
Chasing Gaps between Bursts : Towards Energy Efficient Large Scale
Experimental Grids

Anne-Cécile Orgerie, Laurent Lefèvre, Jean-Patrick Gelas
INRIA RESO - Université de Lyon - École Normale Supérieure

46, allée d’Italie - 69364 LYON Cedex 07 - FRANCE ,
laurent.lefevre@inria.fr, {annececile.orgerie|jean-patrick.gelas}@ens-lyon.fr

Abstract

The question of energy savings has been a matter of con-
cern since a long time in the mobile distributed systems and
battery-constrained systems. However, for large-scale non-
mobile distributed systems, which nowadays reach impres-
sive sizes, the energy dimension (electrical consumption)
just starts to be taken into account.

In this paper, we analyze the usage of an experimental
grid over a one-year period. Based on this analysis, we
propose a resource reservation infrastructure which takes
into account the energy issue. We validate our infrastruc-
ture on the large scale experimental Grid5000 platform and
present the obtained gains in terms of energy.

1. Introduction

The question of energy savings is a matter of concern
since a long time in the mobile distributed systems. How-
ever, for the large-scale non-mobile distributed systems,
which nowadays reach impressive sizes, the energy dimen-
sion just starts to be taken into account.

Some previous work on operational Grids [9] show that
grids are not utilized at their full capacity. We focus on the
utilization and the energy analysis of experimental Grids by
relying on the case study of Grid5000[2]1, a french experi-
mental Grid. Based on this analysis, we propose an energy
saving model and we conduct some experiments to validate
our approach.

Section 2 presents our approach on understanding the us-
age in large scale experimental Grids over a one year period.
In section 3, we describe our model for an energy aware
Grid. We present our first validation results of this model in

1Some experiments of this article were performed on the Grid5000 plat-
form, an initiative from the French Ministry of Research through the ACI
GRID incentive action, INRIA, CNRS and RENATER and other contribut-
ing partners (http://www.grid5000.fr)

section 5 and link this approach with some related works in
section 6. Section 7 concludes this paper and presents some
future works.

2. Understanding Large Scale Experimental
Grids usage

Lots of computing and networking equipments are con-
cerned by overall observations on the waste of energy: PCs,
switches, routers, servers, etc, because they remain fully
powered-on during idle periods. In a grid context, differ-
ent policies can be applied depending on the level we want
to make savings: node level, data center level or network
level.

On a node level, we can use Direct Voltage Scaling tech-
niques and frequency scaling techniques to reduce the en-
ergy consumption of the CPU. But one can also imagine
put into sleep cores or memory benches or disks for ex-
ample. On cluster and grid levels, different solutions are
also possible to reduce the energy consumption like energy-
efficient task scheduling, proxying techniques to ensure net-
work presence or resource virtualization. With the scale ef-
fect, the potential savings are huge. In order to better un-
derstand the stakes and the potential savings with the scal-
ing effects, we need to have an overview at different levels:
grid, cluster and node levels.

2.1. The Grid5000 testbed

The Grid5000 platform is an experimental testbed for re-
search in grid computing which owns more than 3400 pro-
cessors geographically distributed on 9 sites in France. This
platform can be defined as a highly reconfigurable, control-
lable and monitorable experimental Grid equipment. Its uti-
lization is specific : each user can reserve in advance some
nodes and use them as super user in order to deploy his
own system image. The node is entirely dedicated to the
user during his reservation. So Grid5000 is different from



Site nb of reservations nb of cores nb of core per reservation mean length of a reservation real work
Bordeaux 45775 650 55.50 5224.59 s. 47.80%

Lille 330694 250 4.81 1446.13 s. 36.44%
Lyon 33315 322 41.64 3246.15 s. 46.38%

Nancy 63435 574 22.46 19480.49 s. 56.41%
Orsay 26448 684 47.45 4322.54 s. 18.88%

Rennes 36433 714 54.85 7973.39 s. 49.87%
Sophia 35179 568 57.93 4890.28 s. 51.43%

Toulouse 20832 434 12.89 7420.07 s. 50.57%

Figure 1. Grid5000 usage over one-year period: 2007

an operational Grid (exclusive usage, deployment, etc.), but
the energy issue is still the same and we can propose solu-
tions which fit for both experimental and operational Grids
as well.

2.2. In search of the bursts : A year in the
life of an experimental Grid

We analyze the node reservation traces of Grid5000 for
each site over a one-year period (the 2007 year). The users
can indeed reserve some nodes during a period of time. We
have obtained these traces by using the history consulta-
tion mechanism of the Grid5000 scheduler OAR2. Then, we
have made a parser written in Perl to use the 1.2 GBytes of
traces and to make the statistics reported below.

We observe that the usage greatly varies from one site
to another (Fig. 1) in terms of number of cores, average
number of cores per reservation, length of a reservation and
the percentage of real work (without including the dead and
absent time periods during which the nodes do not consume
any energy because they are unplugged).

This heterogeneous usage can be due to geographical
purposes (the most distant sites are interesting to conduct
communication experiments) and to hardware purposes:
each site has different nodes with different architectures
(storage, network capabilities. . . ).

2.3. The Grid view in terms of usage

We define the grid reservations as at least two reserva-
tions on different sites with the same user and which have
at least five minutes in common during their execution time.
That is to say, a user has launched at least two reservations
on at least two different sites and they are simultaneous for
at least five minutes. Fig. 2 shows the number of working
hours by week and by site spent by the grid reservations.
The graph presents the grid reservations per site in hours
for the histogram and in number for the black line. The red
line shows the total number of work hour for all the sites
per week. This gives a global view of the grid. This fig-
ure shows that we cannot apply a particular energy saving

2OAR is a resource manager (or batch scheduler) for large clusters [1]

policy on each cluster, this policy should be globalized at
least for the reservation placement (in term of time and re-
sources). Numerous users need indeed to have coordinated
reservations on different clusters as we can see on figure 2.

Figure 2. Working hours of the grid jobs per
week and per site

Figure 3. Global weekly diagram for Sophia
Grid5000 site

2.4. The cluster view

Figure 3 shows the example of the site of Sophia with
568 cores. The black line indicates the number of reserva-
tions per week. For each week, we have represented in red
the time during which some cores are dead, that is to say
they are down; in orange when they are suspected, they do
not work properly; in yellow when they are absent, they do



not answer and in green when they are working (a reserva-
tion is running). For this site, the real percentage of work
time is 51.43%. We see on figure 3 that during some weeks,
the usage of the site is low, but the real matter of concern
of such a Grid is to be able to support burst periods of work
and communication specially before well-known deadlines
and we can see that such periods exist.

2.5. The node view in terms of usage

We analyse the weekly repartition of three particular re-
sources: the minimal (Fig 4) (bad resource), the median
(Fig 5) (not-so-good resource) and the maximal resources
(Fig 6) (good resource) in terms of usage. The minimal
(maximal) resource is the resource which provides the min-
imal (maximal respectively) work time among the resources
which are present during the whole monitored period. In-
deed, the minimal one is always powered on, but does not
work so much, thus it wastes a lot of energy in idle state.
The median resource is the resource which is the nearest to
the median value of cumulative work over the experiment
duration.

Figure 4. Resource with a minimal usage on
Sophia site (the bad resource)

Figure 5. Resource with a median usage on
Sophia site (the not-so-good resource)

To conclude, we have seen that the platform is used at
about 40% in average. However, during some bursting pe-
riods, it is used at more than 95%. Yet, between the bursts,
the resources are idle during substantial periods, we could

Figure 6. Resource with a median usage on
Sophia site (the good resource)

thus save energy by intelligently turning them off during
specific periods of times.

3. Towards energy aware Grid

In the context of grids, with the mind to reduce the global
energy consumption, we can directly act on the nodes,
on the network devices and on the scheduler. This paper
presents a centralized On/Off algorithm for the resources
managed by the scheduler. Each user should be connected
to the portal to submit a reservation. The scheduler pro-
cesses the submission and validates it, then it manages the
resources and gives access to them to the users who have
made reservations on them according to its agenda. The
scheduler treats dynamically the reservations when they are
submitted by the user.

3.1. Energy monitoring

Our objective is the measurement of the power consump-
tion of the Grid nodes in Watts in order to modelize the link
between electrical cost and applications or processes.

In order to measure the real consumption of some
machines, we use a watt-meter furnished by the SME
Omegawatt. This equipment works as a multi-socket: we
plug six nodes on it and we obtain the consumption via a
serial link (RS232). So we have written scripts that send
a request by the serial link to the watt-meter each second,
then it converts the answer (the watt-meter accept requests
and send results in a specific hexadecimal format) and sends
it to a distant collector which stores them. This architecture
can easily be adapted to other cluster infrastructures.

Figures 7 and 8 show our results concerning the energy
consumption on the site of Lyon. We have dynamically col-
lected the consumption in Watts of six different nodes repre-
senting the 3 hardware architectures available on Lyon site :
two IBM eServer 325 (2.0GHz, 2 CPUs per node), two Sun
Fire v20z (2.4GHz, 2 CPUs per node) and two HP Proliant
385 G2 (2.2GHz, 2 dual core CPUs per node).



We can see that the nodes have a high idle power con-
sumption and that some of them reach impressive powers
during their boot and that they consume power even turn-
ing off. Other experiments that we have made on the same
nodes show that an Iperf3 experiment consumes between
10 and 12 watts more than the hdparm4 upper bound and
a cpuburn5 experiment between 0 and 6 watts more than
the Iperf experiment.

These experiments represent a typical life of an exper-
imental Grid node : nodes down but plugged in the wall
socket, booting, having intensive disks accesses (hdparm),
experimenting intensive high performance network com-
munications (Iperf), or having intensive CPU usage
(cpuburn).

Figure 7. Booting consumption of the nodes

Figure 8. Intensive communication and com-
puting

We can explain the difference of consumption between

3Iperf is a commonly used network tool to measure TCP and UDP
bandwidth performance that can create TCP and UDP data streams
(http://dast.nlanr.net/Projects/Iperf/).

4hdparm is a command line utility for Linux to set and view
IDE hard disk hardware parameters (http://sourceforge.net/
projects/hdparm/). We have made a loop of hdparm instructions
to simulate intensive disk accesses.

5cpuburn is a tool designed to heavily load CPU chips in order to test
their reliability (http://pages.sbcglobal.net/redelm/).

the two HP Proliants by the fact that the one which con-
sumes the more embeds a powerful programable Ethernet
card.

Furthermore, the two Sun Fires are identical in terms of
components (same architectures, same features) and in the
same way the two IBM eServers are identical. However,
we can observe that one Sun Fire consumes more than the
other one and that one IBM eServer consumes more than
the other one. We should add that the two ones which con-
sume the less are on the bottom of the rack, while the two
ones which consume the more are on the top of the rack.
So we observe that the position in the rack influences the
consumption. This should be due to the air cooling infras-
tructure position. The more ventilated nodes consume less
energy.

These results show the impact on energy usage resulting
from node utilization. Then, we use this analysis to design
an energy-aware reservation infrastructure.

3.2. Definition of the energy efficiency
model

We define a reservation R as a tuple: (l, n, t0) where l
is the length in seconds of the reservation, n is the required
number of resources and t0 is the wished start time. N de-
notes the total number of resources managed by the sched-
uler. So we should always have n ≤ N and t0 ≥ t where t
is the actual time and l ≥ 1 to get a valid reservation. For
example, in the case of a large-scale distributed system, a
reservation is a combination of n nodes during l seconds
starting at t0. In the case of a high-performance data trans-
fer, a reservation is a bandwidth portion which size is n (n
can be in Mbps for example) during l seconds starting at t0.

When a reservation is accepted by the scheduler, it writes
it down into the corresponding agenda. Each site indeed
has got its own agenda. The agenda contains all the future
reservations. The history contains all the past and current
reservations. So when a reservation starts, it is deleted from
the agenda and added to the history.

Figure 9. Booting and shutting down of a re-
source



PI refers to the power consumption in Watts of a given
resource (it can vary from one resource to another) when
it is idle. POFF refers to the consumption in Watts of a
given resource when it is off (POFF < PI ). EON→OFF

(EOFF→ON ) refers to the needed energy (in Joules) for a
given resource to switch between On and Off modes (Off
and On modes respectively). Figure 9 illustrates these defi-
nitions.

So, we can roughly estimate the energy consumption in
Joules of a given reservation R = (l, n, t0):

Em(R) = l ×
n∑

i=1

Pm(i)

where Pm(i, S) is the mean consumption of the resource i.

3.3. Principle of the resource managing al-
gorithm of our model

We split our algorithm into two parts: when a reserva-
tion is submitted (section 3.4) and when a reservation ends
(section 3.5).

When a reservation arrives (R = (l, n0, t0)); at t0, we
know that there will be at least n busy resources (because of
previously arrived reservations). So, first of all, we wonder
whether this reservation is acceptable, ie. n0 ≤ N − n. If
it is not acceptable, we compute the earliest possible start
time after t0 (by taking into account the reservations which
are already written down in the agenda) which is called t1.

Then, we estimate different amounts of energy, the en-
ergy consumed by R if it starts:

• at t0 (or t1, if t0 was not possible; t1 is the next possi-
ble start time);

• just after the next possible end time (of a reservation)
which is called tend;

• l seconds before the next possible start time which is
called tstart;

• during a slack period (time ≥ 2 hours and usage under
50%, see section 4.4), at tslack.

We will see on the next sections the prediction algo-
rithms. In order to achieve these estimations, we need to
compute: t1 (done previously), tend, tstart and to estimate
tslack. Our goal is to glue the reservations in order to avoid
bootings and turnings off which consume energy. Our in-
frastructure does not impose any solution, it just offers sev-
eral of them and the user chooses.

3.4. The resource allocation

In order to calculate tend, we look for the next reserva-
tion end in the agenda and we verify if it is possible to start

R at that time (enough resources for the total length). If it is
not possible, we look for the next one in the agenda and so
on. tend is then defined as the end time of this reservation.

In the same way, we calculate tstart by looking for the
next reservation start time in the agenda and we check out if
it is possible to placeR before (this start time should then be
at least at t+ l where t is the current time and l the duration
of R). If the found start time does not match, we try the
next one and so on.

An enhancement consists in finding several possible
reservation end times and start times. We can then take
the ones which minimize the energy consumption: the ones
with which we should the least turn on and turn off re-
sources.

Finally, we give all these estimations to the user (energy
estimations and corresponding start times) who selects its
favorite solution. The reservation is then written down in
the agenda and the reservation number is given to the user.
With this approach, the user can still make his reservation
exactly when he wants to, but he can also delay it in order
to save energy. It will raise user awareness upon energy
savings.

The scheduler makes the resource allocation by choos-
ing the resources with the smallest power coefficient. That
coefficient is calculated depending on the mean power con-
sumption of the resource (calculated during reservations on
a great period of time). Thus a resource which consumes
few energy will have a big power coefficient and will so be
choose as a priority by the scheduler. Indeed, resources are
not identical (different architectures, ...), so they do not have
the same consumptions.

This allocation policy is used when we give resources for
a reservation without constraints. In fact, when the sched-
uler places a reservation just after another (by using tend or
not) or just before another, it allocates the resources which
are already awake (and in priority those which have the
biggest power coefficient). Moreover, the user can explic-
itly choose certain resources, so in that case, this policy is
not applicable. The power coefficient is calculated when the
resource is added to the platform and will not change after.

3.5. The resource release

When a reservation ends; M resources are freed. First
of all, we compute the total real consumption of this reser-
vation. We give this information to the user and we store
it in the history for the prediction algorithms. Moreover,
we compute the error made when we have estimated the
consumption of this reservation with the corresponding start
time: this is the difference between the true value and the
predicted one. We will use it in the next section to compute
a feedback error in order to improve our estimation algo-
rithms.



We need to define an imminent reservation: it is a reser-
vation that will start in less than Ts seconds in relation to
the present time. The idea is to compute Ts such as it will
be the minimum time which ensures an energy saving if we
turn off the resource during this time. In fact, we define Ts
so that if we turn off a resource during Ts seconds, we save
Es Joules. Es is a fixed energy, it is the minimum energy
that we don’t go to a lot of trouble to save it.

To this definition, we add a special time, denoted by Tr,
which is related to the resource type. For example, if we
turn on and turn off often an Ethernet card, it has not the
same consequences, in terms of hardware resistance, com-
pared to the same for a hard disk for example. The hard
disk is indeed mechanical and can support a limited number
of ignitions. Thus we should not turn it off too often or too
quickly. So Tr reflects this concern and differs from one
resource to another.

So, if we denote δtot = δON→OFF + δOFF→ON , Ts is
defined by:

Ts =
Es − POFF × δtot + EON→OFF + EOFF→ON

PI − POFF
+ Tr

As we can see, Ts varies from one resource to another
because it depends on PI , POFF , δON→OFF , δOFF→ON ,
EON→OFF , EOFF→ON and Tr which depend on the re-
source. We can fix Es = 10 Joules for example.

We can notice that we should have: Ts − δtot ≥ 0. We
want indeed to have at least enough time to turn off the re-
source and turn on it again. Now, we look for the freed re-
sources that have an imminent reservation. These resources
are considered as busy and are left turned on. During this
active watch, we loose less than Es Joules per resource and
then they are used again.

We look for other awake resources: resources which
are waiting for a previous estimated imminent reserva-
tion. For these m awake resources (M minus the pre-
vious busy ones and plus the other awake resources), we
need to estimate when will occur the next reservation and
how many resources it will take. We call this reservation
Re = (le, ne, te). We can now verify if Re is imminent. If
it is not the case, all the remaining resources are turned off.

If Re is imminent, we look for min(m,ne) resources or
less that can accept this potential reservation: they are free
at te for at least le seconds. We keep these resources awake
during Ts + Tc seconds and we turn off the other ones. Tc
is a fixed value that corresponds to the mean computation
time of a reservation for the scheduler. It is the mean time
between the user request and the reservation acceptation by
the scheduler (it includes among other things the time to
compute the energy estimations and a minimum time to an-
swer for the user).

At the next reservation arrival, we will compute the esti-
mation errors we have done and we will use them as feed-

back in our prediction algorithms. Moreover, if there are
idle resources (which are turned on without any reservation)
and if the reservation which is just arrived is not imminent,
we turn off the idle resources.

4. Predictions

The efficiency of our model, compared to a simple algo-
rithm where the resources are put into sleep state from the
moment that they have nothing to do, resides in our abil-
ity to make accurate predictions: the estimation of the next
reservation (length, number of resources and start time), the
estimation of the energy consumed by a given reservation
and the estimation of a slack period. But our prediction al-
gorithm should remain sufficiently simple in terms of com-
putation in order to be efficient and applicable during reser-
vation scheduler run time.

4.1. Estimation of the next reservation

First of all, we take care about the estimation of the next
reservation Re = (le, ne, te) for a given site. To estimate
its start time, we take into account the day of the week, the
hour of the day and the previous values of arrival times.
This method, called method 1, assumes that the reserva-
tion’s start times for each day are similar to those of the
two previous days and to those of the same day of the previ-
ous week. This method is based on the similarity of the day
load and on the cycle of a day (daytime and night) per site.

At a given time t, our estimated start time is the average
of the start times of the reservations which are just after t
the two days before and the same day one week before on
this site, plus the feedback (defined further).

te = 1/3[tt,j−1 + tt,j−2 + tt,j−7] + t feedback

where tt,j−i is the start time of the reservation just after t
on this site for the day j − i with j which stands for today.

The estimations of the length and of the number of
resources required by the next reservation are done in a
similar way. We remember the three reservations used
to make the previous calculation. We call them Ra =
(la, na, tt,j−1), Rb = (lb, nb, tt,j−2), Rc = (lc, nc, tt,j−7).
So we have:

ne = 1/3[na + nb + nc] + n feedback

le = 1/3[la + lb + lc] + l feedback

If we do not observe this day similarity, we use the
method 2. This method is based on the similarity between
the close reservations in term of start time per site. The ba-
sic idea is to calculate the average of the characteristics of
the five previous reservations on this site.



At a given time t, we denote R0, . . . , R5 the six previ-
ous reservations on this site (with Ri = (li, ni, ti)). They
are the six reservations on this site whose start times are the
nearest to t (but not necessarily before t, scheduled reserva-
tions can be taken into account). These reservations are in
order of growing start time (R0 is the oldest).

So the estimation of the start time is done by calculating
the average of the five intervals between the six previous
start times. This average is added to t with the feedback to
obtain the estimation:

te = t+ 1/5[t5 − t0] + t feedback

We define the estimations of the length and of the number
of resources required by the next reservation similarly.

In the two methods, if we obtain te < t (because of the
feedback), we set te = t + 1. The choice between method
1 and method 2 should be done according to the site usage.
We should compare their performance on a given site to say
which one is better for this given platform.

The accuracy of the next reservation prediction is crucial
for our power management. If we make too many wrong
estimations, resources wait for imminent reservations that
do not arrive and so they waste energy or they are turned
off just before an imminent reservation arrival and so they
waste the energy of one halting plus one reboot per re-
source.

4.2. Feedback on the next reservation esti-
mation

The feedback is used to improve the energy efficiency of
our approach. As we have seen before, the estimation errors
are really penalizing in terms of consumed energy. We need
to obtain accurate predictions.

Moreover, we have observed that there is less reserva-
tions during the night and more during the morning for the
Grid5000 traces. So, early in the morning for example,
method 2 will certainly have some difficulties to predict the
next reservation start time. Thus, to limit the effects of such
errors we use a feedback mechanism. The feedback is in
fact a corrective factor calculated with the three previous
errors (it can be more).

At each reservation arrival, we compute the estimation
errors we have made. More precisely, at a given time t,
the reservations R = (l0, n0, t0) arrives. Re = (le, ne, te)
is the last reservation that we have predicted. We denote
Errl = (l0 − le): the error done by estimating the length of
the next reservation, Errn = (n0 − ne) and Errt = (t0 −
te) the errors done by estimating the number of resources
and the start time of the next reservation respectively.

Basically, if we predict the reservation too early, then we
have Errt > 0. So, if we add Errt to the next predicted
start time, we delay the predicted start time byErrt seconds

and that is exactly what we want to do. Then we denote
Errl(a), Errl(b) and Errl(c) the three last errors for the
length of a reservation. n feedback and t feedback are
similar to l feedback:

l feedback = 1/3[Errl(a) + Errl(b) + Errl(c)]

4.3. Energy consumption estimation of a
reservation

This estimation takes into account the user, the resource
type and all the characteristics of the reservation R =
(l, n, t). The assumption made here is that each user has
almost the same usage of the resources. What we really
estimate is the average power during working time per re-
source for each different type of resource (different archi-
tectures for example).

4.4. Slack periods

A slack period is a period longer than two hours with
a usage percentage of the platform inferior to 50%. Typ-
ically such periods happen during the night. We take two
hours because it is just a bit longer than the average length
of a reservation on Grid5000 (see section 2.3). So a lot of
reservations can take place during such a period in terms of
length.

To estimate when the next slack period will occur, we
use the values of the three previous days (real values are
known at that time). If there was no slack periods during
the three previous days, we estimate that there will be no
slack period that day.

To be really complete, our model should include the en-
ergy consumption of the cooling infrastructure proportion-
ally distributed on each resource. In fact, Preal(typek, Ra)
(the real average power for the reservationRa for a resource
which have a typek type) would include a fraction of the av-
erage power consumed by the cooling infrastructure during
the duration of the reservation Ra proportionally to its heat
production. However, such a fraction can be difficult to es-
timate, that is why most of the power management systems
do not take the cooling infrastructure into account.

5. Experimental evaluation

To evaluate our model, we conduct experiments based on
a replay of the year 2007 traces (see section 2). As a first
approach, we respect the reservation patterns given by the
user by not moving the reservations. So we can fully test
our prediction algorithm.

As example, we apply our model to the Bordeaux site
logs in Fig. 10 and Fig. 11. Figure 10 shows the percent-
ages of energy consumption of our model with prediction



(we use the method 2 described in paragraph 4.1) and the
percentages of energy consumption of our model without
prediction where Ts varies from 120 seconds to 420 seconds
and Pidle (the power consumed by a single resource when
it is idle: on but not working) is 100, 145 or 190 Watts.
These percentages are given in relation to the energy con-
sumption of our model by knowing the future: in that ideal
and not reachable case we don’t need any prediction algo-
rithm because we always know when to turn on and turn off
resources. Actually, this is the theoritical lower bound.

Figure 10. Percentage of energy consump-
tion by using our model in relation to the en-
ergy consumed by knowing the future

Figure 11. Percentage of surprise reserva-
tions in relation to total reservation number

Based on the experimental analysis (Fig. 7), we set
Pwork = 216 Watts, POFF = 10 and δON→OFF +
δOFF→ON = 110 seconds. These values are a little bit big-
ger than the mean values shown in Figure 7; this is indeed
the worst case for our model.

Based on Fig. 7 results, we can set Pidle to 190 Watts,
but we make Pidle vary to simulate the future capacity of
our model to shut down resource’s components (like a core
or a disk for a node for example). In the same way, we make

Ts vary to simulate the future possibility to use hibernate
modes (Ts is at least equal to the time needed to boot a
resource plus the time to shut down it, so if we use suspend
to disk or suspend to RAM mechanisms, it will decrease
Ts).

These percentages are in relation to the aimed used en-
ergy: the energy we would consume if we knew the future
(it is as if our prediction algorithm made always perfect pre-
dictions), so it is the lower limit we try to be close to. We
see that our model with prediction is better than without
prediction in all the cases. However, we have still room for
maneuver to improve our prediction algorithm in order to
be closer to the aimed case.

Figure 11 shows the surprise reservations impact for our
model with and without prediction. The surprise reserva-
tions are reservations that arrive less than Ts seconds after
we have turned off some resources (which can instead have
been used for these arriving reservations). This is the rea-
son why we are not closer to the future known case on Fig-
ure 10. As expected, our model with prediction has better
results because it tries to predict such reservations, but it is
not possible to achieve this goal perfectly (the future is not
known!). We can conclude that a simple prediction model
as the one described in section 4.1 is energy efficient.

6. Related works

Although energy has been a matter of concern for sensor
networks and battery constrained systems since their cre-
ation, energy issues are recent for plugged systems. A first
problem that occurs is how to measure the consumption.
We have considered an external watt-meter to obtain the
global consumption of a node. A different approach con-
sists of deducing it from the usage of the node components,
by using event monitoring counters [11] for example. Lot
of other work on server power management based on on/off
algorithm has been done [12], [4]. Some take into account
thermal issues [3], [12]. The main issue in that case is to
design an energy-aware scheduling algorithm with the cur-
rent constraints (divisible task or not [3], synchronization
[10], etc). Some algorithms include DVFS (Dynamic Volt-
age Frequency Scaling) techniques [10], [8] and some not
[4]. Although we are fully aware that such techniques will
be available on all processors in a near future, our work does
not include this in a first step presented here. Such tech-
niques are indeed difficult to use in presence of a proces-
sor and user heterogeneity especially if we want to design
a centralized resource managing algorithm. Virtualization
seems to become an other promising track [7]. We have not
yet speak about network presence. Lot of work have also
been done on the network level to reduce the consumption
of Ethernet card and switches ports by adaptively modify
the link rate [5] or by turning off ports [6]. The problem



of ensuring network presence becomes more obvious with
such objectives.

7. Conclusion and future works

This paper presents a first step of our work whose goal
is to better understand the usage of large-scale distributed
systems and to propose methods and energy-aware tools to
reduce the energy consumption in such systems. Our anal-
ysis has provided instructive results about the utilization of
an experimental Grid over the example of Grid5000.

Next, we have proposed an energy-aware model to re-
duce the global consumption of a large scale experimental
Grid. This infrastructure is efficient and can be easily im-
plemented and deployed. We have presented our first results
which validate our energy-aware reservation model.

We are currently working on tools, portals and frame-
works proposing these results in a real-time manner to the
users and grid middleware. We are working on such a tool
that we will integrate on the Grid5000 website. We plan to
make further experiments to fully validate our infrastructure
and to enhance our prediction algorithm; this work will in-
clude the implementation of the method 1. We also plan to
make the same experiments with the whole grid traces in-
cluding the grid reservation constraints (as defined in Sec-
tion 2.3, on several sites at the same time). We will study
the possibility to move reservations from one site to another
(according external temperatures parameters for example).

Our long term goal is to incorporate virtualization and
DVFS techniques in our infrastructure with the objective to
save more energy without impacting performances. Virtu-
alization could also solve the problem of ensuring network
presence and answering basic requests from the monitoring
tools of large-scale distributed systems or dealing with the
high-performance data transport systems.

References

[1] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. M. n,
G. Mounié, P. Neyron, and O. Richard. A batch scheduler
with high level components. In Cluster computing and Grid
2005 (CCGrid05), 2005.

[2] F. Cappello et al. Grid’5000: A large scale, reconfig-
urable, controlable and monitorable grid platform. In 6th
IEEE/ACM International Workshop on Grid Computing,
Grid’2005, Seattle, Washington, USA, Nov. 2005.

[3] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing energy and server resources in
hosting centers. In SOSP ’01: 18th ACM symposium on
Operating systems principles, pages 103–116, New York,
NY, USA, 2001. ACM.

[4] X. Fan, W.-D. Weber, and L. A. Barroso. Power provision-
ing for a warehouse-sized computer. In ISCA ’07: Proceed-
ings of the 34th annual international symposium on Com-

puter architecture, pages 13–23, New York, NY, USA, 2007.
ACM.

[5] C. Gunaratne, K. Christensen, and B. Nordman. Managing
energy consumption costs in desktop pcs and lan switches
with proxying, split tcp connections, and scaling of link
speed. Int. J. Netw. Manag., 15(5):297–310, 2005.

[6] M. Gupta and S. Singh. Dynamic ethernet link shutdown
for energy conservation on ethernet links. Communications,
2007. ICC ’07. IEEE International Conference on, pages
6156–6161, 24-28 June 2007.

[7] F. Hermenier, N. Loriant, and J.-M. Menaud. Power man-
agement in grid computing with xen. In XEN in HPC Clus-
ter and Grid Computing Environments (XHPC06), num-
ber 4331 in LNCS, pages 407–416, Sorento, Italy, 2006.
Springer Verlag.

[8] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and
D. Takahashi. Profile-based optimization of power perfor-
mance by using dynamic voltage scaling on a pc cluster.
IPDPS 2006, 2006.

[9] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters.
How are real grids used? the analysis of four grid traces and
its implications. In 7th IEEE/ACM International Conference
on Grid Computing, Sept. 2006.

[10] R. Jejurikar and R. Gupta. Energy aware task scheduling
with task synchronization for embedded real-time systems.
In Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, pages 1024– 1037. IEEE, June
2006.

[11] A. Merkel and F. Bellosa. Balancing power consump-
tion in multiprocessor systems. SIGOPS Oper. Syst. Rev.,
40(4):403–414, 2006.

[12] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and
J. S. Chase. Balance of power: Dynamic thermal manage-
ment for internet data centers. IEEE Internet Computing,
9(1):42–49, 2005.


