
Stateful firewalling for wireless mesh networks

P. Neira, R.M. Gasca

Department of Languages and Systems

Quivir Research Group

ETS Ingenierı́a Informatica

University of Sevilla, Spain

{pneira|gasca}@lsi.us.es

Leonardo Maccari

Department of Electronics

and Telecommunications

Telecommunication Networks Lab (LaRT)

University of Florence, Italy

maccari@lart.det.unifi.it

L. Lefèvre

INRIA RESO - Universite of Lyon

LIP Laboratory

(UMR CNRS, INRIA, ENS, UCB)

ENS de Lyon, France

laurent.lefevre@inria.fr

Abstract—Firewalls have been traditionally used to apply
filtering policies in wired networks, to divide zones with different
level of trust. In wireless distributed networks, such as mesh
networks for service delivery, firewalling is a valuable instrument
to control the behavior of the clients and avoid certain attacks,
such as DoS attacks coming from the inside of the network.
In previous works we have outlined the possibility of applying
stateless firewalling to distributed mesh networks using Bloom
filters. In this paper we will expand this model to perform stateful
firewalling in mesh networks, that will allow a more fine-grained
control over the traffic passing over the network. Preliminary
experimental results are also provided.

I. INTRODUCTION

Wireless mesh networks (WMN) are mobile distributed

networks composed of terminals connected using wireless

links. In these networks, a set of access points (AP) forms

a backbone that provides network access to clients. Standards

like IEEE 802.11 or 802.16 can be used to produce WMN and

should guarantee that network entrance is limited to authorized

terminals by means of layer II access control techniques.

However, still many kind of attacks can be performed at higher

layers to disrupt services. A firewall is an instrument that can

be used to limit the impact of such attacks.

In wired infrastructured networks, firewalls separate net-

work segments and enforce filtering policies that determine

what traffic is allowed to enter and leave the network, filtering

policies are expressed as access control list (ACL). The ACL

is composed of a set of rules which use selectors that match

several packet fields, e.g. source and destination address, ports,

etc. and an action to be issued, usually accept or deny.

Similarly, firewalls can be used to improve network security

in WMN but since there is no well defined concept of

perimeter, we would have to enforce the filtering policy in the

whole AP backbone in order to deploy an effective firewalling.

In our previous works [1] [2], we have proposed a distributed

firewalling solution for WMN based on bloom filters [3] whose

main concerns are:

1) Low computational complexity: needed because the APs

are usually embedded devices with limited resources.

2) Efficient ACL distribution: since the bandwidth resource

in WMN is scarce, ACL updates must require low

bandwidth.

In this work, we extend our solution to enhance stateful

firewalling. Stateful firewalls perform correctness checks upon

communication protocols. These firewalls implement a state

automaton for every supported protocol to ensure that com-

munication between two peers evolves in a standard com-

plaint manner. This evolution is stored a set of variables

V = {v1, v2, ..., vn} that represent the current state Sk of

the flow Fj . Thus, the security architect can use the stateful

capabilities in their ACL to deny the packets that trigger

invalid state transitions. The design of a stateful firewalling

solution for WMN has to fulfill two requirements:

1) Low computational complexity: as in our previous

works, the solution must be suitable for devices with

limited resources.

2) Handover support: since one client CA can roam from

the access point APx to APy at any moment, the state

information of the traffic of CA should be synchronized

to APy .

The paper is organized as follows: In Sect. II, we briefly

detail our previous works. We detail the implementation of

stateful firewalling with bloom filters in Section III. The

handover support is described in Section IV. Then, we evaluate

our solution proposed in Section V. We conclude with the

conclusions and future works in Section VI.

II. BLOOM-BASED STATELESS FIREWALLING FOR WMN

A Bloom filter (BF) is a space-efficient structure for an

inexact representation of a set that allows false positives but

not false negatives. Thus, a query of the type is element a part

of the set B will never produce a negative answer if a ∈ B,

but may produce a positive answer if a /∈ B (See [4] for more

details on Bloom filters).

In our previous work, we have proposed a bloom-based

solution to represent the firewall ACL. The representation is

used to classify and filter traffic. We divided the ACL into

subsets that contain the rule-set of each client node that can

be attached to the backbone. Whenever a client node joins

the backbone, the subset of firewall rules that represents its

filtering policy is distributed by the authentication authority

along the backbone in the form of a bloom filter.

We consider that our approach is expressive enough to

profile most of typical traffic streams of common networks.

The results show negligible impact in performance terms,

comparable to no firewalling at all, while traditional firewalling

with standard list-based ACL greatly lowers the throughput

and round trip delay. We have also evaluated a RADIUS based

solution to deliver to the AP of the mesh the rule-sets. For

details on the stateless firewalling approach, see [1] and [2].

III. BLOOM-BASED STATEFUL FIREWALLING FOR WMN

WMN are distributed networks composed of terminals con-

nected using wireless radio links. These networks consist of a

set of access points (AP) that forms a backbone. The backbone

provides network access to static and mobile clients. In certain

environments, the APs can also be mobile but, in general, the

backbone topology is less susceptible to changes. Anyhow, the

backbone must be able to dynamically reconfigure its routes

as new links between APs may appear and others may fade

away. Also, the clients may change their point of attachment

from one AP to hand over to another. Mobility is the main

cause of changes in the network topology, however, a failure

in one of the APs may also trigger network reconfigurations.

Our solution allows a low rate of false positives but not

false negatives. Thus, a low rate of packets may go through

the AP while they should not. This might seem problematic in

terms of security, however, our solution is better than having

no firewalling at all. On the other hand, no packets that belong

to a flow that evolves appropriately are ever denied. This is the

main difference with regards to [5] as we do not risk to reject

packets that must go forward. As said, we consider that our

stateful firewalling approach is significant to provide higher

level of security for WMN.

A. d-left counting bloom filters

For the purposes of this work, we use an improved construc-

tion of Counting Bloom filters [6] based on d-left hashing that

gives near-perfect hashing, the so-called d-left counting bloom

filters (dlCBF). This construction saves memory consumption

by a factor of two or more. The idea consists of a table split

into d subtables, each subtable has k buckets, and each bucket

can keep c cells of size w. The insertion is composed of two

steps:

1) The fingerprint of the element x is calculated with a hash

function f(x) that generates a fingerprint fx of size w.

2) We use d pseudo-random permutations (one per sub-

table) P1(fx), P2(fx), ...Pd(fx), the first n bits of fx

are used to determine the bucket where the fingerprint

is inserted, and among all buckets the less loaded, i.e. the

bucket that keep less fingerprints, is selected. The last

w−n bits, so-called reminder, are stored in the selected

bucket. If the reminder is already stored, the counter is

incremented.

Since fingerprint collisions are rare, we assume that counters

can be smaller than the one used in CBF (2 bits vs. 4 bits).

Assuming a dlCBF that stores n elements where each subtable

has a size of b = 2z buckets with c cells and fingerprints of size
w, the rate of false positives is n2−(z+w). Moreover, to avoid

bucket overflows, we calculate the estimated bucket usage as

u = n/dbc. The authors of dlCBFs affirm that by using n/12
buckets the estimated usage is u = 2/3 which provides a very

rare probability of a bucket overflow.

Thus, a dlCBF composed of 3 subtables, 341 buckets, 6

cells per bucket, fingerprints of 10 bits, and counters of 2 bits,

has an approximately rate of false positives of 0.015, and it

gives an overall of 3 ∗ 341 ∗ 6 ∗ (18 + 2)/4096 = 19 bits

per element. Therefore, this dlCBF consumes approximately

9 KB versus standard CBF of 21 KB (approximately 2 times

less than a CBF with similar rate of false positives).

B. Design

Basically, the proposed model consists of inserting a set

of tuples in the dlCBF that represent the set of possible next

valid states, the so-called state expectations (SE). Thus, every

packet p that arrives to the AP has to verify that it triggers a

new state Sk that belongs to the set of SE. If p does not fulfill

an expectation, it is denied as it does not belong to a flow that

follows a sane evolution.

We represent one state expectation of a flow Fj through

a tuple, the so-called state expectationion tuple, that is

composed of five flow selectors and the flow state:

Ti = {Addrsrc, Addrdst, Portsrc, Portdst, Pnum, State}.
Thus, the set of SE of Fj , π = {T0, ..., Th}, represents the

finite set of possible expected states θ = {Sα, ..., Sω} that the
packet p that belongs to Fj must fulfill.

When a state expectation is fulfilled, we may delete it from

the dlCBF. However, since the lookup operation has a low

rate of false positives, the deletion of a wrong fulfilled state

expectation introduces errors that lead to false negatives. For

that reason, we use timing-based deletions. Timing-based BFs

use memory allocated for the counter bits to store a timer

instead [5]. This variation uses the counters as set of recently

used bits Um = {u0, ..., ur} for every bit bm in the BF.

Basically, u0 is set when bm is set, and periodically the bitset

Um is shifted. When Um = {0, ..., 0}, the bit bm is unset.

The timing-based deletion provides a way to limit the

lifetime of one state expectation, and it also naturally provides

a mechanism to ensure that the flows do not evolve abnormally.

Thus, we assume that every fingerprint fp of the dlCBF has m
timing bits to delete the state expectations that have not been

confirmed after r phases. The length of the phase δ and the

duration in phases of SE are tunable parameters that depends

on the acceptable state maximum lifetime (in terms of the

protocol specification). Thus, every fingerprint fp is removed

from the dlCBF after r ∗ δ time units.

However, instead of setting the timing bit u0 of Um =
{u0, ..., ur} when the fingerprint fp is inserted in the dlCBF,

we store the number of phases r in the set of timing bits after

which the state expectation expires. Thus, we can define dif-

ferent maximum lifetimes for each state expectation Sk. This

is interesting since we usually have some SE that live longer

than others. Moreover, if we try to insert an already existing

fingerprint fp in the dlCBF, we reset the corresponding timing

bits to r ∗ δ.
Every phase δ we decrease the timing bits in one, if they

reach zero, we remove the corresponding fingerprint from the

BF. Thus, we do not delete confirmed SE, instead we let them

expire. As said, this timing-based deletion approach ensures

that no false negatives are introduced. The values of r and δ
depends on:

1) The level of strictness of the conformance check: low

r and δ means that state expectations have a very short

lifetime.

2) The maximum state lifetime: these information can be

extracted from the protocol specification.

3) The round-trip time (RTT) of the network: if the delay

is high, state expectations may expire before the packets

fulfill them. Thus, leading to unexpected flow hangs.

C. Operation

When the client CA sends a packet p, the mesh AP receives

it, and it invokes its stateful firewall routine (SFR). The SFR

decides if p continues the traversal based on the ACL and the

set of existing SE.

match ← check_ACL_match(packet);1

if not match then2

deny(packet);3

end4

tuples ← infer_tupleset(packet);5

for each tuple in tuples do6

expected ← state_lookup(tuple);7

if expected then8

tuples← infer_nxt_tupleset(packet);9

for each tuple in tuples do10

state_insert(tuple);11

end12

accept(packet);13

end14

valid ← conformance_check(packet);15

if valid then16

tuples← infer_nxt_tupleset(packet);17

for each tuple in tuples do18

state_insert(tuple);19

end20

accept(packet);21

end22

deny(packet);23

end24

Algorithm 1: Stateful firewall routine (SFR)

Specifically, the SFR checks if p matches the ACL, if it

does not, then the packet p is denied. On the other hand, if

p matches the ACL, the SFR infers from p which are the set

of possible SE and checks if there is a matching tuple in the

dlCBF, ie. the packet p is valid if it fulfills one of the SE,

θ = {Sα, ..., Sω}. If so, then we assume that p belongs to an

existing flow Fj that is evolving according to the standard.

Thus, the SFR infers the next set of possible SE tuples and

let the packet go through.

The SFR may find a matching for p in the ACL but not in

the set of SE. This means that p may be the first packet of a

flow. Thus, the SFR performs a conformance check on p to

ensure that the packet is well-formed according to the commu-

nication standard. If the packet passes the conformance check

successfully, then the SFR infers the set of next possible SE

tuples and insert them into the dlCBF. This conformance check

validates that the packet p follows an acceptable configuration

as first packet of a flow according to the specification. We

have formalized the SFR in Algorithm. 1.

D. State inference

The inference procedure is extracted from the state automa-

ton. We assume that the SFR has a state automaton for every

supported protocol so that the set of possible states is finite and

deterministic S = {S0, ..., Sn}. The state automaton can be

represented as a set of state-nodes connected with edges where

every state-node has a set of input edges Ei = {ei0 , ..., eih
}

and output edges Eo = {eo0
, ..., eog

}. Thus, given two

different states Sk and Sk + 1, the edge er can be an output

edge of Sk and an input edge of Sk+1. Also, every edge er

is marked with the packet type pt that triggers the transition

to a certain state-node.

The current-state inference consists of obtaining the subset

of possible current states that pt can be in, ie. every state that

can be reached from an input edges marked with the packet

type pt is a current state candidate. On the other hand, the next-

expected-state inference consists of adding the set of states that

can be reached following the output edges that leave the set

of possible current states. We provide an example automaton

of TCP in Sect. 1.

E. False positives

The rate of false positives depend on three cases that

result from the combination of the probability of having

false positives in the ACL matching and the state expectation

lookup, they are:

• A false positive in the ACL: Then, the false positive rate

of the SFR ,f(SFR), is equal to the false positive rate

of the ACL matching, f(ACL).
• A malformed packet pm matches the ACL falsely

matches a state expectation: f(SFR) is the rate of false

positive of the state expectation matching, f(SEM).
• A malformed packet pm falsely matches the ACL and one

state expectation: this is the worst case, however, the rate

of such false positive is low as it is f(ACL)∗ f(SEM).

The rate of false positives f(SEM) depends on the number

of lookups performed in the dlCBF which is the number of

current possible states that has been inferred from the packet.

Thus, the probability of a false positive depends on how

many possible current states can be inferred from a packet

pt. Consequently, f(SEM) depends on the packet type.

F. An example: simple stateful firewalling for TCP flows

For instance, we assume a TCP flow Ftcp between two peers

CA and CB that is filtered by one mesh AP whose behaviour

must validate a simple TCP protocol automaton (Fig. 1) with

support for connection reopening and keepalive (as described

in RFC1122). The communication flow Ftcp is composed of a

set of packets P = {p0, p1, ..., pj} that are exchanged between
the peers CA and CB using the mesh AP as gateway. For

simplicity, we assume that every state Sk is composed of only

one variable which stores the current TCP protocol state.

Fig. 1. Simple TCP state automaton with RFC1122 support

When one of the mesh APs SFR receives the first packet p0

of Ftcp (a packet with the SYN flag set from CA to CB) that

matches the ACL, the SFR infers the current tupleset which

is, in this particular case, composed of only one tuple: T0 =
{CA, CB, port(CA), port(CB), S0}.

Thus, since the state-tuple T0 is not in the set of SE stored

in the dlCBF, as p0 is the first packet of Ftcp, the SFR

performs the conformance check. This check is successfully

passed since p0 has the SYN flag set which is a valid

combination to initiate a TCP flow. Then, the SFR infers

three SE tuples: one for the next expected state SYN+ACK in

the reply direction T1 = {CB, CA, port(CB), port(CA), S1};
one for possible SYN retransmissions T2 =
{CA, CB, port(CA), port(CB), S0}; and one for flow

closure via RST T3 = {CB, CA, port(CB), port(CA), S5},
and it insert them in the dlCBF.

If the next packet p1 has the SYN+ACK flags set,

the SFR infers that the current state of the flow

Ftcp must be S1. The packet p1 indeed fulfills the

state expecation tuple T1 so that the SFR infers

again the next set of SE: one for the next expected

state ACK T3 = {CA, CB, port(CA), port(CB), S2};
one for possible SYN+ACK retransmission T4 =
{CB, CA, port(CB), port(CA), S1}; and one for flow

closure via RST T5 = {CA, CB, port(CA), port(CB), S5}.
The operation with the following packets is similar.

As said, there are three different false positive cases. For

the worst case, ie. a malformed packet which does not match

the ACL is accepted, the rate of a false positive depends on

the type of the packet received. For instance, if an ACK packet

is received, the SFR infers three possible current states (S2,

S5 and S8). This means that we need three lookups to check

for SE. Thus, the rate of false positives for ACK packets is

3 ∗ f(SEM). Assuming f(ACL) = f(SEM) = 0.01, the
rate of false positives is f(ACL) ∗ 3 ∗ f(SEM) = 0.0003 for

the worst case.

G. Limitations

Our proposed solution inherits the same limitations of

existing stateful firewalling solutions since it is still possible

to deploy DoS attacks such as TCP SYN-flood and RST-flood.

Nevertheless, these packets are valid combinations of the TCP

protocol specification. Therefore, TCP stateful firewalls cannot

reject these attacks by means of stateful inspection solely.

Still, our solution predicts the next set of state expectations,

it would be possible for an attacker to spoof a packet that

can match one state expectation. This is part of the nature

of our approximate stateful firewalling solution. Nevertheless,

this does not affect the deployment of the stateful firewalling

of a certain flow as matching state expectation does not delete

other state expectations. This keeps the deployment of DoS

attacks against our stateful firewalling approach harder.

IV. HANDOVER SUPPORT

The handover is a common operation in mobile networks

that occurs when one client CA leaves the APx to connect

APy . Several reasons can trigger an handover, from physical

restrictions, e.g. building layouts, signal quality, ... to failures,

e.g. the APx stops working.

The deployment of stateful firewalling in WMN can lead

to flow disruptions during the handover. Let’s assume the

following scenario: the mobile client CA with n open flows

F = {f1, ...fn} is connected to the APx. Thus, APx stores

the set of states S = {state(f1), ..., state(fn)} of CA’s open

flows and it deploys the filtering according to the stateful

firewall routine exposed in the previous section. Now, the

client CA roams from APx to APy . However, the current set

of states S is not known by APy . Thus, according to Algorithm

1, the packets that belong to existing flows will be denied.

In order to solve the handover problem, we have to define

a state replication solution so that neighbour mesh APs can

know which is the current set of states of CA.

The handover support is based on FT-FW [7] which is

one of our previous works. FT-FW is cluster-based reactive

fault-tolerant software solution at application level for stateful

firewalls in infrastructured networks. Although such work is

focused on fault tolerance, we consider that its contribution

is significant to solve the handover problem. Basically, FT-

FW guarantees that the flow states are known by all the

stateful firewall replicas that compose the cluster. Thus, one

of the stateful firewall replicas can recover the filtering if a

failure arises. In infrastructured networks, the utility of the

state replication is usually to enable fault tolerance. However,

in the case of WMN, FT-FW guarantees that states are known

by all stateful firewall replicas which is what we need to solve

the handover problem. We have adapted our previous works

to the WMN scenario.

A. FT-FW overview adapted to WMN

The FT-FW architecture and replication protocol keeps in

mind simplicity, transparency and negligible delay in client

responses that are desired properties for the WMN scenario.

We assume that every APx has a set of neighbour APs

γ = {AP1, ..., APm} where m ≥ 1. We consider that two

whatever APs, APy and APz , are neighbours if they have a

direct established wireless link. We assume that APx filters a

set of flows F = {F1, F2, ...Fn} and has set of clients C =
{C1, ..., Cj} where j = 0 implies n = 0. Every flow Fi in F
is in a state Sk. The flow states are a finite set of deterministic

states S = {S1, S2, ..., Sn}.

Fig. 2. FT-FW architecture for WMN handover support

The FT-FW architecture follows an event-driven model

(EDM) whereby any new state expectation is propagated

through an event. These events are produced by the stateful

firewall and consumed by the state proxy (SP). The SP is

an application that runs in the stateful mesh AP and propa-

gates the SE to neighbour mesh AP nodes. The EDM suits

well for distributed systems since share many of the same

characteristics such as modularity and loose-coupling, and

whose asynchronous nature suits well for the performance

requirements of stateful firewalls. Also, as there is no concept

of dedicated wired link in the WMN scenario, we assume

that two neighbour APs, APx and APy , use the existing link

between them to transfer the state-expectation changes. We

have represented the FT-FW architecture adapted to WMN

and the information replication flow in Fig. 2.

The SFR provides a framework to manipulate the dlCBF

that stores the set of state expectations. Basically, the frame-

work offers a method to subscribe to new state-expectation

events; one to dump the full dlCBF that store the state

expectations; and another to inject state expectations to the

SFR to enable the handover. The SPs use this framework to

interact with the SFR. We have modified the SFR routine

to send state-expectation events to the SP whenever a non-

existing state expectation is added to the dlCBF. Thus, we

notify every new state expectation that is inserted in the

dlCBF through an event. The event is composed of the state

expectation tuple and the coordinates (subtable, bucket, cell)
plus the fingerprint inserted in the dlCBF. We assume that

there are two kind of events: new that represents a new state

expectation; and destroy that notifies that a fingerprint of the

dlCBF has expired via timing-based deletions.

• Internal cache, that is a cache that stores the set of local

SE, ie. those states that correspond to flows that are being

filtering by this mesh AP. This can be a subset of the

SE that are held in the dlCBF as we may not allow the

handover of certain clients between two different subset

of mesh APs.

• External cache, that are a set of caches that store the

foreign states, ie. the state expectations of its mesh

AP neighbours. We assume that APx has a number of

external of caches equal to the sum of clients that each

neighbour AP belonging γ have.

At startup, every SP dumps the existent SE and stores them

in the internal cache; and it also subscribes to events of SE

to keep the cache up to date. The SP also maintains another

cache to store foreign SE that comes from other mesh APs.

When an event of state expectation occurs, the SP updates

its internal cache and it propagates the state expectation to

other SPs that run in the neighbour mesh APs to update their

external cache.

The state expectation table is compactly distributed in

the form of a dlCBF and new state expectation are dis-

tributed as incremental differences. Assuming the example

dlCBF of 9KB, we can represent the position of a finger-

print in the dlCBF as a coordinates of three parameters

(subtable, bucket, cell), requiring 1 bit to describe the kind of

update (add, delete), log2(d) bits for the subtable axis, log2(b)
bits for the bucket and log2(c) bits for the cell plus w bits of

the fingerprint and the counter.

For instance, assuming the example dlCBF of 3 subtables,

341 buckets and 6 cells, every new state-expectation message

consumes 1+2+9+3+10=25 bits per update (plus the packet

header size). On the hand, the message to notify that one state

expectation has been removed from the dlCBF (destroy mes-

sages) consists of three parameters (subtable, bucket, cell)
which is 1+9+3=13 bits plus the packet header (which is 20

bytes for multicast UDP). Therefore, the replication messages

require very low network bandwidth. We assume that the

SP implements a reliable multicast replication protocol that

exploits the stateful firewall semantics to perform an efficient

replication as described in [7].

When a client CA roams from mesh APx to APy , the

APy’s SP that invokes the inject method to insert the state

expectations stored by the external cache into the SFR. This

process consists of merging two dlCBF: the one used by the

SFR and the one stored in the external cache. We assume that

during the handover the APy requests to the client CA which

was the former mesh AP that it was connected. Thus, the mesh

APy can inject the appropriate external cache.

V. EVALUATION

In order to evaluate our proposed solution, we have mea-

sured computational complexity by means of the CPU and

memory consumption metrics. We also have measured the

bandwidth and CPU consumption to enable the handover

support via state replication. We have compare the results

obtained of our stateful firewalling approach with a reduced

version of Netfilter/iptables stateful firewall (µiptables) that

provides similar features than our solution. The µiptables
solution uses 24 bytes to stores per-flow states instead of

the 168 bytes that it requires in a Linux kernel 2.6.25. Thus,

we can provide a fair comparison between our solution and

an existing Open-Source stateful firewall implementation with

similar features. Of course, the non-reduced version of Net-

filter/iptables provides much more stateful firewalling features

than our solution but it would not scale up for the WMN

scenario as we justify in this section.

As we only want to evaluate the stateful part of the

firewalling, not the packet classification, we assume that the

µiptables default policy is accept and the ACL is: iptables -I

FORWARD -m state –state invalid -j DROP.

Our testbed is composed of two mesh AP nodes and

two clients running GNU/Linux which use the UU-AODV.

We have implemented the dlCBF using Jenkins hash, which

provides a good distribution without degrading performance.

The SFR is a kernel module for GNU/Linux that handle

packets in the forward hook of the Netfilter framework. We

have also adapted our Open-Source implementation of the SP

[8] to replicate state expectations of the SFR. The mesh nodes

are two laptops PIII 800 MHz with 128 Mbytes of memory

and wireless links are standard 11 Mbps 802.11b wireless links

A. Computational complexity

The CPU consumption our the stateful firewalling solution

is low, reaching up to 16% of CPU with 30 connections

per second (cps). Our solution slightly outperforms µiptables
(Fig. 3). The memory requirements of our solution also outper-

forms µiptables that consumes 96KB to store 4096 flow-states

versus 8KB of our dlCBF-based solution with 3 subtables, 6

cells, 341 buckets (Fig. 4). We observed similar RTT for both

solutions. Still, µiptables with the simplistic rule-set is suitable

for the WMN scenario since 48KB is a easy-to-fulfill memory

requirement.

 0

 5

 10

 15

 20

 5 10 15 20 25 30

%
 C

P
U

 c
o

n
s
u

m
p

ti
o

n

TCP connections per second

SFR
micro-iptables

SFR with handover support

Fig. 3. CPU consumption

B. Handover

The amount of memory that the stateful firewalling requires

to store the flow-states is an important metric to evaluate the

scalability of the solution in terms of the handover. In the case

of µiptables, assuming that APx filters 2000 flows and MTU

is 1500, the initial synchronization between two mesh nodes,

ie. when mesh APx node initially establishes a link with APy ,

requires 33 packets. However, our approach only requires the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5000 10000 15000 20000 25000 30000

m
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

in
 K

B
)

number of TCP connections

SFR
micro-iptables

Fig. 4. Memory consumption

transfer of 3 packets to fully resynchronize the mesh node

(See Fig. 4, divide the size of the dlCBF of the SFR by

1420 which is the size of the packet payload without the link

layer headers). Also, every state-change message of µiptables
requires 33 bytes: 12 bytes to identify the flow by means of

the source and destination, and 1 byte to store the current TCP

protocol state, plus the 20 bytes of an IP header. Our solution

only requires 24 bytes, 1 byte to encode the change of a cell

through the tuple [subtable, bucket, cell, f ingerprint].
We have also evaluated the CPU consumption of the state

replication in order to evaluate the feasibility of the handover

support. The results show that the state replication requires

approximately 5% extra CPU (Fig. 3).

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed an approximate stateful

firewalling solution adapted to wireless mesh networks which

fulfills the computational complexity limitations and it solves

the handover problem by means of replication techniques. As

future work, we plan stateful UDP-based protocols used in

real-time applications such as VoIP. Also, we expect to further

validate the proposed solution in a more realistic testbed.

REFERENCES

[1] L. Maccari, R. Fantacci, P. Neira, and R. M. Gasca, “Mesh network fire-
walling with bloom filters,” in Communications, 2007 IEEE International

Conference, 2007, pp. 1546–1551.
[2] L. Maccari, P. Neira, R. Fantacci, and R. Gasca, “Efficient packet filtering

in wireless ad-hoc networks,” IEEE Communications Magazine, feb 2008.
[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[Online]. Available: citeseer.ist.psu.edu/bloom70spacetime.html

[4] A. Broder and M. Mitzenmacher, “Network applications
of bloom filters: A survey,” 2002. [Online]. Available:
citeseer.ist.psu.edu/broder02network.html

[5] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese,
“Beyond bloom filters: from approximate membership checks to approxi-
mate state machines,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 4,
2006.

[6] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” ESA 2006, 2006.

[7] P.Neira, R.M.Gasca, and L.Lefevre, “Efficient failover for cluster-based
stateful firewalls,” in 16th Euromicro International Conference on Par-

allel, Distributed and network-based Processing, Toulouse, France, Feb
2008.

[8] P. Neira, “conntrack-tools: The netfilter’s connection tracking userspace
tools,” http://people.netfilter.org/pablo/.

