
Lightweight Fairness Solutions for XCP and
TCP Cohabitation

Dino M. López Pacheco1,2, Laurent Lefèvre2, and Congduc Pham3

1 CONACyT
2 INRIA RESO / Université de Lyon / ENSL, France,

3 LIUPPA Laboratory, Université de Pau, France
{dmlopezp,lefevre.laurent}@ens-lyon.fr,

congduc.pham@univ-pau.fr

Abstract. XCP is a promising router-assisted protocol due to its high
performance and intra-protocol fairness in fully XCP networks. However,
XCP is not inter-operable with current E2E protocols resulting in a poor
performance of XCP flows when the resources are shared with TCP-like
flows. In this paper, we propose a lightweight fairness solution, that can
benefit the cohabitation between XCP and TCP in large bandwidth x
delay product networks and long-life flows scenarios, as it is shown in
our simulation results.

Keywords: TCP, End-to-End protocols, XCP, ERN protocols, inter-
protocol fairness, inter-operability.

1 Introduction

End-to-End (E2E) protocols are currently the most deployed protocols to control
congestion in the networks and provide fair share of resources between users.
One of the reasons because E2E protocols are widely deployed is that most of
their mechanisms are generally implemented only in the senders side. Thus, E2E
protocols are totally independent from the network infrastructure.

However, E2E protocols have limited performance. For instance, TCP [14], [3],
which is currently the most used congestion control protocol, produces frequently
dropped packets and is unable to provide fairness when users have different delay
[1]. In addition, TCP have poor performance in networks with large capacity
and delay [15]. Others proposed E2E protocols especially designed to get high
performance in large bandwidth x delay product (BDP) networks, like High
Speed TCP [15] or Scalable TCP [6] suffers intra-protocol and inter-protocols
unfairness [16].

Since E2E protocols have revealed unable to solve the problems of congestion
and fairness, a new family of congestion control protocols has been proposed.
This new protocols use the assistance from routers to provide an accurate infor-
mation about the network conditions to the senders, that is why they are known
like routers-assisted protocols or Explicit Rate Notification (ERN) protocols.

A. Das et al. (Eds.): NETWORKING 2008, LNCS 4982, pp. 715–726, 2008.
c© IFIP International Federation for Information Processing 2008



716 D.M. López Pacheco, L. Lefèvre, and C. Pham

XCP [5], which is one of the most famous of ERN protocols, is a very promising
protocol since XCP shows very stable behavior, high performance and
intra-protocol fairness. However, XCP (as others ERN protocols) (i) requires
the collaboration of all the routers on the data path, which is almost impossible
to achieve in an incremental deployment scenario of XCP and (ii) does not have
any mechanism to fairly share the resources with E2E protocols (e.g. TCP).

Concerning the interoperability problems of XCP with heterogeneous network
equipments, we have already proposed a solution to this problem in [9] (the XCP-
i module). On the other hand, in [8] we presented a short description about a
solution to ensure the XCP-TCP fairness, that we implemented and tested on the
XCP protocol, but that can be easily applied to any other ERN protocol. In that
occasion, we dedicated specially the space to show graphically that our XCP-
TCP fairness solutions is able to ensure a max-min fairness solution between
XCP and TCP in a wide range of scenarios. Now, in this article, our main
interest is to present a detailed description of our lightweight XCP-TCP fairness
solution as well as a widely discussion about a few simulation results obtained
by mean of the ns2 simulator [12]. We profit also to present some arguments to
reinforce the “lightweight” character of our XCP-TCP fairness solution.

This paper is organized as follows: Section 2 provides a quick description of
the XCP protocol and Section 3 describes the XCP-TCP unfairness problem.
Section 4 presents a detailed description of our XCP-TCP fairness solution,
while in Section 5 we validate our solution by simulation. Section 6 presents an
improvements of our XCP-TCP fairness mechanism to make it lightweight in
terms of CPU and memory. Finally, in Section 7 we provide concluding remarks.

2 The XCP Protocol

XCP [5] (eXplicit Control Protocol) uses router-assistance to accurately inform
the sender of the network conditions. In XCP, data packets carry a congestion
header, filled in by the source, that contains the sender’s current congestion win-
dow size (H cwnd), the estimated RTT (H rtt) and a feedback field (H feedback).
The H feedback field is the only one which could be modified at every XCP
router based on the value of the two previous fields. Basically, the H feedback
represents the amount by which the sender’s congestion window size is increased
(positive feedback) or decreased (negative feedback).

The core mechanism of XCP resides in XCP routers. For every incoming
packet, an XCP router needs to access the IP header, to get the packet size,
the packet type, and the congestion control protocol used. When the congestion
control protocol used is XCP, and the incoming packet is not an ACK, then,
the XCP router must get the H cwnd, H rtt and H feedback values. With the
informations collected, XCP routers will execute two control laws in order to
calculate a per packet feedback:

1. The Efficiency Controller (EC), that maximizes the link utilization while
minimizing losses of packets.



Lightweight Fairness Solutions for XCP and TCP Cohabitation 717

2. The Fairness Controller (FC), that assigns resources fairly between XCP
flows.

To maximize the link utilization, the Efficiency Controller computes a value
named feedback, denoted by the symbol φ, that reflects the available bandwidth:

φ = α.rtt.(O − I) − β.Q (1)

where α and β are constant whit values 0.4 and 0.226 respectively. rtt is the
average RTT of all the packets crossing the router, O the output link capacity,
I the input traffic rate seen by the XCP router during a control interval and Q,
the persistent queue size. Note that in the feedback equation, φ decreases as the
input traffic rate increases, and the available bandwidth decreases.

Later on, the Fairness Controller translates the computed general feedback, φ,
in a feedback per packet, that will assign the same amount of bandwidth to each
flow. The feedback per packet, computed by the FC, will replace the H feedback
value carried in the data packet if the computed feedback is smaller than the one
carried in the header. Thus, for every data packet arriving to the XCP receiver,
(i) the receiver will copy the H feedback value into the ACK packets to let the
sender update its congestion window size, if we are using the XCP standard
protocol, or (ii) if we are using XCP-r (as described in [10]), the receiver will
calculate the new congestion window size with the H feedback, and that size
will be sent to the sender back. The way to update the congestion window either
in the sender or in the receiver is

cwnd = max(cwnd + H feedback, packetsize) (2)

3 Fairness Issues between XCP and TCP

In order to maximize link utilization and avoid congestion, the Efficiency Con-
troller computes the available bandwidth S (the spare bandwidth) as S = O − I.
However, the spare bandwidth equation does not have any mechanism to differ-
entiate between traffic generated by XCP and non-XCP flows. Hence, the input
traffic rate could be generated by any TCP flow, forcing XCP flows to take only
the remaining available bandwidth. Thus, XCP routers are not able to decrease
the sending rate of non-XCP flows, like TCP flows.

Using the topology shown in Figure 1, we analyzed the behavior of one XCP
flow when competing with two TCP flows by mean of a simulation. The results
can be found in Figure 2, where we plotted the throughput of the XCP flow
(continuous line) and the throughput of both TCP flows (dashed lines).

As we can see in Figure 2, the XCP flow starting at second 0 takes all the
available bandwidth while it does not share the resources with concurrent TCP
flows. However, at second 10 when two TCP flows appear in the scenario, the
performance of the XCP flow is strongly degraded. In fact, after second 19, the
XCP flow has almost disappeared.

In Figure 2, between seconds 15 and 19, it seems that the XCP flow tries to
get some bandwidth but without success. The explanation of this phenomenon is



718 D.M. López Pacheco, L. Lefèvre, and C. Pham

Fig. 1. Topology: n XCP and m TCP flows sharing the bottleneck

as follows: Since the congestion window size of both TCP flows are not yet large
enough to keep a continuous transference of packets, during some milliseconds
the XCP router placed in the bottleneck detects a positive difference between
the output link capacity and the input traffic rate. This very small remaining
bandwidth is assigned to the XCP sender, which has still the opportunity of
transferring some data packets.

Fig. 2. XCP flow dealing with TCP concurrent flows

4 Proposition for an Inter-protocol XCP-TCP Fairness

4.1 Definition of XCP-TCP Fairness and Goals of Our Fairness
Mechanism

To consider that TCP is fair with XCP, XCP must get a bandwidth equivalent
to the ratio between the output link capacity O, and the sum of the number of
XCP and TCP flows, multiplied by the number of XCP flows. Equation 3 shows
this relationship.

BWXCP =
O

N + M
∗ N (3)



Lightweight Fairness Solutions for XCP and TCP Cohabitation 719

In Equation 3, BWXCP is the bandwidth needed by XCP when the bottleneck
is shared by XCP and TCP flows, N is the number of active XCP flows and M
the number of active TCP flows. Thus, we can estimate the limit in terms of
bandwidth for TCP, BWTCP , as a function of BWXCP :

BWTCP = O − BWXCP (4)

4.2 Estimating the Resources Needed by XCP

In order to fairly share the resources between XCP and TCP, from Equation 3,
we can deduct that it is necessary to calculate the number of XCP and TCP
active flows. Calculating the number of active flows crossing a router is not easy.
In this article we describe two mechanisms to estimate the number of active
flows that we consider as the more importants: the Bloom filter algorithm [2]
and the SRED’s zombie estimator [13].

The Bloom filter algorithm [2], as it has been implemented by NRED [7],
works as follows:

When a packet arrives, the NRED’s Bloom filter algorithm hashes the source-
destination pair of the packet into a bin. A bin is a 1 bit memory to mark 0 or 1.
The estimator maintains P × L bins. The bins are organized in L levels, each of
which contains P bins. The estimator also uses L independent hash functions,
each of which is associated with one level of bins, that maps a flow into one of
the P bins in that level. For every arriving packet, the L hash functions can be
executed in parallel. At the beginning of measurement interval, all bins and a
counter Nact are set to zero. When a packet arrives at the router, the L hashed
bins for the source-destination IP address pair of the packet are set to 1 and
Nact increases in one unit if at least one of the L hashed bins is zero before
hashing. However, it could arrive that for packets belonging to two different
flows are hashed into the same bins of L levels causing a “misclassification”. The
authors claim that the probability of having a “misclassification” decreases as
the number of L hash functions increases.

The problem of the Bloom filter algorithm is based on the fact that to avoid
“misclassification”, an important number of hash functions is needed, and since
every hash function is executed one time for every incoming packet, this algo-
rithm could be expensive in terms of CPU requirements. In addition, even if
the hash functions can be performed in parallel, those hash functions must syn-
chronize in order to update Nact, becoming this algorithm expensive in terms of
time.

On the other hand, the zombie estimator is an algorithm used in SRED [13].
The zombie estimator keeps a table called zombie, able to keep up to 1000 ID
flows (the ID flow could be src addr:src port::dest addr:dest port). The zombie
table is filled in at the beginning with the ID flows belonging to the first 1000
incoming packets.

When the zombie table has been filled in, every arriving packet to the router
is examined. First, the ID flow of the packet is taken, and compared with an ID
flow taken randomly from the zombie table. If the IDs are equal, an event hit is



720 D.M. López Pacheco, L. Lefèvre, and C. Pham

declared. Otherwise, an event mis is declared. When a mis is detected, with a
probability of 25%, the old stored ID in the zombie table will be replaced by the
new flow ID. Later on, in both cases hit or mis, a variable P (t), that keeps the
probability to make a hit is updated as follows:

P (t) = (1 − δ)P (t − 1) + δ.Hit(t) (5)

where δ reflects the probability to get a packet from the zombie table with the
same ID of the incoming packet (δ = 0.25 ∗ (1/1000) = 0.00025). It should be
noted that α from the P(t) original equation [13] has been replaced by δ to avoid
confusions with the α XCP parameter. Hit(t) is a constant with value 1 in case
of hit, or 0 otherwise.

If the total of active flows in a router is N , then the probability to get a hit
is 1/N . Since the probability to get a hit is already contained in P (t), hence
1/P (t) represent the estimation of the number of active flow seen by a router at
time t.

The operations executed by the zombie estimator do not require a big uti-
lization of CPU, since this estimator only needs one comparison, to generate
two random numbers, and in some cases one writing, for every incoming packet.
However, one of the weakness of the zombie estimator lies on the fact that it
does not calculate the exact number of active flows, but only tries to estimate
this number.

We believe that with current technologies it is very difficult to know the exact
number of active flows during a given period (we need faster CPU and bigger
memory than currently available in routers). We believe also that having an
estimation of the number of active flows is enough to ensure a max-min fairness
between XCP and TCP. For this reason, we have used the zombie estimator to
compute the number of active TCP and XCP flows.

Note that even though a zombie table with 1000 slots could not accurately
estimate a high number of flows (e.g., 10,000 active flows), a zombie table with
such a size can give us a close idea about the real behavior of the estimation
method. In a real environment we can use a larger zombie table, to accurately
estimate higher numbers of active flows, without introducing significantly CPU
operations.

The way to implement the zombie estimator in the XCP routers is very similar
to the way proposed in SRED. However, in our case we will have one variable
P (t)XCP that will keep the probability to get an XCPhit, and another one
P (t)TCP that will keep the probability to get a TCPhit. Thus, by applying the
described zombie estimator, we can have an idea about the resources needed by
the XCP flows BWXCP . We have proposed to estimate the resources needed by
XCP and TCP at every control interval of the XCP router.

4.3 Ensuring the XCP-TCP Fairness

In order to ensure the fairness between XCP and TCP, it is necessary to compute
also the real amount of resources taken by XCP. Thus, by comparing both the



Lightweight Fairness Solutions for XCP and TCP Cohabitation 721

needed and the real amount of resources taken by XCP, we will be able to make
a decision to improve the fairness.

Computing the Real Amount of Resources Taken by XCP. As we said
in section 2, for every incoming packet, XCP routers must compute a per packet
feedback by computing an input traffic rate (in traffic rate) at the end of every
control interval (ctrl int). This corresponds to the average RTT signaled in ev-
ery incoming data packet. The in traffic rate variable is calculated by dividing
the total amount of data received during a control interval (in traffic), by the
duration of such control interval. in traffic is calculated by adding the packet
size of every incoming (data or ACK) packet.

Since the XCP routers already implement a procedure to compute the input
traffic rate, to estimate the XCP input traffic rate requires only minor changes
in the XCP mechanism. Thus, all that we need to do is to add a new variable,
xcp in traffic, that will store the sum of the size of every XCP packet, and divide
this variable by the duration of the control interval ctrl int, to get the XCP input
traffic rate xcp in traffic rate.

Ensuring Fairness Between XCP and TCP Flows. Once calculated the
XCP input traffic rate, xcp in traffic rate, and the needed XCP bandwidth,
BWXCP , we can make decisions to provide fairness between XCP and TCP.
In order to limit the TCP throughput and get fairness, with a pdrop probability,
our XCP-TCP fairness will determine if an incoming TCP packet should be dis-
carded. The pdrop, which is initialized with a value of 0.001, is updated at every
control interval as follows:

if xcp in traffic rate > BWXCP , the probability pdrop is updated as pdrop =
pdrop ∗ Ddrop, where 0.99 < Ddrop < 1. If xcp in traffic rate < BWXCP , the
probability pdrop is updated as pdrop = pdrop ∗ Idrop, where 1.01 > Idrop > 1.
When xcp in traffic rate = BWXCP , then pdrop conserves its last value.

4.4 Specificities about our XCP-TCP Fairness Mechanism

It is very important to emphasize that the XCP routers will execute the XCP-
TCP fairness mechanism only (i) when both XCP and TCP protocols have been
detected during a control interval, and (ii) if the total input traffic rate exceeds
a threshold γ.

We will not execute our XCP-TCP fairness mechanism when the input traffic
rate is smaller than γ, since it means that the current router is not the bottleneck.
Concerning the γ parameter, we advise to set γ to a value slightly smaller than
the output link capacity (e.g., 97% of the output link capacity), since even in
a bottleneck router, the computed rate during a control interval is not always
equal to the output link capacity, due to the burstiness nature of the senders.
Thus, during a certain control interval we could compute an input traffic rate
slightly smaller than the output link capacity, and in the next control interval,
see the router dropping packets.

Finally, when the total input traffic rate becomes smaller than our γ threshold,
the pdrop variable will be reinitialized to the original value (0.001).



722 D.M. López Pacheco, L. Lefèvre, and C. Pham

5 Validating Our XCP-TCP Fairness Solution

In order to test our XCP-TCP fairness, we implemented our propositions in
the ns2 XCP modules provided by D. Katabi (http://www.ana.lcs.mit.edu/
dina/XCP/) In our simulations, we will focus on 2 different scenario: national
small distance Grid (such as the French Grid5000 [4] infrastructure) with an
average 20 ms RTT and larger scale Grids with 100 ms RTT. The topology used
to test our XCP-TCP fairness solutions will be the one shown in Figure 1. In
our experiments we have used Ddrop = 0.9999 and Idrop = 1.0001.

In this set of experiments (the results are shown in Figure 3) we gradually
incorporated 3 TCP flows after second 10 (each flows is incorporated with a
20-seconds delay), among 10 XCP flows (all XCP flows are started at second
0), with an RTT = 20ms (case 1) and an RTT = 100ms (case 2). We believe
that these scenarios represent well what will happen in a real environment where
thousand or hundreds of active flows share the network. At the same time, using
a limited number of flows in our simulations (3 TCP and 10 XCP flows) can
help us to understand the behavior of our XCP-TCP fairness solution, since we
can easily observe and compare the evolution of every XCP and TCP flow in a
dynamic network.

The simulation results of the first case are shown in Figure 3(a) (RTT =
20ms), where we can see that every time a new TCP flow starts, it gets more
bandwidth than needed (seconds 10, 30, 50). However, after Slow Start finishes,
our XCP-TCP mechanism succeeds in ensuring fairness between XCP and TCP,

(a) 20 ms RTT

(b) 100 ms RTT

Fig. 3. 3 TCP flows appear among 10 XCP flows

http://www.ana.lcs.mit.edu/dina/XCP/
http://www.ana.lcs.mit.edu/dina/XCP/


Lightweight Fairness Solutions for XCP and TCP Cohabitation 723

as we can observe between seconds 20 and 30 and between seconds 50 and 110.
Figure 3(a) proves also that our mechanism ensures fairness even though every
TCP flow comes in/out asynchronously to the network.

In the case where the RTT = 20ms, the worst fairness level is found maybe
between seconds 30 and 50, where 2 TCP flows share close to 300Mbps while
the remaining 10 XCP flows share around 700Mbps (BWTCP ≈ 170.66Mbps
and BWXCP ≈ 853.34Mbps). On the other hand, one of best fairness level
is found between second 60 and 70, where 3 TCP flows share approximately
250Mbps while the remaining 10 XCP flows share around 750Mbps (BWTCP ≈
236.30Mbps and BWXCP ≈ 787.70Mbps). Those results are far from the one
shown in Figure 2.

When the RTT = 100ms, at the beginning every TCP flow takes more re-
sources than needed, producing the execution of the XCP-TCP fairness mech-
anism. After finished the Slow-Start phase, due to our fairness mechanism, the
amount of bandwidth taken by TCP is smaller than the maximum allowed band-
width. Even if our mechanism does not penalize TCP flows when the TCP
throughput is too low, since pdrop → 0, the time needed by TCP to get enough
resources is very large (see seconds 60 to 110 in Figure 3(b)). It is important to
note that the time needed for TCP to get the resources decreases as the RTT
decreases and the number of TCP flows increases.

In the case where the RTT = 100ms, the worst fairness level is found maybe
between seconds 60 and 70, where 3 TCP flows share close to 100Mbps while
the remaining 10 XCP flows share around 900Mbps (BWTCP ≈ 236.30Mbps
and BWXCP ≈ 787.70). On the other hand, one of best fairness level is found
between second 100 and 110, where 1 TCP flow gets approximately 100Mbps
while the remaining 10 XCP flows share around 900Mbps (BWTCP ≈ 93Mbps
and BWXCP ≈ 931Mbps). Still, those results are far from the one shown in
Figure 2.

6 Limitations and Optimizations

Even if the zombie estimator only executes a few operations for every incoming
packet, those operations, added to the ones needed by the XCP algorithm, could
increase significantly the processing time of packets.

For this reason, we have proposed to compute the number of XCP and TCP
flows, taking as base only a percent of the total incoming packets. This modi-
fication may have an impact very important in the routers. For instance, in a
router processing 833,333 packets/s (10 Gbps whether every packet is composed
by 1500B), to estimate the number of flows such a router would approximately
generate 1,666,666 random numbers, access the zombie table 833,333 times, ex-
ecute 833,333 comparisons, between others operations like write the ID flow
when a mis is declared, etc. Taking into account the operations listed here, our
10Gbps routers should execute 3,333,332 operations/s. Thus, a reduction of 30%
in the number of inspected packets should represent a decrease of approximately
1,000,000 operations/s in the router.



724 D.M. López Pacheco, L. Lefèvre, and C. Pham

In order to estimate the active flow number without checking every incoming
packet, a few changes in the zombie estimator are necessary. As shown early, the
hit probability equation is given by P (t) = (1 − δ)P (t − 1) + δ.Hit(t), where α
reflects the probability to get a packet from the zombie table with the same ID
of the incoming packet.

Thus, we propose to check only 50% of the total incoming packets. However,
verifying only 50% of the total incoming packet and updating the zombie table
with a low probability (25%) increases significantly the probability of missing
flows in our zombie table. On the other hand, to increase the updating probability
of the zombie table should decrease the problem of missing flows. For these
reasons, in our work we have decided to use a probability of 50% to update the
zombie table in case of mis. Therefore δ = 0.00025.

(a) 20 ms RTT

(b) 100 ms RTT

Fig. 4. 3 TCP flows appear among 10 XCP flows - inspecting 50% of packets

With the modification introduced in our fairness mechanism (that let routers
monitor only 50% of incoming packets to estimate the number of flows), we
reexecuted the experiment shown in the Section 5, where 3 TCP flows are in-
corporated gradually among 10 active XCP flows. Figure 4 shows the results of
our new set of experiments.

As we can see in Figure 4, our fairness mechanism success in getting fairness
between XCP and TCP flows inspecting only 50% of the total incoming packets.
If we compare (i) Figure 4(a) (RTT = 20ms and 50% of inspected packets) with
Figure 3(a) (RTT = 20ms and 100% of inspected packets), and (ii) Figure 4(b)
(RTT = 100ms and 50% of inspected packets) with Figure 3(b) (RTT = 20ms



Lightweight Fairness Solutions for XCP and TCP Cohabitation 725

and 100% of inspected packets); we can see that the results are very similar.
Thus, we show that we can reduce significantly the operations executed by our
XCP-TCP fairness solution, while keeping the same fairness level shown in the
simulations of Section 5 (where we inspected 100% of packets).

7 Conclusion

In this article we have shown that when XCP and TCP share the bandwidth
of the bottleneck link, TCP flows grab as many resources as needed, in damage
of XCP flows. This unfairness problem affected most of the ERN protocols, like
JetMax [17], TCP MaxNet [11], etc.

Therefore, in this article we presented a solution that ensures the XCP-TCP
fairness, which is independent to the XCP protocol, easy to be applied to others
ERN protocol and lightweight in terms of CPU and memory usage. Our XCP-
TCP fairness mechanism lies on the execution of two main mechanism. The first
mechanism estimates the resources needed by the XCP and non-XCP flows. The
second mechanism limit the TCP throughput by dropping some of its packets
with a probability pdrop.

The experiments presented along this article proved that our algorithms suc-
cessfully ”allocate” and ”deallocate” bandwidth dynamically to XCP, in order
to ensure the fairness between XCP and TCP. However, the level of fairness
provided between XCP and TCP is strongly influenced by factors that escape to
the control of our XCP-TCP fairness mechanisms. For instance, after that our
XCP-TCP fairness solution drops packets to limit the TCP throughput and get
fairness, TCP flows could finish with a throughput lower than the one desired.
The capacity of TCP to re grab the lost bandwidth will depend on the RTT and
the number of TCP flows.

In order to decrease the unfairness between XCP and TCP due to the RTT,
one solution can be to “evaluate” the TCP aggressiveness when TCP increase
their throughput. Thus, the drop probability could be updated in a more intel-
ligent way.

Finally, we want to remark that with our XCP-TCP fairness solution is a new
step to stimulate the deployment of the Explicit Rate Notification protocols in
heterogeneous long-distance high speed networks, to improve the performance
of long life flows.

References

1. Akella, A., Seshan, S., Shenker, S., Stoica, I.: Exploring Congestion Control (2002)
2. Bloom, B.H.: Space/Time Trade-Offs In Hash Coding With Allowable Errors. Com-

munications of the ACM 13(7), 422–426 (1970)
3. Braden, R.: Requirements for Internet Hosts - Communication Layers. RFC 1122

(Standard), Updated by RFCs 1349, 4379 (October 1989)



726 D.M. López Pacheco, L. Lefèvre, and C. Pham

4. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E., Jegou, Y., Lanteri, S.,
Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Richard, O.: Grid’5000:
a Large Scale, Reconfigurable, Controlable and Monitorable Grid Platform. In:
Grid’2005 Workshop, Seattle, USA, November 13-14, IEEE/ACM (2005)

5. Katabi, D., Handley, M., Rohrs, C.: Congestion Control for High Bandwidth-Delay
Product Networks. In: ACM SIGCOMM (2002)

6. Kelly, T.: Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works. SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

7. Li, J.-S., Su, Y.-S.: Random Early Detection With Flow Number Estimation and
Queue Length Feedback Control. Journal of Systems Architecture 52(6), 359–372
(2006)

8. López Pacheco, D.M., Lefevre, L., Pham, C.-D.: Fairness Issues When Transferring
Large Volume of Data on High Speed Networks With Router-Assisted Transport
Protocols. In: High Speed Networks Workshop 2007, in conjunction with IEEE
INFOCOM 2007, Anchorage, Alaska, USA (May 2007)

9. López Pacheco, D.M., Pham, C.-D., Lefevre, L.: XCP-i: eXplicit Control Protocol
for Heterogeneous Inter-Networking of High-Speed Networks. In: Globecom 2006,
San Francisco, California, USA (November 2006)

10. López-Pacheco, D.M., Pham, C.: Robust Transport Protocol for Dynamic High-
Speed Networks: Enhancing the XCP Approach. In: Proceedings of IEEE Interna-
tional Conference on Networks, Kuala Lumpur, Malaysia, November 2005, vol. 1,
pp. 404–409 (2005)

11. Martin Suchara, B.W., Witt, R.: TCP MaxNet: Implementation and Experiments
on the WAN in Lab. In: IEEE International Conference on Networks (November
2005)

12. ns2. The Network Simulator (2007), http://www.isi.edu/nsnam/ns/index.html
13. Ott, T.J., Lakshman, T.V., Wong, L.H.: SRED: Stabilized RED. In: INFOCOM,

pp. 1346–1355 (1999)
14. Postel, J.: Transmission Control Protocol. RFC 793 (Standard), September 1981.

Updated by RFC 3168 (1981)
15. Floyd, S.: HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimen-

tal) (December 2003)
16. Xu, L., Harfoush, K., Rhee, I.: Binary Increase Congestion Control (BIC) for Fast

Long-Distance Networks. In: INFOCOM (2004)
17. Leonard, D., Zhang, D.L.Y.: JetMax: Scalable Max-Min Congestion Control for

High-Speed Heterogeneous Networks. In: INFOCOM (April 2006)

http://www.isi.edu/nsnam/ns/index.html

	Lightweight Fairness Solutions for XCP and TCP Cohabitation
	Introduction
	The XCP Protocol
	Fairness Issues between XCP and TCP
	Proposition for an Inter-protocol XCP-TCP Fairness
	Definition of XCP-TCP Fairness and Goals of Our Fairness Mechanism
	Estimating the Resources Needed by XCP
	Ensuring the XCP-TCP Fairness
	Specificities about our XCP-TCP Fairness Mechanism

	Validating Our XCP-TCP Fairness Solution
	Limitations and Optimizations
	Conclusion


