/pro10gbe/pro10gbelr/index.htm.

[3] J. C. Mogul and K. K. Ramakrishnan. Eliminating Receive Live-
lock in an Interrupt-Driven Kernel. ACM Transactions on Computer
Systems, 15(3), 1997.

[4] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley. Performance
issues in parallelized network protocols. In First USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI),
Monterey, CA, November 1994.

[5] J. D. Salehi, J. F. Kurose, and D. Towsley. The effectiveness of
affinity-based scheduling in multiprocessor network protocol pro-
cessing (extended version). IEEE/ACM Transactions on Networking,
4(4), 1996.

[6] A. Garg. Parallel STREAMS: A multi-processor implementation. In
Winter 1990 USENIX Conference, Washington, DC, January 1990.

[7] Peter Druschel and Gaurav Banga. Lazy Receiver Processing (LRP):
A Network Subsystem Architecture for Server Systems. In Operat-
ing Systems Design and Implementation, 1996.

[8] J. Brustoloni, E. Gabber, A. Silberschatz, and A. Singh. Signaled Re-
ceiver Processing. In USENIX’2000 Annual Technical Conference,
San Diego, CA, June 2000.

[9] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In
USENIX, November 2001.

[10] H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0. IETF,
RFC1945, May 1996.

[11] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. IETF,
RFC2616, June 1999.

[12] J. Postel. Transmission Control Protocol. IETF, RFC793, September
1981.

[13] V. Jacobson. Congestion avoidance and control. In SIGCOMM’88,
Stanford, CA, August 1988. ACM.

[14] J. C. Mogul. Network behaviour of a busy web server and its clients.
Technical Report WRL 95/5, DEC Western Research Laboratory,
Palo Alto, CA, 1995.

[15] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Cache behaviour
of network protocols. In ACM SIGMETRICS’97 Conference, June
1997.

[16] V. Jacobson. 4BSD Header Prediction. ACM Computer Communi-
cation Review, April 1990.

[17] N.J. Boden, D. Cohen, and R.E. Felderman. Myrinet - A Gigabit-
per-Second Local-Area Network. In IEEE Micro, volume 15 of 1,
February 1995.

[18] G. Knorr. Webfs. http://bytesex.org/webfs.html.

[19] Gaurav Banga and Peter Druschel. Measuring the capacity of a web
server. In USENIX Symposium on Internet Technologies and Systems,
1997.

