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Abstract. The interest in processing data events under stringent time
constraints as they arrive has led to the emergence of architecture and
engines for data stream processing. Edge computing, initially designed
to minimize the latency of content delivered to mobile devices, can be
used for executing certain stream processing operations. Moving opera-
tors from cloud to edge, however, is challenging as operator-placement
decisions must consider the application requirements and the network
capabilities. In this work, we introduce strategies to create placement
configurations for data stream processing applications whose operator
topologies follow series parallel graphs. We consider the operator char-
acteristics and requirements to improve the response time of such appli-
cations. Results show that our strategies can improve the response time
in up to 50% for application graphs comprising multiple forks and joins
while transferring less data and better using the resources.

Keywords: data stream processing · edge computing · cloud computing
· resource management · scheduling · series parallel graphs

1 Introduction

Today’s instruments and services are producing ever-increasing amounts of data
that require processing and analysis to provide insights or assist in decision mak-
ing. Much of this data is received in near real-time and requires quick analysis. In
the Internet of Things (IoT) [18], for instance, continuous data streams produced
by multiple sources must be handled under very short delays. Under several data
stream processing engines, a stream processing application is a directed graph or
dataflow whose vertices are operators that execute a function over the incoming
data and edges that define how data flows between the operators. A dataflow
has one or multiple sources (i.e., sensors, gateways or actuators), operators that
perform transformations on the data (e.g., filtering, and aggregation) and sinks
(i.e., queries that consume or store the data).

In a traditional cloud deployment, the whole application is placed on the
cloud to benefit from virtually unlimited resources. However, processing all the
data on the cloud can introduce latency due to data transfer, which makes near
real-time processing difficult to achieve. In contrast, edge computing has become
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an attractive solution for performing certain stream processing operations, as
many edge devices have non-negligible compute capacity.

The deployment of data stream processing applications onto heterogeneous
infrastructure, however, has proved to be NP-hard [2]. Moreover, moving oper-
ators from cloud to edge devices is challenging due to limitations of edge de-
vices [1]. Existing work often proposes placements strategies considering user
intervention [19] whereas many models do not support memory and communica-
tion constraints [12, 6]. Existing work also considers all data sinks to be located
in the cloud, with no feedback loop to actuators located at the edge [5, 16]. There
is hence a lack of solutions covering scenarios involving smart cities, precision
agriculture, and smart homes comprising various heterogeneous sensors and ac-
tuators, as well as, time-constraint applications that may contain actuators often
placed close to where data is collected.

In this paper, we introduce a set of strategies to place operators onto cloud
and edge while considering characteristics of resources and meeting the require-
ments of applications. We consider analytics applications with multiple sources
and sinks distributed across cloud and edge. In particular, we first decompose
the application graph by identifying behaviors such as forks and joins, and then
dynamically split the dataflow graph across edge and cloud. Comprehensive sim-
ulations considering multiple application settings demonstrate that our approach
can improve the response time in up to 50%.

The contributions of this work are: (i) it presents a model for Distributed
Stream Processing (DSP) applications in heterogeneous infrastructure (§2); (ii)
it introduces placement strategies for dynamically identifying how to split the
application graph across cloud and edge (§3); and (iii) it evaluates the strategies
against traditional and state-of-the-art schemes (§4).

2 System Model and Problem

This section introduces preliminaries and then describes the placement problem.

2.1 System and Application Models

The network topology is a graphN = (R,L) with a vertex setR = (r1, r2, r3, . . . )
of computational resources (i.e., cloud servers and edge devices) and links L =
(l1, l2, l3, . . . ) interconnecting the resources. Each ri ∈ R has capabilities in terms
of CPU cpuri and memory memri expressed respectively in Millions of Instruc-
tions per Second (MIPS) and bytes. A network link i↔ j ∈ L interconnecting
resources i and j has bandwidth bdwi↔j and latency lati↔j represented in bits
per second (bps) and seconds respectively. We consider the latency of a resource
i to itself (i.e lati↔i) to be 0. The network topology is known as we consider
scenarios using Software Defined Network solutions [4] or discovery algorithms
such as Vivaldi [7] to determine and maintain the topology information.

A DSP application is viewed as a graph G = (O,S) whose vertices O are
operators that perform operations on the incoming data, and edges S that are



Latency-Aware Placement of Data Stream Analytics 3

streams of events/messages flowing between the operators. The set of opera-
tors O comprises data sources Osrc, sinks/outputs Oout where data is stored or
published, and transformations Otrn performed over the data.

Each operator oi ∈ O has CPU cpuoi and memory memoi requirements
for processing incoming events, given respectively in Instructions per Second
(IPS) to handle an individual event and number of bytes to load the operator in
memory. The rate at which operator i can process events at reference resource
k is denoted by µ〈i,k〉 and is essentially µ〈i,k〉 = cpurk ÷ cpuoi . When performing
a transformation on the incoming data, an operator can, for instance, parse
data or filter events hence reducing the number of events or their size. The
ratio of number of input events to output events is determined by the operator’s
selectivity ψoi . The data compression/expansion factor is the ratio of the size of
input events to the size of output events, and is represented by ωoi .

Resource 1
Operator 1

Message
Queue

Data transfer
service

Operator 2

Dispatching
service

Resource 2
Operator 3

Operator 4

Messages
Network

Fig. 1: Example of four operators and their respective queues placed on two resources.

Each event stream si→j ∈ S connecting operator i to j has a probability ρi→j
that an output event emitted by i will flow through to j. Here we consider that
such information is obtained via profiling techniques or from previous executions
of the application. Existing work has demonstrated how such information can be
obtained [14]. The rate at which operator i produces events is denoted by λouti

and is a product of its input event rate λini and its selectivity. The output event
rate of a source operator k ∈ Osrc depends on the number of measurements
it takes from a sensor or another monitored device. We can then recursively
compute the input and output event rates for downstream operators j as follows:

λini = λoutk ∀sk→i ∈ S, k ∈ Osrc (1)

λinj =
∑

si→j∈S
λini × ψoi × ρsi→j

∀i ∈ O, i /∈ Osrc (2)

λoutj = λinj × ψoj ∀j ∈ O, j /∈ Oout (3)

Likewise, we can recursively compute the average size ςini of events that arrive
at a downstream operator i and the size of events it emits ςouti by considering
the upstream operators’ event sizes and their respective compression/expansion
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factors (i.e., ωoi). In other words:

ςini = ςoutk ∀sk→i ∈ S, k ∈ Osrc (4)

ςinj = ςini × ωoi ∀i ∈ O, i /∈ Osrc (5)

ςoutj = ςinj × ωoj ∀j ∈ O, j /∈ Oout (6)

When placed onto available resources, operators within a same host commu-
nicate directly whereas inter-node communication is done via a communication
service as depicted in Figure 1. If more events arrive than an operator can han-
dle when placed at a given resource, queues will form and the overall service
time will increase. Events are handled in a First-Come, First-Served (FCFS)
fashion both by operators and the computation service that serialises messages
to be sent to another host. This guarantees the time order of events; an impor-
tant requirement in many data stream processing applications. We model both
operators and the communication service as M/M/1 queues which allows for es-
timating the waiting and service times for computation and communication. The
computation or service time stime〈oi,rk〉 of an operator i placed on a resource k
is hence given by:

stime〈i,k〉 =
1

µ〈i,k〉 − λini
(7)

while the communication time ctime〈i,k〉〈j,l〉 for operator i placed on a resource
k to send a message to operator j on a resource l is:

ctime〈i,k〉〈j,l〉 =
1(

bdwk↔l

ςout
i

)
− λinj

+ lk↔l (8)

Furthermore, the number of events waiting to be served, being processed, or
waiting to be transferred to another resource, enable us to compute the memory
requirements of operators at the resources onto which they are placed. The
number of events in service at an operator i at resource k is given by:

ϕcomp〈i,k〉 =

λin
i

µ〈i,k〉

1− λin
i

µ〈i,k〉

(9)

while the number of events waiting in the communication service to be trans-
ferred from operator i on resource k to operator j placed on resource l is:

ϕcomm〈i,k〉〈j,l〉 =

λin
j(

bdwk↔l
ςout
i

)
1− λin

j(
bdwk↔l

ςout
i

) (10)

The overall memory required by an operator i allocated on a resource k
comprises the memory needed to load it as well as the memory required by in-
service events, and events waiting to be serviced or waiting to be transferred to
another resource:
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mem〈i,k〉 = ϕcomp〈i,k〉 × ς
in
i +memoi +

∑
j∈O
l∈R

ϕcomm〈i,k〉〈j,l〉 × ς
in
i (11)

A mapping function M : O → R, S → L indicates the resource to which
an operator is assigned and the link to which a stream is mapped. The function
mo〈i,k〉 returns 1 if operator i is placed at resource k and 0 otherwise. Likewise,
the function ms〈i→j,k↔l〉 returns 1 when the stream between operators i and j
has been assigned to the link between resources k and l, and 0 otherwise. A path
in the DSP application graph is a sequence of operators from a source to a sink.
A path pi of length n is a sequence of n operators and n − 1 streams, starting
at a source and ending at a sink:

pi = o0, o1, . . . , ok, ok+1, . . . , on−1, on (12)

Where o0∈Osrc and on∈Oout. The set of all possible paths in the application
graph is denoted by P. The end-to-end latency of a path comprises the sum of the
computation time of all operators along the path and the communication time
required to stream events on the path. More formally, the end-to-end latency of
path pi, denoted by Lpi , is:

Lpi =
∑
o∈pi
r∈R

mo〈o,r〉 × stime〈o,r〉 +
∑
r′∈R

ms〈o→o+1,r↔r′〉 × ctime〈o,r〉〈o+1,r′〉 (13)

2.2 Operator Placement Problem

The problem of placing a distributed stream processing application consists of
finding a mapping that minimises the aggregate end-to-end latency of all appli-
cation paths and that respects the resource and network constraints. In other
words, find the mapping that minimises the aggregate end-to-end event latency:

min
∑
pi∈P

Lpi (14)

Subject to:
λino < µ〈o,r〉 ∀o ∈ O,∀r ∈ R|mo〈o,r〉 = 1 (15)

λino <
(bdwk↔n

ςouto−1

)
∀o ∈ O,∀k↔n ∈ L|mo〈o,k〉 = 1 (16)∑

o∈O
mo〈o,r〉λ

in
o ≤ cr ∀r ∈ R (17)

∑
o∈O

mo〈o,r〉 ×mem〈o,r〉 ≤ memr ∀r ∈ R (18)

∑
si→j∈S
k↔l∈L

ms〈i→j,k↔l〉 × ςouti ≤ bwdk↔l ∀k ↔ l ∈ L (19)
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r∈R

mo〈o,r〉 = 1 ∀o ∈ O (20)

∑
k↔l∈L

ms〈i→j,k↔l〉 = 1 ∀si→j ∈ S (21)

Constraint 15 guarantees that a resource can provide the service rate required
by its hosted operators whereas Constraint 16 ensures that the links are not
saturated. The CPU and memory requirements of operators on each host are
ensured by Constraints 17 and 18 respectively. Constraint 19 guarantees the
data requirements of streams placed on links. Constraints 20 and 21 ensure that
an operator is not placed on more than a resource and that a stream is not
placed on more than a network link respectively.

3 Application Placement Strategies

This section explains how patterns in the DSP application graphs are identified
and then introduces strategies that employ the patterns to devise placement
decisions.

3.1 Finding Application Patterns

As depicted in Figure 2, a dataflow can comprise multiple patterns such as (i)
forks, where messages can be replicated to multiple downstream operators or
scheduled to downstream operators in a round-robin fashion, using message key
hashes, or considering other criteria [16]; (ii) parallel regions that perform the
same operations over different sets of messages or where each individual region
executes a given set of operations over replicas of the incoming messages; and
(iii) joins, which merge the outcome of parallel regions.
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Fig. 2: Method for finding the dataflow split points, where red means placed on edge,
blue represents placed on cloud, and green delimits forks and joins.

We consider Series-Parallel-Decomposable Graphs (SPDG) and related tech-
niques to identify graph regions that present these patterns [8]. This informa-
tion is used to build a hierarchy of region dependencies (i.e. downstream and
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upstream relations between regions) and assist on placing operators across cloud
and edge resources. The streams in the graph paths that separate the operators
are hereafter called the split points. Figure 2 illustrates the phases of the method
to determine the split points (green circles), where red circles represent operators
placed on edge resources whereas blue ones are on the cloud: (i) The method
starts with sources and sinks whose placements are predefined by the user; (ii)
split points are discovered (green circles) as well as sinks that correspond to
actuators that can be placed on the edge; (iii) the branches between the existing
patterns (green, red and blue circles) are transformed into series regions; and
(iv) a hierarchy following the dependencies between regions is created.

Algorithm 1 describes the function GetRegions used to identify the patterns
and obtain the series regions. First, the function adds two virtual vertices to
the graph, one named virt src connected to all data sources and another named
virt sink to which all sinks are connected (line 2-4). The virtual vertices allow
for recognizing all paths between sources and sinks. Second, each path is iter-
ated moving operators to a temporary vector and classifying the operators as
upstream and downstream according to the number of input and output edges
(lines 5-8). If the operator is a split point, the temporary vector is converted to
a subset of regions set, and the temporary vector receives the current operator
(lines 9-10). Third, the function removes the redundant values (line 11). At last,
the region set is iterated comparing the regions by the first and the last position
values (equal values represent a connection) and consequently, they are stored
in the hierarchy set (lines 12-16).

Algorithm 1: Algorithm to detect forks and joins.

1 Function GetRegions(G = (O,S),Osrc,Oout)
2 O ← O ∪ virt src ∪ virt sink
3 S ← S ∪ svirt src→o, ∀o ∈ Osrc

4 S ← S ∪ so→virt sink, ∀o ∈ Oout

5 for p ∈ GetAllPaths(G, virt src, virt sink) do
6 for o ∈ p do
7 temp← temp ∪ {o},∀o 6∈ {virt src, virt sink}
8 ups← |〈∗, o〉 ⊂ S|, downs← |〈o, ∗〉 ⊂ S|
9 if ups > 1 or downs > 1 and o 6∈ {virt src, virt sink} then

10 regions← regions ∪ temp, temp← {o}

11 Delete duplicate regions
12 for src series ∈ regions do
13 for dst series ∈ regions do
14 if src series 6= dst series then
15 if src series[|src series| − 1] = dst series[0] then
16 hierarchy ← hierarchy ∪ {src series, dst series}

17 return hierarchy
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3.2 Operator Placement Strategies

The region hierarchy allows us to determine the data paths and operator de-
ployment priorities, based on which two strategies are applied: Response Time
Rate (RTR) that iterates the deployment sequence and for each operator esti-
mates the end-to-end latency (i.e. response time); and Response Time Rate with
Region Patterns (RTR+RP) which uses the hierarchy to split the application
graph across edge and cloud, optimizing only the response time on the edge.

Response Time Rate (RTR) is a greedy strategy that places operators
incrementally by evaluating the end-to-end latency of paths (Equation 13) while
respecting the resource constraints (Equations 15-21). The response time of an
operator in a path comprises the time taken to transfer data and to compute an
event. As an operator can be in multiple paths, the RTR strategy accumulates
the time taken to transfer data from multiple paths rather than evaluating each
path individually.

Algorithm 2: Calculating the computational response times.

1 Function EstimateResponseTimes(N = (R,L),G = (O,S), o)
2 for child ∈ 〈o, ∗〉 ⊂ S do
3 upstreams← 〈child, r〉, ∀r ∈ R and mo〈child,r〉 = 1

4 for r ∈ R do
5 comm← 0
6 for mapping ∈ upstreams do
7 if GetHost(mapping) 6= r then
8 com← comm + ctime〈mapping〉〈o,r〉

9 if MeetConstraints then
10 rt← rt ∪ 〈r, stime〈o,r〉 + comm〉

11 return rt

RTR organizes the operators into deployment sequence and consecutively
calculates the response time for each operator by considering the previous map-
pings, resource capabilities, and operator requirements. The approach initially
obtains the region hierarchy and then establishes the deployment sequence em-
ploying a breadth-first search traversal algorithm [17] to give priority to upstream
operators. Each operator of the deployment sequence has its response time es-
timated for non-constrained computational resources (Algorithm 2). After that,
the resources are sorted in ascending manner by their response times and the
host with the shortest response time is picked, and the host’s residual capabilities
are updated.

Response Time Rate with Region Patterns (RTR+RP) is a strategy
that handles complex dataflows that contain multiple paths from sources to sinks.
It explores the operator patterns (split points) and the sink placement (cloud or
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edge) respecting the environment constraints (Equations 15-21). Based on the
region hierarchy (Figure 3), the operators are classified and allocated. Operator
5, for instance, was reallocated since the edge does not respect the resource
constraints. RTR+RP aims to allocate operators across edge and cloud meeting
the response time rate only for operators located in the edge, in contrast to the
RTR strategy that evaluates the response time rate for all operators.
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101

112
76
49

10 5

35

1110

11
08 05

40

101

112
76
49

10 5

35

1110

11
08 05

40

Candidate placement
for the graph regions

11

2 10

1

7

6

4

930

58

Final placement with 
constraint evaluation

Fig. 3: Blue circles are operator candidates to be deployed on cloud whereas red circles
are candidates for edge. The right-hand graph shows the final deployment.

RTR+RP defines the deployment sequence similar to RTR, but it builds
upon the classification of the operators considering the served sink infrastructure
(candidate infrastructure). The classification is (i) cloud-only if the operator
serves only sinks placed on the cloud, and (ii) edge if the operator shares paths
with sinks located on edge. Each operator on the deployment sequence has its
candidate infrastructure evaluated. Edge candidates have their response time
estimated for non-constrained edge devices where the device with the shortest
response time is picked. On the other hand, cloud candidates do not have their
response time estimated, hence, the cloud hosts its operator candidates and those
that do not meet the constraints on edge. At last, after the operator mapping,
the resources have their residual capabilities updated.

4 Evaluation

In this section, we first describe the experimental setup and performance metrics
and then discuss experimental results.

4.1 Experimental setup

We built a framework atop OMNET++1 to model and simulate distributed
stream processing applications. A computational resource is an entity with CPU,
memory and bandwidth capabilities whereas operators comprise waiting queues
and transformation operations that pose demands in terms of CPU, memory
and bandwidth.

1 Visit http://www.omnetpp.org/ for further details on OMNET++.
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We model our edge devices as Raspberry PI’s 2 (RPi) (i.e., 4,74 MIPS2 at 1
GHz and 1 GB of RAM), and the cloud as AMD RYZEN 7 1800x (i.e., 304,51
MIPS3 at 3.6 GHz and 1 TB of memory). The infrastructure comprises two
cloudlets [13] with edge computing nodes (Cloudlet 1 and Cloudlet 2 ) and a
Cloud. Each cloudlet has 20 RPi’s, whereas the cloud consists of 2 servers. A
gateway interfaces each cloudlet’s LAN and the external WAN [11] (the Internet).
The LAN has a latency drawn from a uniform distribution between 0.015 and
0.8 ms and a bandwidth of 100Mbps. The WAN has latency drawn uniformly
between 65 and 85 ms, and bandwidth of 1 Gbps [13].

As stream processing applications exist in multiple domains with diverse
topologies (e.g., face recognition, speech recognition, weather sensing), where
sensors/actuators ingest a variety of events (e.g., text, video, pictures, voice
record) in the system, we aim to capture this diversity my modeling and simu-
lating two scenarios with various application workloads:

Microbenchmarks: As in previous work [13], we first perform a controlled
evaluation using a set of message sizes (10 bytes, 50KB, and 200KB) correspond-
ing to multiple data types such as text, pictures/objects, and voice records. Each
application, depicted in Figure 4, has three input event rates (Table 1), a set of
CPU requirements according to the message sizes (10 bytes - 3.7952 IPS, 50 KB
-18976 IPS, and 200 KB - 75904 IPS) and a configuration of fork/join operators
to explore the path sizes. The operators have multiple selectivity and data com-
pression rates (100, 75, 50 and 25%). Sources ingest messages from sensors and
sinks act as actuators on cloudlets and databases/message brokers on cloud.

Table 1: Input event rate.

App. 10 bytes 50 KB 200 KB

App1 124999, 624999, 1249999 24, 124, 249 6, 31, 62
App2 124999, 374999, 624999 24, 74, 124 6, 19, 31
App3 124999, 218749, 300000 24, 43, 62 6, 10, 15
App4 124999, 137499, 150000 24, 27, 30 6, 7
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Fig. 4: Six-hop applications.

More Complex Applications: This scenario presents multiple operator
behaviors and larger numbers of operators. We crafted a set of application graphs
(Figure 5) using a Python library4 and varying the parameters of the operators
using a uniform distribution with the ranges presented in Table 2. The cloudlets
host the sink and source placements, except for the sink on the critical path
which will be hosted on the cloud. We generated 1160 graphs randomly applying
multiple selectivities, data compression rates, sink and source locations, input
event sizes and rates, memory, and CPU requirements. Inspired on the size of
RIoTBench [20] applications, a Realtime IoT Benchmark suite, we proposed
two sets of applications, namely: (i) large (AppA and AppB) containing 25
operators; and (ii) small (AppC and AppD) holding 10 operators.

2 https://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/
3 https://reddit.com/r/BOINC/comments/5xog5v/boinc performance on amd ryzen
4 https://gist.github.com/bwbaugh/4602818
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Table 2: Operator attributes.

Parameter Value

cpu 1-100
Data compression rate 10%-100%

mem 100-7500
Input event size 100-2500

Selectivity 10%-100%
Input event rate 1000-10000

AppA AppB AppC AppD
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Fig. 5: Complex applications.

Metrics: The main performance metric is the application response time,
which is the end-to-end latency from the time events are generated to the time
they are processed by the sinks. To demonstrate the gains obtained by our
approach, we compared the proposed strategies against a traditional approach
(cloud-only) and a solution from the state-of-the-art [21] (LB). Cloud-only de-
ploys all operators in the cloud, apart from operators provided in the initial
placement. Taneja et. al. (LB) iterates a vector containing the application op-
erators, gets the middle host of the computational vector and evaluates CPU,
memory, and bandwidth constraints to obtain the operator placement.

4.2 Performance Evaluation

Figure 6 summarizes the response times for all microbenchmarks. For App1 we
carried out 432 experiments (4 selectivities, 4 data compression rates, 3 input
event rates, 3 sink locations and 3 input event sizes) for each solution with
a pipeline application that may have messages with text, video, pictures, and
voice record. Each experiment ran for 300 seconds in simulation time. RTR and
RTR+RP have shown to be over 95% more efficient than cloud-only approach
and LB. Initially, LB had its performance comparable to cloud-only, but LB
lost performance afterward due to its specific modeling (i.e., health care, and
latency-critical gaming) and method (computational ordering).
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Fig. 6: CDF of response time for microbenchmarks.

Cloud-only achieved 5% better results (when the blue line crosses the red at
≈200ms) when handling voice records (200KB), selectivity, and data compression
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rate equal to 1 (without reducing the size of the messages and discarding events)
and when the sink was placed on Cloudlet 2 and the source was located on
Cloudlet 1 (traverse WAN). For the scenario mentioned before, the operators
were CPU-intensive where Cloudlet 1 or 2 can host only one operator per edge
device at a time, which increases the communication costs. Moreover, RTR+RP
outperformed RTR for sinks placed on cloud, mainly without message discarding
and no reduction on message sizes. Even further, to investigate the impacts
generated by the split points, we launched App2, App3, and App4 and observed
a gradual performance loss (decreasing on the distance between green and red
line - ≈100ms) according to the position between the split points and sinks, and
the location of sinks. When sinks and sources require events to traverse the WAN
and there is a low number of hops between the split point and sink, the proposed
strategies cannot define a reasonable dataflow split because of the assumption
to prioritize the sinks on the edge.

The complex application scenario investigates the outcomes for generic and
multiple path applications using various dataflow configurations. We launched
each experiment during 60 seconds of simulation time, and the sources and sinks
were distributed uniformly and randomly across the infrastructure, except for
operator 17 on AppA, operator 24 on AppB, operator 9 on AppC, and operator
9 on AppD placed in cloud due to the critical path. Figure 7 shows the CDF of
response times. Even under large applications RTR+RP was able to reduce the
response time by applying the region pattern identifications and recursively dis-
covering the operator dependencies with a given sink placement onto dataflows
with various paths.
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Fig. 7: CDF of response times for complex applications.

Our strategies outperformed cloud-only in over 6% and 50% under small and
large applications, respectively. Cloud-only poses high communication overhead
when the sink is located on cloudlets due to messages having to traverse the
internet at least twice. Similarly, we improve the response times in over 23%
(small) and 57% (large applications) compared to the LB approach. This oc-
curs because LB does not estimate the communication overhead and assumes a
shorter response time on cloudlets.
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Fig. 8: Communication and computation time for sinks placed on cloud and cloudlets.

Figure 8 shows the communication latency which comprehends the total time
to transfer a message between the resources, and the computation that corre-
sponds to the total time to compute all operators. The communication cost for
sinks placed on cloudlets at cloud-only was about 160 ms, and RTR+RP was
76 ms. Our solution outperformed cloud-only in up to 52% by putting oper-
ators closer to cloudlet sinks, but sinks on the cloud. RTR+RP had a slight
performance loss of 3%. Hence, our approach is effective in reducing the commu-
nication cost, and, by doing so, it compensates the edge limitations and reaches
good results in minimizing the total response time.

5 Related work

IoT services are increasingly being employed on environments that span multi-
ple data centers or on the edges of the Internet (i.e., edge and fog computing).
Existing work proposes architecture that places certain stream processing ele-
ments on micro data centers located closer to where the data is generated [3]
or employs mobile devices for stream processing [15, 9]. The problem of placing
DSP applications onto heterogeneous hardware is at least NP-Hard as shown
by Benoit et al. [2]. To simplify the placement problem, communication is often
neglected [6], although it is a relevant cost in geo-distributed infrastructure [13].
Likewise, the operator behavior and requirements are oversimplified using static
splitting decisions as proposed by Sajjad et al.. [19].

Meanwhile, many efforts have been made on modeling the placement prob-
lem of DSP application on heterogeneous infrastructure [16] using Petri nets
to formalize the application regions and the multiple response times that they
produce. On the other hand, Eidenbenz et al. [8] evaluated SPDG from its par-
allelism degree to decompose the application graph and by an approximation
algorithm to determine the placement. Cloud and edge have been explored to
supply application requirements. For instance, Ghosh et al. [10] proposed a model
evaluating dynamically the time taken to process an operator into an exclusive
computational resource as well as the communication times. Similarly, Taneja
et. al. [21] offer a naive approach deploying the application graph across cloud
and edge using a constraint sensitive approach.
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All contributions to the problem of placing DSP applications evaluate edge
devices for improving the network efficiency by treating the infrastructure and
application constraints to unleash the full potential of applications triggered by
IoT and smart scenarios. The present work considers edge and cloud, and the
restrictions created by their interactions. The target scenario includes real-time
analytics which comprises multiple forks and joins building multiple paths be-
tween data sources and sinks. Our solution exploits the construction of the paths
to optimize the end-to-end application latency by decomposing the dataflow and
defining the operator’s placement dynamically.

6 Conclusions and Future Work

In this paper, we modeled the problem of placing DSP applications onto het-
erogeneous computational and network resources. We proposed two strategies
to minimize the application response time by splitting the application graph
dynamically and distributing the operators across cloud and edge. Our solu-
tions were evaluated considering key aspects to identify application behaviors.
The RTR strategy estimates the response time for each operator in all com-
putational resources while RTR+RP strategy splits the dataflow graph using
region patterns and then calculates the response time only for operators that
are candidates to be deployed on edge.

We simulated the strategies’ behavior and compared them against the state-
of-the-art. The results show that our strategies are capable of achieving 50%
better response time than cloud-only deployment when applications have multi-
ple forks and joins. For future work, we intend to investigate further techniques
to deal with CPU-intensive operators and their energy consumption.

Acknowledgements

This work was performed within the framework of the LABEX MILYON (ANR-
10-LABX-0070) of the University of Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007).

References

1. de Assunção, M.D., da Silva Veith, A., Buyya, R.: Distributed data stream pro-
cessing and edge computing: A survey on resource elasticity and future directions.
Journal of Net. and Computer Applications 103, 1 – 17 (2018)

2. Benoit, A., Dobrila, A., Nicod, J.M., Philippe, L.: Scheduling linear chain streaming
applications on heterogeneous systems with failures. Future Gener. Comput. Syst.
29(5), 1140–1151 (Jul 2013)

3. Buddhika, T., Pallickara, S.: Neptune: Real time stream processing for internet
of things and sensing environments. In: IEEE Int. Parallel and Distributed Proc.
Symp. pp. 1143–1152 (May 2016)



Latency-Aware Placement of Data Stream Analytics 15

4. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator place-
ment for distributed stream processing applications. In: 10th ACM Int. Conf. on
Distributed Event-Based Systems. pp. 69–80. ACM, New York, NY, USA (2016)

5. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: Distributed QoS-aware
scheduling in Storm. In: 9th ACM Int. Conf. on Distributed Event-Based Systems.
pp. 344–347. DEBS ’15, ACM, New York, USA (2015)

6. Cheng, B., Papageorgiou, A., Bauer, M.: Geelytics: Enabling on-demand edge an-
alytics over scoped data sources. In: IEEE Int. Cong. on BigData. pp. 101–108
(2016)

7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. SIGCOMM Comput. Commun. Rev. 34(4), 15–26 (Aug 2004)

8. Eidenbenz, R., Locher, T.: Task allocation for distributed stream processing. In:
IEEE INFOCOM 2016. pp. 1–9 (April 2016)

9. Elbamby, M.S., Bennis, M., Saad, W.: Proactive edge computing in latency-
constrained fog networks. In: European Conf. on Net. and Comm. pp. 1–6 (June
2017). https://doi.org/10.1109/EuCNC.2017.7980678

10. Ghosh, R., Yo: Distributed scheduling of event analytics across edge and cloud.
ACM Transactions on Cyber-Physical Systems (2017), to Appear

11. Ha, K., Pillai, P., Lewis, G., Simanta, S., Clinch, S., Davies, N., Satyanarayanan,
M.: The impact of mobile multimedia applications on data center consolidation.
In: IEEE Int. Conf. on Cloud Engineering (IC2E). pp. 166–176 (March 2013)

12. Hochreiner, C., Vogler, M., Waibel, P., Dustdar, S.: VISP: An ecosystem for elastic
data stream processing for the internet of things. In: 20th IEEE Int. Enterprise
Distributed Object Computing Conf. pp. 1–11 (Sept 2016)

13. Hu, W., Gao, Y., Ha, K., Wang, J., Amos, B., Chen, Z., Pillai, P., Satyanarayanan,
M.: Quantifying the impact of edge computing on mobile applications. In: 7th ACM
SIGOPS Asia-Pacific Wksp on Systems. pp. 5:1–5:8. APSys ’16, ACM, New York,
NY, USA (2016)

14. Kaur, N., Sood, S.K.: Efficient resource management system based on 4vs of big
data streams. Big Data Research pp. – (2017)

15. Morales, J., Rosas, E., Hidalgo, N.: Symbiosis: Sharing Mobile Resources for Stream
Processing. In: IEEE Symp. on Computers and Comm.–Wksp. pp. 1–6 (June 2014)

16. Ni, L., Zhang, J., Jiang, C., Yan, C., Yu, K.: Resource allocation strategy in fog
computing based on priced timed petri nets. IEEE IoT Journal PP, 1–1 (2017)

17. Peng, B., Hosseini, M., Hong, Z., Farivar, R., Campbell, R.: R-storm: Resource-
aware scheduling in storm. In: 16th Annual Middleware Conf. pp. 149–161. Mid-
dleware ’15, ACM, New York, NY, USA (2015)

18. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.:
Echo: An adaptive orchestration platform for hybrid dataflows across cloud and
edge. In: Serv.-Oriented Comp. pp. 395–410. Springer Int. Publishing, Cham (2017)

19. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: Towards
unifying stream processing over central and near-the-edge data centers. In: 2016
IEEE/ACM Symp. on Edge Comp. pp. 168–178 (Oct 2016)

20. Shukla, A., Chaturvedi, S., Simmhan, Y.: Riotbench: An iot benchmark for dis-
tributed stream processing systems. Concurrency and Computation: Practice and
Experience 29(21), e4257 (2017)

21. Taneja, M., Davy, A.: Resource aware placement of iot application modules in fog-
cloud computing paradigm. In: IFIP/IEEE Symp. on Integrated Net. and Service
Management (IM). pp. 1222–1228 (May 2017)


