
Save Watts in your Grid: Green Strategies
for Energy-Aware Framework in Large Scale Distributed Systems

Anne-Cécile Orgerie, Laurent Lefèvre, Jean-Patrick Gelas
INRIA RESO - Université de Lyon - LIP (UMR CNRS, INRIA, ENS, UCB)

École Normale Supérieure - 46, allée d’Italie - 69364 LYON Cedex 07 - FRANCE ,
laurent.lefevre@inria.fr, {annececile.orgerie|jean-patrick.gelas}@ens-lyon.fr

Abstract

While an extensive set of research project deals with
the saving power problem of electronic devices powered by
electric battery, few have interest in large scale distributed
systems permanently plugged in the wall socket. However,
a rapid study shows that each computer, member of a dis-
tributed system platform, consume a substantial quantity
of power especially when those resources are idle. Today,
given the number of processing resources involved in large
scale computing infrastructure, we are convinced that we
can save a lot of electric power by applying what we called
green policies. Those policies, introduced in this article,
propose to alternatively switch On and Off computer nodes
in a clever way.

1 Introduction : Understanding large-scale
distributed systems usage

The question of energy savings is a matter of concern
since a long time in the mobile distributed systems. How-
ever, for the large-scale non-mobile distributed systems,
which nowadays reach impressive sizes, the energy dimen-
sion just starts to be taken into account.

Some previous works on operational Grids [8] show that
grids are not utilized at their full capacity. Then, to bet-
ter understand stakes and potential savings with the scaling
effects, we focus on the utilization and the energy analy-
sis of experimental Grids. By relying on Grid5000[1]1, a
french experimental Grid platform, we obtain a case study
from which we were able to get a comprehensive view of
our concern.

1Some experiments of this article were performed on the Grid5000
platform, an initiative from the French Ministry of Research through
the ACI GRID incentive action, INRIA, CNRS and RENATER and
other contributing partners (http://www.grid5000.fr). This research is
supported by the INRIA ARC GREEN-NET project (http://www.ens-
lyon.fr/LIP/RESO/Projects/GREEN-NET/).

Grid5000 is an experimental testbed for research in grid
computing which owns more than 3400 processors geo-
graphically distributed on 9 sites in France. This platform
can be defined as a highly reconfigurable, controllable and
monitorable experimental Grid equipment. The Grid5000
utilization is very specific. Each user can indeed reserve in
advance some nodes and then during its reservation time, he
has root rights on these nodes and can even deploy his own
system images, collect data, reboot and so on. Nodes are
entirely dedicated to the user during his reservation.

We analyze the node reservation traces of Grid5000 for
each site over a one-year period (the 2007 year). Figure 1
shows reservations trace of one site (Toulouse). The plain
line indicates the number of reservations per week (we call
“job” a resource reservations). For each week, we represent
the time during which some cores are dead: they are down;
when they are suspected: they do not work properly; when
they are absent: they do not answer; and when they are
working: a reservation is running. For this site, the real
percentage of work time is 50.57%.

We also see on Figure 1 that during some weeks, the
usage of the site is low, but the real matter of concern of
such a Grid is to be able to support burst periods of work
and communication specially before well-known deadlines
and we can see that such periods exist.

Based on this analysis, we realize that the energy con-
sumption can be reduced when the platform is not used. A
framework able to control the Grid nodes must deal with :

• switching OFF unused nodes;

• predicting nodes usage in order to switch ON the nodes
which are required in a near future;

• aggregating some reservations to avoid frequent
ON/OFF cycles.

We propose an energy saving model applying these
aspects and we design its implementation through the



Figure 1. Global weekly diagram for Toulouse

Energy-Aware Reservation Infrastructure (EARI). We con-
duct some experiments on Grid5000 platform to validate
our approach.

This paper is organized as follows. Section 2 presents
our Energy Aware Reservation Infrastructure (EARI). We
describe the resource managing algorithms of EARI in sec-
tion 3 and present our first experimetnal validations in sec-
tion 5. Section 6 present some related works and last section
gives our conlusions and future works.

2 Proposition for an Energy-Aware Reserva-
tion Infrastructure (EARI)

2.1 Global architecture

In the context of large-scale distributed systems, in or-
der to reduce the global energy consumption, we need to
directly act on the nodes, on the network devices and on
the scheduler. This paper presents an On/Off algorithm for
the resources managed by the scheduler which is also the
resource manager.

Figure 2 presents the global architecture of our infras-
tructure. Each user is connected to a portal to submit a
reservation. The scheduler processes the submission and
validates it. Then it manages the resources and gives access
to the resources to the users who have made reservations
on them according to the scheduler agenda. Energy sensors
monitor energy parameters from the resources (which can
be nodes, routers, etc.) and these data are collected by our
infrastructure. Data are used to compute “green” advices
which are sent to the user in order to influence his reserva-
tion choice. Our infrastructure computes also the consump-
tion diagrams of the past reservations and it sends them as a
feedback on the portal, so the users can see them. And last,

but not least, it decides which resources should be on and
which resources should be off.

2.2 Energy monitoring

Our objective is the measurement of the power consump-
tion of the Grid nodes in Watts in order to exhibit the link
between electrical cost and applications or processes.

In order to measure the real consumption of some
machines, we use a watt-meter provided by the SME
Omegawatt2. This equipment works as a multiplug adapter:
we plug six nodes on it and we obtain every second the con-
sumption of each node via a serial link.

We have dynamically collected the consumption in Watts
of six different nodes representing the three hardware ar-
chitectures available on Lyon site : two IBM eServer 325
(2.0GHz, 2 CPUs per node), two Sun Fire v20z (2.4GHz,
2 CPUs per node) and two HP Proliant 385 G2 (2.2GHz, 2
dual core CPUs per node).

We observe that some nodes reach impressive powers
consumption during the boot period (300 to 400 Watts).
They also have a high idle power consumption (not less than
190 Watts). Finally, they also consume a quantity of power
not negligible when shutting down (+20 Watts). Other ex-
periments we made on these nodes show that an intensive
disk access application (measured with hdparm running)
consume almost +10 Watts. A high performance network
communication (measured with iperf running) consumes
between +20 and +22 watts and finally, a CPU intensive ap-
plication (measured with cpuburn running) cost between
+20 and +26 Watts. These experiments represent a typical
life of an experimental Grid node, i.e nodes are down but
plugged in the wall socket, boot, have intensive disks ac-

2Omegawatt is a SME established in Lyon (http://www.
omegawatt.fr/gb/index.php).



Figure 2. Global architecture

cesses, experiment high performance communication, have
intensive CPU usage, and stay idle for long period of time.

These results show the impact on energy usage resulting
from node utilization. Then, we use this analysis to design
an energy-aware reservation infrastructure.

3 The resource managing algorithms of
EARI

3.1 Definitions of the EARI components

We define a reservation R as a tuple: (l, n, t0) where l
is the length in seconds of the reservation, n is the required
number of resources and t0 is the wished start time. N de-
notes the total number of resources managed by the sched-
uler. So we should always have n ≤ N and t0 ≥ t where
t is the actual time and l � 1 to get a valid reservation.
For example, in the case of a large-scale distributed system,
a reservation is a reservation of n nodes during l seconds
starting at t0.

When a reservation is accepted by the scheduler, it writes
it down into the agenda. The agenda contains all the future
reservations. The history contains all the past and current
reservations. Then, reservation is moved from the agenda
to the history when started.

Lets Pidle refers to the power consumption in Watts of a
given resource when it is idle (this value can vary from one
resource to another) . POFF refers to the consumption in
Watts of a given resource when it is off (POFF < Pidle).
EON→OFF (EOFF→ON ) refers to the required energy (in
Joules) for a given resource to switch between On to Off
modes (Off to On modes respectively). Figure 3 illustrates
these definitions.

Figure 3. Booting and shutting down of a re-
source

3.2 Principle of the resource managing al-
gorithm of EARI

We split our algorithm into two parts: when a reservation
is submitted and when a reservation ends.

We will show the algorithm used for a reservation ar-
rival: R = (l, n0, t0). At t0, we know that there will be at
least n busy resources (because of previously arrived reser-
vations). So, first of all, we wonder whether this reservation
is acceptable, ie. n0 ≤ N − n. If it is not acceptable, we
compute the earliest possible start time after t0 (by taking
into account the reservations which are already registred in
the agenda) which is called t1.

Then, we estimate different amounts of energy consump-
tion by R if it starts:

• at t0 (or t1, if t0 was not possible; t1 is the next possi-
ble start time);



• just after the next possible end time (of a reservation)
which is called tend;

• l seconds before the next possible start time which is
called tstart;

• during a slack period (time ≥ 2 hours and usage under
50%), at tslack.

We will see on the next sections the prediction algo-
rithms. In order to achieve these estimations, we need to
compute: t1 (done previously), tend, tstart and to estimate
tslack. Our goal is to aggregate the reservations in order
to avoid bootings and turnings off which consume energy.
Our infrastructure does not impose any solution, it just of-
fers several of them and the user chooses.

3.3 The EARI algorithm for the resource
allocation

In order to calculate tend, we look for the next reserva-
tion end in the agenda and we verify if it is possible to start
R at that time (enough resources for the total length). If it is
not possible, we look for the next one in the agenda and so
on. tend is then defined as the end time of this reservation.

In the same way, we calculate tstart by looking for the
next reservation start time in the agenda and we check out if
it is possible to placeR before (this start time should then be
at least at t+ l where t is the current time and l the duration
of R). If the found start time does not match, we try the
next one and so on.

An enhancement consists in finding several possible
reservation end times and start times. We can then take
the ones which minimize the energy consumption: the ones
with which we should the least turn on and turn off re-
sources.

Finally, we give all these estimations to the user (energy
estimations and corresponding start times) who selects its
favorite solution. The reservation is then written down in
the agenda and the reservation number is given to the user.
With this approach, the user can still make his reservation
exactly when he wants to, but he can also delay it in order
to save energy. Through this approach, it will raise user
awareness upon energy savings.

The scheduler makes the resource allocation by choos-
ing the resources with the smallest power coefficient. That
coefficient is calculated depending on the mean power con-
sumption of the resource (calculated during reservations on
a great period of time). Thus, a resource which consumes
few energy will have a big power coefficient and then will
be choosed in priority by the scheduler. Indeed, resources
are not identical (different architectures,. . . ), and then show
different consumptions.

This allocation policy is used when we give resources for
a reservation without constraints. In fact, when the sched-
uler places a reservation just after another (by using tend or
not) or just before another, it allocates the resources which
are already up (and in priority those which have the biggest
power coefficient). Moreover, the user can explicitly choose
certain resources, so in that case, this policy is not applica-
ble. The power coefficient is calculated when the resource
is added to the platform and will not change after.

3.4 The EARI algorithm for the resource
release

First of all, we compute the total real consumption of this
reservation. We give this information to the user and we
store it in the history for the prediction algorithms. More-
over, we compute the error made when we have estimated
the consumption of this reservation with the corresponding
start time: this is the difference between the true value and
the predicted one. We will use it in the next section to com-
pute a feedback error in order to improve our estimation
algorithms.

An imminent reservation is a reservation that will start
in less than Ts seconds in relation to the present time. The
idea is to compute Ts such as it will be the minimum time
which ensures an energy saving if we turn off the resource
during this time. In fact, we define Ts so that if we turn off
a resource during Ts seconds, we save Es Joules. Es is a
fixed energy, it is the minimum energy that we don’t go to a
lot of trouble to save it.

To this definition, we add a special time, denoted by Tr,
which is related to the resource type. For example, if we
turn on and turn off often an Ethernet card, it has not the
same consequences, in terms of hardware wear out, com-
pared to the same for a hard disk. The hard disk is indeed
mechanical and can support a limited number of ignitions.
Thus, we should not turn it off too often or too quickly. So
Tr reflects this concern and differs from one resource to an-
other.

So, if we denote δtot = δON→OFF + δOFF→ON , Ts is
defined by:

Ts =
Es − POFF × δtot + EON→OFF + EOFF→ON

Pidle − POFF
+ Tr

As we can see, Ts varies from one resource to another be-
cause it depends on Pidle, POFF , δON→OFF , δOFF→ON ,
EON→OFF , EOFF→ON and Tr which depend on the re-
source. We can fix Es = 10 Joules for example.

We can notice that we should have: Ts − δtot ≥ 0. We
want indeed to have at least enough time to turn off the re-
source and turn on it again. Now, we look for the freed re-
sources that have an imminent reservation. We can see this
in the agenda as depicted on Figure 4. These resources are



considered as busy and are left turned on (top part of Fig. 4).
During this idle period, we loose less than Es Joules per re-
source and then they are used again.

Figure 4. An agenda example which shows
the role of Ts

We look for other awake resources: resources which are
waiting for a previous estimated imminent reservation. For
these m resources up, we need to estimate when will occur
the next reservation and how many resources it will take.
We call this reservation Re = (le, ne, te). We can now ver-
ify if Re is imminent. If it is not the case, all the remaining
resources are turned off (as in the bottom part of Figure 4).

If Re is imminent, we look for min(m,ne) resources or
less that can accept this potential reservation: they are free
at te for at least le seconds. We keep these resources awake
during Ts + Tc seconds and we turn off the other ones. Tc
is a fixed value that corresponds to the mean computation
time of a reservation for the scheduler. It is the mean time
between the user request and the reservation acceptation by
the scheduler (it includes among other things the time to
compute the energy estimations and a minimum time to an-
swer for the user).

At the next reservation arrival, we will compute the esti-
mation errors we have done and we will use them as feed-
back in our prediction algorithms. Moreover, if there are
idle resources (which are turned on without any reservation)
and if the reservation which is just arrived is not imminent,
we turn off the idle resources.

3.5 Global mechanisms: selection of spe-
cific resources and load balancing

Before a reservation which is written down in the
agenda, if some resources are not turned on, the sched-

uler puts them on at least δON→OFF seconds before the
beginning of the reservation. In this general infrastruc-
ture, we have not distinguished the different resources to
make it clearer: in fact, different resources have different
associated consumptions and different components (Ether-
net cards, hard disks, etc.). But, instead of giving just a
number of resources, the user can give a list of wished re-
sources with the wanted characteristics.

Moreover, we add to our infrastructure a load balancing
system which ensures that the scheduler will not always use
the same resources. This load balancing system includes
a topology model (the geographic position of the different
resources). This mechanism allows us to distribute geo-
graphically the reservations. The reserved resources are not
“sticked” together, so we have less heat production. Then
when a reservation is submitted, the scheduler does not al-
locate resources to it at random but with following this load
balancing policy.

4 Predictions

The efficiency of EARI, compared to a simple algorithm
where the resources are put into sleep state from the time
that they have nothing to do, resides in our ability to make
accurate predictions: the estimation of the next reservation
(length, number of resources and start time), the estimation
of the energy consumed by a given reservation and the es-
timation of a slack period. But our prediction algorithm
should remain sufficiently simple in terms of computation
in order to be efficient and applicable during reservation
scheduler run time.

We need to predict three different type of values:

• the next reservation (start time, length and number of
resources),

• the energy consumed by a given reservation,

• when will occur the next slack period (time ≥ 2 hours
and usage under 50%).

We describe in details our prediction algorithms in [11].
The general idea is to compute average values by taking
some recent past values. We also use feedbacks which are
the average errors made by computing the lasts predictions.
Those prediction algorithms [11] remain time efficient and
are sufficiently accurate aswe will see in section 5.2.

5 Experimental validation of EARI

5.1 The replay principle

To evaluate EARI, we conduct experiments based on a
replay of the 2007 traces of the Grid5000 platform. In a first



step, we do not move the reservations: we always respect
the reservation characteristics given by the user. So we can
fully test our prediction algorithm. In a second step, we
move the reservations on a time scale by respecting several
policies. The results show that EARI makes energy savings.

5.2 Without moving the reservations: val-
idation of the prediction algorithm

Here, we take the example of Bordeaux on the 2007 year
(Fig. 5 and Fig. 6). Figure 5 shows the percentages of en-
ergy consumption of EARI with prediction and the percent-
ages of energy consumption of EARI without prediction
where Ts varies from 120 seconds to 420 seconds and Pidle

(the power consumed by a single resource when it is idle:
on but not working) is 100, 145 or 190 Watts. These per-
centages are given in relation to the energy consumption of
EARI by knowing the future: in that ideal and not reachable
case we don’t need any prediction algorithm because we al-
ways know when to turn on and turn off resources. In fact,
this is the theoritical lower bound.

Figure 5. Percentage of energy consumption
by using EARI in relation to the energy con-
sumed by knowing the future

Based on our experimental measures, we set Pwork =
216 Watts, POFF = 10 Watts and δON→OFF +
δOFF→ON = 110 seconds. Also based on our measures,
we set Pidle to 190 Watts, but we make Pidle vary to sim-
ulate the future capacity of EARI to shut down resource’s
components (like a core or a disk for a node for example).
In the same way, we make Ts vary to simulate the future
possibility to use hibernate modes (Ts is at least equal to
the time needed to boot a resource plus the time to shut
down it, so if we use suspend to disk or suspend to RAM
mechanisms, it will decrease Ts).

These percentages are in relation to the aimed used en-
ergy: the energy we would consume if we knew the future
(it is as if our prediction algorithm made always perfect pre-
dictions), so it is the lower limit we try to be close to. We see
that EARI with prediction is better than without prediction

in all the cases. However, we have still room for maneuver
to improve our prediction algorithm in order to be closer to
the aimed case.

Figure 6 shows the surprise reservations impact for
EARI with and without prediction. The surprise reserva-
tions are reservations that arrive less than Ts seconds af-
ter we have turned off some resources (which can instead
have been used for these arriving reservations). This is the
reason why we are not closer to the future known case on
Figure 5. As expected, EARI with prediction has better re-
sults because it tries to predict such reservations, but it is
not possible to achieve this goal perfectly (the future is not
known!).

Figure 6. Percentage of surprise reservations
in relation to total reservation number

5.3 By moving the reservations: valida-
tion of our “green” policy

Now, we evaluate the complete EARI by allowing our
simulator to move the jobs at a better date. We design six
policies to conduct our experiments:

• user: we always select the solution that fits the most
with the user’s demand (we select the date asked by the
user or the nearest possible date of this asked date);

• fully-green: we always select the solution that saves
the most energy (where we need to boot and to shut
down the smallest number of resources);

• 25%-green: we treat 25% of the submission, taken at
random, with the previous fully-green policy and the
remaining ones with the user policy;

• 50%-green: we treat 50% of the submission, taken at
random, with the fully-green policy and the others with
the user policy;

• 75%-green: we treat 75% of the submission, taken at
random, with the fully-green policy and the others with
the user policy;



• deadlined: we use the fully-green policy if it doesn’t
delay the reservation from the initial user’s demand for
more than 24 hours, otherwise we use the user policy.

These policies simulate the behavior of real users: there
is a percentage of “green” users who follow the advice given
by EARI. Maybe they do not want to delay too long their
reservation as in the deadlined policy. And some users do
not want to move their reservation even if they can save en-
ergy by doing this, that is the user policy. The green policy
illustrates the case of an administrator decision: the admin-
istrator always chooses the most energy-efficient option.

Figure 7. Energy consumption of Grid5000
with EARI with Ts = 240 s and Pidle = 100
watts compared with the consumption when
all the nodes are always ON

Figure 8. Energy consumption of Grid5000
with EARI with Ts = 240 s and Pidle = 190
watts compared with the consumption when
all the nodes are always ON

Figures 7 and 8 present the energy consumption of some
Grid5000 sites (Bordeaux, Lyon, Rennes, Sophia) benefit-
ing from EARI with some low power consuming nodes (100
watts) and current nodes (190 watts currently measured on
the Lyon site).

We show that our energy policy (fully-green) is more
energy-efficient than any other strategies. The all-glued line
shows the theoritical (unaccessible) lower bound: when we
glue all the reservation without idle periods. Globally, our
fully-green strategies allow energy gains close the to the
theoritical all-glued scenario.

For example, on Bordeaux site, the fully-green policy has
moved about 98% of the reservations by an average time of

15 hours per reservation. The 50%-green policy has moved
about 75% of the reservations by an average time of 12
hours.

Figure 9 shows the energy consumption of the Lyon site
in kilowatt hour (kWh) for the whole 2007 year in the cur-
rent case (without energy saving policy), with our user pol-
icy, with our 50%-green policy, with our fully-green policy
and the all glued consumption. These values are those rep-
resented in percentage on Fig. 8.

Pidle present state user 50%-green fully-green all glued

100 135500 101500 100000 98300 97300
145 154000 101700 100300 98500 97300
190 172500 102000 100800 98700 97300

Figure 9. Energy consumption in kWh for
Lyon with Ts = 240 s. for several policies for
2007

We can notice that the last value is the same for the three
lines, it is normal because the “all glued” consumption rep-
resents the case where all the reservations are sticked to-
gether without any idle period between them. This is the
most energy efficient reservation distribution but this dis-
tribution is not really possible. Furthermore, we notice that
our fully-green policy is near the all-glued case (which is the
optimal solution in terms of energy) and that the three val-
ues for this policy are near: this is normal because we try
to reduce as much as possible the useless idle periods. In
the present situation (where all the nodes are always pow-
ered on and consume 190 Watts when they are idle), we
could save 73800 kWh only for Lyon; this represents the
consumption3 of a TGV covering about 5000 km.

We have not yet taken into account the problem of net-
work presence. Indeed, we turn off nodes that we can wake
up by their Ethernet cards, but the system monitoring tools
(like Monika, Ganglia or Nagios for Grid5000) need to have
periodical answers from these nodes. So by turning off
them, they will believe that these nodes are dead although
this is not the case. This problem can be solved by prox-
ying techniques (see section 6). The Ethernet cards can be
configured to be able to answer such basic requests.

6 Related works

Although energy has been a matter of concern for sensor
networks and battery constrained systems since their cre-
ation, energy issues are recent for full time plugged sys-
tems. A first problem that occurs is how to measure the
consumption. We have considered an external watt-meter

3The consumption of a TGV train is about 14.79 kWh per km.



to obtain the global consumption of a node. A different ap-
proach consists of deducing it from the usage of the node
components, by using event monitoring counters [10] for
example. Lot of other work on server power management
based on on/off algorithm has been done [12], [3]. Some
take into account thermal issues [2], [12]. The main issue
in that case is to design an energy-aware scheduling algo-
rithm with the current constraints (divisible task or not [2],
synchronization [9], etc). Some algorithms include DVFS
(Dynamic Voltage Frequency Scaling) techniques [9], [7]
and some not [3]. Although we are fully aware that such
techniques will be available on all processors in a near fu-
ture, our work does not include this in a first step presented
here. Such techniques are indeed difficult to use in presence
of a processor and user heterogeneity especially if we want
to design a centralized resource managing algorithm. Virtu-
alization seems to become an other promising track [6]. We
have not yet speak about network presence. Lot of work
have also been done on the network level to reduce the con-
sumption of Ethernet card and switches ports by adaptively
modify the link rate [4] or by turning off ports [5]. The
problem of ensuring network presence becomes more obvi-
ous with such objectives.

7 Conclusion and future works

This paper presents a first step of our work whose goal
is to better understand the usage of large-scale distributed
systems and to propose methods and energy-aware tools to
reduce the energy consumption in such systems. Our anal-
ysis has provided instructive results about the utilization of
an experimental Grid over the example of Grid5000.

Next, we have proposed an energy-aware model to re-
duce the global consumption of a large scale experimental
Grid. This infrastructure is efficient and can be easily im-
plemented and deployed. We have presented our first results
which validate our energy-aware reservation model.

We are currently working on tools, portals and frame-
works proposing these results in a real-time manner to the
users and grid middleware. We are working on such a tool
that we will integrate on the Grid5000 website. We plan
to make further experiments to fully validate our infrastruc-
ture and to enhance our prediction algorithm. We also plan
to make the same experiments with the whole grid traces
including the grid reservation constraints (on several sites
at the same time). We will study the possibility to move
reservations from one site to another (according to external
temperatures parameters for example).

Our long term goal is to incorporate virtualization and
DVFS techniques in our infrastructure with the objective to
save more energy without impacting performances. Virtu-
alization could also solve the problem of ensuring network
presence and answering basic requests from the monitoring

tools of large-scale distributed systems or dealing with the
high-performance data transport systems.

References

[1] F. Cappello et al. Grid’5000: A large scale, reconfig-
urable, controlable and monitorable grid platform. In 6th
IEEE/ACM International Workshop on Grid Computing,
Grid’2005, Seattle, Washington, USA, Nov. 2005.

[2] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing energy and server resources in
hosting centers. In SOSP ’01: 18th ACM symposium on
Operating systems principles, pages 103–116, New York,
NY, USA, 2001. ACM.

[3] X. Fan, W.-D. Weber, and L. A. Barroso. Power provision-
ing for a warehouse-sized computer. In ISCA ’07: Proceed-
ings of the 34th annual international symposium on Com-
puter architecture, pages 13–23, New York, NY, USA, 2007.
ACM.

[4] C. Gunaratne, K. Christensen, and B. Nordman. Managing
energy consumption costs in desktop pcs and lan switches
with proxying, split tcp connections, and scaling of link
speed. Int. J. Netw. Manag., 15(5):297–310, 2005.

[5] M. Gupta and S. Singh. Dynamic ethernet link shutdown
for energy conservation on ethernet links. Communications,
2007. ICC ’07. IEEE International Conference on, pages
6156–6161, 24-28 June 2007.

[6] F. Hermenier, N. Loriant, and J.-M. Menaud. Power man-
agement in grid computing with xen. In XEN in HPC Clus-
ter and Grid Computing Environments (XHPC06), num-
ber 4331 in LNCS, pages 407–416, Sorento, Italy, 2006.
Springer Verlag.

[7] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and
D. Takahashi. Profile-based optimization of power perfor-
mance by using dynamic voltage scaling on a pc cluster.
IPDPS 2006, 2006.

[8] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters.
How are real grids used? the analysis of four grid traces and
its implications. In 7th IEEE/ACM International Conference
on Grid Computing, Sept. 2006.

[9] R. Jejurikar and R. Gupta. Energy aware task scheduling
with task synchronization for embedded real-time systems.
In Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, pages 1024– 1037. IEEE, June
2006.

[10] A. Merkel and F. Bellosa. Balancing power consump-
tion in multiprocessor systems. SIGOPS Oper. Syst. Rev.,
40(4):403–414, 2006.

[11] A.-C. Orgerie, L. Lefèvre, and J.-P. Gelas. Chasing gaps
between bursts : Towards energy efficient large scale exper-
imental grids. In PDCAT 2008 : The Ninth International
Conference on Parallel and Distributed Computing, Ap-
plications and Technologies, Dunedin, New Zealand, Dec.
2008.

[12] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and
J. S. Chase. Balance of power: Dynamic thermal manage-
ment for internet data centers. IEEE Internet Computing,
9(1):42–49, 2005.


