
Towards the design of an high performane ative node

Jean-Patrik Gelas, Saad El Hadri, Laurent Lef�evre

INRIA RESO / LIP

Eole Normale Sup�erieure de Lyon

46, all�ee d'Italie 69364 LYON Cedex 07 - Frane

Jean-Patrik.Gelas�ens-lyon.fr, Saad.El.Hadri�ens-lyon.fr, Laurent.Lefevre�inria.fr

Abstrat

Ahieving high performane in ative networks is one of the most hallenging task. In this paper, we propose

an arhiteture for the design of next generation gigabit ative routers

1

. This original arhiteture allows servie

deployment of 4 levels : inside network ards, in kernel spae, in user spae and on distributed omputing resoures.

We deploy and validate this arhiteture within the Tamanoir exeution environment. First experiments on gigabit

network platforms are desribed.

Keywords : high performane, ative networking, exeution environment, Tamanoir

1 Introdution

The integration of new and dynami tehnologies into the shared network infrastruture is a hallenging task,

and the growing interest in the ative networking �eld[18℄ might be seen as a natural onsequene.

In ative networking vision, routers an perform omputations on user data in transit and users an modify

the behavior of the network by supplying programs, alled servies, that perform these omputations. These

routers are alled ative nodes (or ative routers) and propose a greater exibility towards the deployment of new

funtionalities, more adapted to arhiteture, users and servie providers requirements. Other network equipments

(gateways,bridges, proxies) an bene�t from ative network tehnology

Currently ative network designers must fae two major problems : seurity of servies deployment inside

equipments and performane of on-the-y proessing. This paper proposes solutions for the design of an high

performane ative node.

For most of researhers in ative networks, providing ative servies with high level languages (Java) and inside

user spae is a too ostly approah due to the lateny added for proessing pakets. This is mainly due to the fat

that numerous experiments in ative networks relies on ANTS toolkit [19℄ (based on Java) with peak performane

of around 5 Mbits.

Our main goal is to fous on the providing of performane inside ative network equipments. We de�ne an

arhiteture targeted for the design of a Gigabit ative node. This ative node should be able to proess and route

ative streams oming from Gigabit networks (Fig. 2).

This layered arhiteture proposes solutions for the dynami embedding of ative servies optimally deployed

on suitable levels:

� ultra lightweight servies in network programmable ards (pakets marking, dropping and �ltering servies);

� lightweight servies in kernel spae level (pakets ounting, QoS, management servies, intelligent dropping

and state-based servies);

1

This work is supported by the Frenh RNRT VTHD++ Projet.

1

� middle servies in user spae level (reliable multiast, pakets aggregating, pakets monitoring and data

ahing);

� high level servies in distributed arhiteture (ompression and multimedia transoding on-the-y).

In order to validate the proposed arhiteture, we design the Tamanoir Ative node software suite based on

widely used equipments and tools : Myrinet for NIC level, Net�lter/Linux[16℄ for kernel spae support, Java for

user spae level and Linux Virtual Server[22℄ for lustering approah. This Tamanoir software is deployed and

experimented on various loal and long distane platforms.

The paper is organized as follows. In setion 2, we propose an arhiteture of an high performane ative

router. Setion 3 desribes the Tamanoir arhiteture developed in our laboratory. Setion 4 presents performanes

obtained with Tamanoir. We briey desribe other solutions proposed for high performane ative networking

(setion 5). We �nish by some onlusions and future diretions for the improvement of software ative routers.

2 An High Performane Ative Node arhiteture

We want to design an arhiteture of an ative router able to be deployed around high performane bakbone.

Our approah onerns both a strategi deployment of ative network funtionalities around bakbone in aess

layer networks and by providing an high performane dediated arhiteture.

Our ative network model is foused on ative edge routers, loated around the ore network between bakbone

and aess networks (Fig. 1). Core networks are mainly optial and must remain fast (40 Gb/s) and simple. Aess

networks must fae heterogeneous equipments and protools and ould bene�t from the deployment of dynami

network servies.

modem

modem

clients

56K

33,6K

portableGSM 9,6

PDA

LAN

client with satellite link

core
network

AR

AR

AR

AR

AR

AR

AR

AR

Access layer

Figure 1. Active Routers (AR) deployed in access networks

We de�ne an Ative Network Exeution Environment (EE) as an environment able to load and deploy a servie

in memory's exeution system. It must be also able to diret pakets towards the required servie thanks to

appropriate headers �ltering. Ideally, an EE diret pakets to the servie as transparently as possible without

adding overheads.

Most ommon protools like TCP, UDP, ICMP, RTP, RTCP,. . . should be supported by an ative node. While

UDP or RTP are used for multimedia or real-time appliations, supporting TCP streams is required for appliations

requiring reliable ommuniations like �le transfer, web traÆ and Grid appliation.

By taking into aount high performane hallenges, ative servies must be deployed at various levels depending

on resoures (proessing apabilities, memory onsumption, storage apaity. . .) and intelligene (exibility of the

2

exeution environment) they need. In order to provide an adapted EE for eah kind of servies and to limit paket

overhead, we design an ative node arhiteture on 4 levels : Network Interfae ard (NIC), Kernel Spae, User

Spae and Distributed Resoures (see Fig. 3).

1 Gb/s

n*100 Mb/s

Active / passive
UDP/TCP

1 Gb/s

n*100 Mb/s

Active / passive
UDP/TCP

Figure 2. Active node between backbone and
access network

NIC (programmable)

Data streams

User space

Kernel space

Distributed resources

Figure 3. Execution environment of an active
node architecture

2.1 Network Interface Card level

Programmable network interfae ards (NIC) like Myrinet[3℄ embed CPU, RAM and DMA engines. In these

ards, software network protools an be exeuted to optimize ommuniations between host and network. We

take advantage of this exibility to deploy low level network servies on these NIC. Running servies diretly on

programmable network interfae ards gives the advantage to run servies as lose as possible to the wire. The

idea is not so far from Network Proessor. Class of servies must be restrited to ultra-lightweight one : pakets

marking, pakets dropping, pakets ounting. . . in order to not impat proessing time per paket and NIC memory

spae alloation.

While this paper does not fous on servies deployment inside NIC, this topi is urrently under investigation

in our team.

2.2 Kernel space level

In kernel spae, OS runs time-sensitive operations : sheduler, protools staks, drivers. . . An ative node an

deploy, in this level, eÆient lightweight servies requiring memory and proessing apabilities from the host. This

deployment is speially useful when NIC are not programmable.

The kernel spae level is perfetly suited for lightweight level servies like QoS servies or intelligent pakets

dropping. Moreover, servies running at kernel spae level an bene�t to the the routing funtionalities of the

kernel and also use zero-opy or OS bypass tehnis to ommuniate with the user spae. This approah requires

an open kernel and easy aess to the network protool stak.

Running a servie in kernel spae allows a very fast exeution and takes advantages of resoures (fast CPU,

system memory) of the host system. Servies must be written in C or assembly ode whih limits portability and

makes the writing less obvious. This approah requires obviously an open operating system (like Linux or BSD).

This system must provide tools to diret ative pakets to kernel lightweight servies (like Net�lter in Linux).

Kernel spae is a very sensible part of the system and doesn't tolerate any misbehavior. There is a risk to endanger

the whole system. Servies must be restrited to time-sensitive servies in terms of proessing time per pakets.

3

2.3 User space level

A user spae level an provide all the safety, exibility and easiness for running a full-featured exeution envi-

ronment. Servies exeuted in this level an aess to all system resoures (memory, disk, dediated hardware. . .).

It gives also the opportunity to use high level languages (like Java).

However, overhead introdued by the proessing of pakets on this user spae level and the ost of opying data

from kernel spae to user spae must be taken into aount in order to redue the impat on raw performanes.

The EE must be exeuted as fast as possible and then written with a onstant high-performane objetive in mind.

It should not be interpreted during exeution and then must be either ompiled or use Just-In-Time ompilation

tehnis.

2.4 Distributed resources level

Ative streams requiring heavy proessing funtions like ompression, ryptography or onversion on-the-y

require heavy proessing apabilities in of the ative node. These servies must be supported by a parallel arhi-

teture.

We explore the design of a parallel ative node depending of Exeution environment requirements and available

arhiteture.

services services

services services

services services

services services

EE

service service

service service

packets
active

EE

front−end

(b) (c)(a)

EE EE

EEEE

Figure 4. Approaches to design a parallel active node archit ecture: (a) shared memory, (b) message-
passing and (c) replicated EEs

Shared memory approah : First approah onsists of distributing servies on various proessing units (Fig. 4(a)).

These servies an be exeuted in parallel and an aess to pakets through a shared memory (on an SMP arhite-

ture) or a distributed shared memory (on a luster of mahines [12℄). Pakets reahing the ative node are plaed

in queues loated in shared memory with one queue for eah available servie, but a unique queue for servies of

same name. Servies are onsidered as onsumers of these queues. This approah easily allows servies migration

between proessing units.

Message-passing approah : This approah is dediated for distributed omputing resoures (lusters of ma-

hines) ommuniating through messages. Like �rst approah, servies are distributed on various mahines. The

exeution environment is mapped on a dediated node. In �gure 4(b) the EE reeives pakets and direts them

towards the node holding the required servie. Message passing tehniques libraries (PVM, MPI. . .) ould be

used. Next, the node proess the paket with the suitable servie before its retransmission.

Repliated EEs : Last approah onsists of repliating EE and servies on distributed resoures (Fig. 4()). We

all these nodes bak-ends. In order to provide to repliated EEs ative pakets, a front-end mahine must be

added to the arhiteture. This front-end is ompletely dediated to distribute streams to the bak-ends. This

approah requires less modi�ations to Exeution environments and servies.

4

These 3 approahes (shared memory system, message passing, repliated EEs) provides parallelism in streams

proessing. Another advantage of using a distributed arhiteture like a luster of PC onerns the fault-tolerane

apability of the ative node. It gives the possibility of stopping a bak-end node for maintenane without stopping

the whole ative node and servies. Moreover, it is possible to upgrade performanes of an ative node by adding

more bak-ends. In order to avoid single point of failure on EE (b) or on the front-end (), these last ones must

be repliated on various nodes.

All distributed solutions must also take into aount of load balaning of servies and streams (from round-robin

(RR) algorithm to more sophistiated algorithm like weighted RR, least onnetion RR. . .)

3 The Tamanoir experiene

The aims of the Tamanoir

2

projet is to design an high performane ative node validating the arhiteture

desribed in setion 2. The whole development of the high performane EE Tamanoir has been done in several

steps. First we implemented a EE running in user spae, next we investigate the kernel spae and �nally the

distributed omputing approah.

3.1 High level multi-threaded Execution Environment

The Tamanoir[7, 8℄ suite is a omplete software environment dediated to deploy ative routers and servies

inside the network. Tamanoir Ative Nodes (TAN) provide persistent ative routers whih are able to handle

di�erent appliations and various data stream (audio, video,. . .) at the same time (multi-thread approah). The

both main transport protool TCP and UDP are supported by TAN. We rely on the ANEP (Ative Network

Enapsulated Protool)[1℄ format to send data over the ative network (Figure 5).

ANM

TCP

UDP

control stream
(TCP)

service #1

service #2

service #3Raw data

ANEP data
streams

streams
TCP/UDP

Execution Environment

(Active Node Manager)

req.

hash table

demultiplexer

Figure 5. A Tamanoir Active Node (TAN)

The Exeution Environment relies on a demultiplexer reeiving ative pakets and redireting these pakets

towards the adapted servie in funtion of a hash key ontained in pakets header. New servies are plugged in the

TAN dynamially. The Ative Node Manager (ANM) is dediated to deployment of ative servies and to update

routing tables.

3.1.1 User spae and implementations issues

For the user spae part of our EE, we hoose to use a portable language for the ative networks users be able to

de�ne and write their own servies. Thus, the Tamanoir exeution environment running in user spae is entirely

written in Java [10℄ whih provides a great exibility and is shipped with standard library. Unfortunately, the

exeution environment provided by the JVM (Java Virtual Mahine) gives a very high level of abstration, through

whih appliations have some diÆulties to obtain good performanes. However, reent JVM releases (� 1.3.x)

2

Tamanoir (great anteater) is one of the strangest animal of south Ameria : living in savanna, with an impressive tongue and a

mouth of 2 entimeters diameter this animal only eats ants (up to 30000 daily). We hoose this animal in referene to the ANTS [19℄

ative network Java-based system.

5

give exellent performane for the mainstream hardware arhiteture (i.e x86), mainly due to the improvements of

Just-In-Time (JIT) ompilation tehniques.

Eah servie is written in Java and inherited from a generi lass alled Servie, itself inherited from the Java

Thread lass. Thus, eah servie is exeuted in a independent thread. For a given servie, with TCP ative streams,

a thread servie is dediated for eah stream while with UDP only one dediated thread proesses all streams. A

given servie an be applied on TCP or UDP ative streams without hange.

In order to improve safety and seurity, some EE runs eah servie in a separated sand-boxes (JVM). This

approah does not improve resoures sharing on a node (if one proess onsumes all CPU resoures, others proesses

will not be able to work orretly). Moreover a standard JVM footprint takes more than 100 MB of memory for

eah instane. Using a multi-thread approah and running one servie in eah thread rather than running as many

instane of JVM as servies greatly improves the memory onsumption.

3.1.2 Dynami servie deployment

The injetion of new funtionalities, alled servies, is independent from the data stream: servies are deployed on

demand when streams reah an ative node whih does not hold the required servie. Two servies deployment

are available : by using a servie repository, where TANs send all requests for downloading required servies, by

deploying servie from TAN to TAN (TAN query the ative node that sends the stream for the servie). In order

to avoid single point of failure servie repository an be mirrored and repliated. When the servie is available on a

node, it is ready to proess the stream. Of ourse, an ative stream an ross equally a lassial router, obviously,

without any proessing ations.

: service transport (tcp)

: service request (tcp)

: ANEP packet (tcp or udp)

TAN TAN

core network

http protocol

tcp/ip

tcp/udp

Figure 6. Two deployment scenario : from code repository or f rom a Tamanoir Active Node

3.2 Kernel space Execution Environment

After our EE user spae investigation, we fous our approah on deploying lightweight servies inside the kernel

spae of the operating system. Our main purpose, here, is to deport eÆiently ative funtionalities from the high

level exeution environment (JVM) into the OS kernel.

Reent versions of the Linux kernel (2.4.x) are well furnished with networking funtionalities and protools :

QoS, Firewall, routing and paket �ltering. NetFilter is a framework for paket modi�ation, outside the normal

Berkeley soket interfae [16℄. With IPv4 ommuniation protool, NetFilter provides �ve hooks, whih are de�ned

points on the IP paket way. These hooks allow to develop and run modules, written in C, in the kernel level. The

funtion nf register hook is used to attah a personalized funtion to a spei� hook. When a paket reahes the

hook, it is automatially transmitted to this personalized funtion.

The various modules whih are set up into the OS kernel an be modi�ed dynamially by ative servies. A

Tamanoir ative servie, running inside the JVM, on�gures the NetFilter module by sending ontrol messages

(Fig. 7). This message is aptured by the NetFilter module and used to parameterize lightweight servies (forward,

paket marking, drop. . .). This on�guration on-the-y allows to dynamially deport personalized funtions inside

the kernel.

6

S1k c

S1u
TAN

us
er

 s
pa

ce
ke

rn
el

 s
pa

ce

Figure 7. User space service (S1u) and kernel space service (S1k) communicates through the com-
munication module ()

3.3 Distributed service processing : Tamanoir on a cluster

High level and appliation oriented ative servies (ompression, ryptography, transoding on-the-y. . .) re-

quire intensive omputing resoures. To support these servies, Tamanoir use the Repliated EEs arhiteture

shown in Fig.4(). A Tamanoir Ative Node embeds a dediated luster to support eÆiently parallel servies on

streams.

The Linux Virtual Server (LVS)[22℄ software suite is dediated to provide distributed servers (ftp, web, mail. . .)

o�ering best performanes in terms of throughput and availability. LVS is able to transmit pakets in 3 di�erent

ways : LVS-NAT, based on address translation (NAT); LVS-DR (Diret Routing) where pakets MAC address are

hanged and pakets transmitted to a real server; LVS-TUN (tunneling) where pakets are IPIP enapsulated and

transmitted to a bak-end mahine.

We modify LVS usage for ative networking and use it in Tamanoir EE. A Tamanoir-LVS is a olletion of TAN

exeution environment running on a luster of mahines and linked together with an high performane network

(Myrinet or GigaEthernet). A dediated mahine is on�gured as a front-end and is used to route pakets from

the Internet to bak-ends mahines. The front-end is seen by external lient (on the Internet) as a single server

dediated to distribute onnetions on eah node of the luster in a round robin way or weighted round robin.

Tamanoir Exeution Environment is repliated on eah bak-end mahine.

4 Experiments

An open problem in ative networking is to ompare and benhmark results between di�erent exeution en-

vironment. In order to show the eÆieny of our approah, we �rst experiment raw performane obtained by a

lightweight ative servie (paket monitoring : whih inludes paket marking, pakets ounting and forwarding)

running in user spae, in kernel spae and, �nally distributed on a luster.

We deploy and use J2RE 1.3 a JVM from IBM on a GNU/Linux Debian distribution. We use three di�erent

platforms at di�erent time to perform measures of throughput and latenies.

Our �rst experimental platform (P1) onsists of dual-proessor Pentium III 1Ghz for TANs and AMD Athlon 1

Ghz for lient hosts. TAN and lients are onneted through a dediated Fast Ethernet (100Mb/s) network. This

platform was used to measure lateny in kernel and user spae.

The seond experimental platform (P2) is a luster of 1U rak Compaq DL360 Proliant dual-PIII/1.4GHz with

a PCI 66MHz bus, onneted through Gigabit Ethernet network with a Foundry swith.

Third platform (P3) is a luster of 1U rak SUN LX50 dual-PIII/1.4GHz with a 66MHz PCI bus too, onneted

through a Myrinet (Gigabits) network with a Myriom swith.

7

4.1 Raw performances on stand-alone base Tamanoir node

Throughput

First, we experiment the throughput ahieved with paket monitoring servie in Tamanoir user spae EE (Figure 8).

All experiments are based on the same Java lient appliation whih sends and reeives ANEP paket streams.

0

50

100

150

200

250

300

350

400

450

500

128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB

M
bp

s

payload size

1 Back End - Monitoring Service - Myrinet

10 streams
5 streams
3 streams
2 streams
1 stream

Figure 8. Throughput results on a stand-alone machine deplo ying active monitoring service

We perform experiments on a lightweight Monitoring servie running in user spae (in the JVM) on the P3

platform (with Myrinet networks). As shown in �gure 8, in order to ahieve the best throughput on only one

ative node we use large pakets (between 32 and 64KB). We also send a large number of streams in order to

bene�t from aggregation. Figure 8 shows that we ahieve more than 430Mb/s for 5 or 10 streams with pakets

size of 32KB. There is not a big di�erene between the 5 and 10 streams urves beause we were limited by the

number of sender and reeiver mahines to produe data streams.

0

10

20

30

40

50

60

70

80

90

100

128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB

M
bp

s

payload size

Architecture impact - 1 stream

SUN LX50/dual-PIII 1.4GHz/bus PCI 66MHz/Myrinet
Compaq Proliant DL360/dual-PIII 1.4GHz/bus PCI 66MHz/GigaEthernet

classic PC/dual-PIII 1GHz/bus PCI 33MHz/Fast Ethernet

Figure 9. Architecture and network impact on
P1, P2, P3 platforms

20

40

60

80

100

120

140

160

180

200

128B 1 2 4 8 32 64

M
bp

s

payload size (KBytes)

Network Architecture impact - 2 streams

SUN LX50/dual-PIII 1.4GHz/bus PCI 66MHz/Myrinet
Compaq Proliant DL360/dual-PIII 1.4GHz/bus PCI 66MHz/GigaEthernet

Figure 10. SMP impact on 1 stream transport

Figure 9 shows the network tehnology and arhiteture impat of our experimental platform on one stream

transport. We onsider that P2 and P3 platforms di�er only by network apabilities (SUN LX50 and Compaq

DL360 are omparable arhitetures). Myrinet tehnology is faster than GigaEthernet tehnology from 4KB pakets

size. It is more diÆult to ompare lassi PCs shipped with a Fast-Ethernet ards with the SUN and Compaq

8

mahine, beause these PC are older and use a slower PCI bus. For only one ative stream there is �nally a small

di�erene with the 2 �rst expensive on�gurations.

As shown in �gure 10 we experiment the bene�t from SMP arhiteture by sending two parallel ative streams.

To proess a TCP stream, Tamanoir instantiates a servie inside a Java thread. For two streams, Tamanoir deploys

two onurrent threads. On a dual arhiteture eah thread is distributed on among CPU. So, the total throughput

is in average the double of the throughput we have in �gure 9.

Lateny

Lateny is the time for an ANEP paket to be proessed and routed to its next destination by a Tamanoir ative

node. The measures were made on the �rst experimental platform thanks to Net�lter. When a paket reah the

node we start a timer and stop it when the same paket now proessed leave the node.

Pakets rossing the Tamanoir ative node remaining in the Linux kernel layer spend around 7 miroseonds for

basi forwarding operations with TCP or UDP (Fig. 11 and 12) on P1 platform. On the kernel level, the size of

ANEP paket does not a�et performanes.

1

10

100

1000

10000

0 5000 10000 15000 20000 25000

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP Payload size (bytes)

Time of crossing of ANEP packet according to the Payload packet

UDP - KERNEL LINUX
UDP - SUN SDK 1.3
UDP - IBM SDK 1.3

UDP - GCJ 3.0

Figure 11. Crossing time for ANEP packets
using UDP protocol

1

10

100

1000

10000

0 5000 10000 15000 20000 25000

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP Payload size (bytes)

Time of crossing of ANEP packet according to the Payload packet

TCP - KERNEL LINUX
TCP - SUN SDK 1.3
TCP - IBM SDK 1.3

TCP - GCJ 3.0

Figure 12. Crossing time for ANEP packets
using TCP protocol

As we expeted, when a paket is forwarded by the Tamanoir EE running in user spae (in the JVM), per-

formanes are impated. Results obtained with standard Java Virtual Mahines (SUN [17℄ or IBM [9℄) are quite

similar. GCJ [6℄ is the GNU ompiler for Java and provides native ode from Java soures or byteode (.lass)

�les. Code is next linked with the library libgj. Compiled exeution environment obtained with GCJ, running in

user spae too, does not improve performanes. With TCP transport (Fig 12), performanes obtained with small

pakets remain around 16 ms (<4096 Bytes). Meanwhile we obtain better results with bigger pakets. Around

4.4 ms for 4KB TCP ANEP pakets with JVM and around 10.5 ms with GCJ version. This is due to the poliy

of small pakets aggregation originally designed for improving data transmission. As shown in �gure 11 we obtain

better results, between 0.5 and 1.25 ms, on UDP with small pakets size.

First experiments of deported servies show how we an on�gure a Tamanoir Servie running in kernel spae.

Figure 13 desribes the ase of an ative servie whih needs to propagate half of data pakets to the user spae

EE. By using standard messages, we an easily on�gure an ative servie running in a NetFilter module.

Figure 13 and 14 desribes performanes obtained thanks to a forwarding and paket marking servie previously

exeuted in the user spae EE and next inside a NetFilter module. ANEP pakets need 7 �s to be proessed and

routed by a servie running in kernel spae and need around 2 ms for a small paket (200 Bytes), then an order of

magnitude of 1000.

By running some servies in kernel spae, we improve performane for ative pakets transport and low level

servies exeuted in kernel spae unload the JVM (and user spae) from superuous work.

9

1

10

100

1000

10000

20 22 24 26 28 30

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP packets which are crossed the actif node

UDP Flow: the even packets stay in the kernel, others pass into the JVM

Packets ANEP Payload 1 Byte
Packets ANEP Payload 200 Bytes

Packets ANEP Payload 4096 Bytes
Packets ANEP Payload 10000 Bytes
Packets ANEP Payload 20000 Bytes
Packets ANEP Payload 25000 Bytes

Figure 13. A packet on two goes up in the
JVM, others are forwarded by the kernel

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP packets which are crossed the actif node

UDP flow: 500 packets cross the JVM, the 500 following stay into the kernel, ...

Packets ANEP Payload 20000 Bytes
Packets ANEP Payload 1 Byte

Figure 14. First 500 packets are processed
inside the JVM, the following remain in the
kernel

us
er

 s
pa

ce
ke

rn
el

 s
pa

ce

control
service

TAMANOIR

Figure 15. NetFilter module runs in kernel space. Tamanoir s ervice runs in user user space and
controls the kernel module to switch active packets

10

4.2 Performances on cluster-based Tamanoir node

Finally, we evaluate the bene�t of distributing resoures inside an ative node by designing a luster-based

Tamanoir node. Giving �rst experiments results of LVS, we present here only performanes ahieved with Diret

Routing [22℄.

The loal experimental platform onsists of 12 lients and a Tamanoir-LVS node (embedding one front-end and

three bak-ends) (Figure 16 show only 6 lients). Sx are ative pakets senders, Rx are reeivers. Streams are

routed by the front-end node ating as a diretor (streams dispather), three bak-ends are attahed to provide

distributed resoures. Results reported in this setion have been measured on a Gigabit Myrinet network.

ta
n1

ta
n2

ta
n3

fr
on

t−
en

dS1 R1

S2 R2
S3 R3

Figure 16. Platform topology with clients and a cluster-bas ed TAN

0

200

400

600

800

1000

1200

128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB

M
bp

s

payload size

3 Back Ends

24 - 8/BE
18 - 6/BE
12 - 4/BE

6 - 2/BE
3 - 1/BE

Figure 17. Throughput of a monitoring service
in Mb/s a 3 nodes cluster-based TAN depend-
ing on number of streams

0

200

400

600

800

1000

1200

128B 1 2 4 8 32 64

M
bp

s

payload size (KBytes)

Heavy and light services comparison on 1 and 3 Back Ends (BE)

Monitoring service/3BE
Monitoring service/1BE

Gzip service/3BE

Figure 18. Lightweight (monitoring) and
heavy (gzip) services comparisons

Figure 17 and 18 show performanes results ahieved experimentally on the P3 platform. Figure 17 presents

performanes obtained with a 3 node luster based Tamanoir. With this on�guration, Tamanoir supports Gbit

performane (1.1 Gbit for 8KB pakets) for a monitoring servie applied on 24 ative streams. We outpass 1 Gbits

limit due to the high bandwith provided by Myrinet networks.

Figure 18 summarises the best results. All these results shows that to exploit all the potential of the proessing

resoures, our ative node needs to proess lot of streams. But with an heavy or high-level servie like the Gzip

servie (data ompression on the y of the tar �le of the 2.4.19 Linux kernel soures), as shown in �gure 18, ative

node resoures are more used and throughput is redued. With this heavy servies a 3 bak end based Tamanoir

ative node is still able to proess up to about 240 Mb/s of ative pakets.

11

5 Related work

Sine the proposition of ative networks, numerous researh projets deal with ative networking tehnology.

But on the topi of high performane ative networking, only few are onerned. In this setion, we attempt to

give a brief overview of the mains works in the �eld of performane and ative networks.

In the ANN projet [4℄, eah paket use a referene to an ative module (all servie) stored on a trusted ode

server. Modules are dynamially linked and exeuted like native ode on the router. This tehnique is alled

Distributed ode ahing for Ative Networks (DAN). Besides DAN, ANN laim that it "will" support ANTS [19℄

who is less foused on high performane but provide faility to design prototypes for experiments and re�nement.

From a hardware point of view, ANN people are aware of tightly oupling proessing engine and network and also

distribute omputations over the CPUs available are important. These both last ideas gave birth, few years ago,

to an Ative Networking Node (ANN) whih an be attahed to an ATM swith bakplane to meet the above

requirements.

The PAN [13℄ projet aims at developing a prototype alled Pratial Ative Networking (PAN) that will

eventually address safety, seurity, inter-operability and high performane. The urrent implementation fous

only on high performane. This projet was wrote in C and obtain very good raw performanes. There is two

implementations of PAN, one of these run in user-spae and the other one in kernel-spae as module. This last,

allows to saturate a Fast Ethernet link with 1,500 bytes pakets, with an overhead of only 13 % to proess eah

paket. Performane are obtained thanks to limited opy, pakets proessing only when neessary and �nally native

ode.

The TAGS [20℄ works fous on the pakets demultiplexing bottlenek. In the Ative Networking equipment eah

pakets have to be demultiplexed not only to the network layer, but to the appliation level Exeution Environment

(EE). To speedup this demultiplexing stage TAGS implements a new ative paket format alled Simple Ative

Paket Format (SAPF). Measurements show that SAPF pakets an be proessed 30% faster than regular IP

pakets that use the traditional ANEP header.

CANEs [14℄, whih stands for Composable Ative Network Elements, is a projet whih aims to design a oherent

arhitetural framework for ative networking inluding onsistent terminology, minimum funtional requirements,

and interfae spei�ations. The main goal is to provide network-based apabilities that enhane the ommuniation

servie and/or performane seen by users of the network with mehanisms like reating to a ongestion, transparent

ahing of information in network nodes, and support for multiast video distribution to heterogeneous end-users.

CANEs is an exeution environments running on NodeOS (but urrently on an interim platform alled Bow-

man[15℄ implementing just a subset of the NodeOS interfae).

The AMP[2℄ projet is developing a new software base that allows ative ode to be exeuted seurely, safely

and with high performane. AMP system should provide a fast and lightweight exeution environment for Ative

Networks nodes. By enforing resoure usage limitations, ative ode annot tamper with the rest of the ative

node. AMP take advantage of tehniques and software developed by the DARPA-funded exokernel projet that

demonstrate physial resoures may be managed by user-level appliations in way that allows both eÆieny and

potential for protetion.

The Protool Boosters [5℄ projet aims to improve the performane of heterogeneous distributed omputing

systems by improving the performane of the ommuniation protools that are used by the nodes of the distributed

systems. They an dynamially avoiding any unneessary protool proessing and dynamially optimizing the

ommuniation protool. This will give an eÆient programming model for ative networks appliations.

Clara is an arhiteture for a luster based omputing router used in the Journey network model providing

omputation as a salable network servie. A "media unit" rossing a Clara omputing router will be proessed

in funtion of loal onditions resoures availability, making deision independently of other omputing router.

This model doesn't guarantee that eah "media unit" will arrive proessed. It's in the same spirit of best-e�ort

routing in IP networks. A media unit proessed or unproessed is determined by the IP Router Alert option.

If un-deteted, pakets are diretly routed by IP, else pakets are handed up to the Clara software for possible

proessing. The Clara arhiteture use one PC for routing, the others linked by a SAN, are only dediated for

proessing, with a simple round-robin dispathing algorithm. A prototype has been evaluated in the ontext of

real-time transoding MPEG video.

While most projets are software environments (exept ANN) for paket proessing on programmable routers

(whih are workstations that at like routers). Some ompanies (like IBM, Intel, Motorola,. . .) make available

12

ommerially programmable paket proessing engines for routers alled "Network Proessors". These Network

Proessors perform proessing from the data link layer to the appliation layer. They ome as system-on-a-hip

designs that ombine proessors, memory and IO on a single ASIC. In [21℄ they study the design of an high

performane ative router with these brand new spei�s proessors.

6 Conlusion

In this paper, we present our �rst step towards the design of an high performane software ative router. We

propose a new arhiteture for ative nodes targeted to provide high performane support for ative servies. We

validate this arhiteture by designing the Tamanoir exeution environment. Tamanoir supports deployment of

servies in user spae level, kernel level and distributed servies on a luster. Our experiments have been deployed

on Gigabit networks. A stand-alone SMP based Tamanoir node an support around 500 Mbit/s of bandwith for

lightweight servie with its multi-threaded design and servies support in kernel. We demonstrate the need to

deploy luster based Tamanoir nodes to fully support a GBit network.

One of our next step onsists of fully integrating and evaluating ative servies inside Network Programmable

Interfae Card (Myrinet). With this o�oad approah, Tamanoir should bene�t from servies loated losed to the

link and diretly exeuted on the network ard.

In our quest of performanes we also want to redue the impat of ANEP pakets by supporting other ative

pakets format (like SAPF or ustom format) and simple IP pakets requesting ative servies.

Providing performane in ative routers is also a mandatory aspet for high performane long distane applia-

tions. One of our urrent researh onerns the deployment of ative networking tehnology to the requirements

of Grid middlewares and appliations ([11℄).

Referenes

[1℄ S. Alexander, B. Braden, C. Gunter, A. Jakson, A. Keromytis, G. Minden, and D. Wetherall. Ative Network

Enapsulation Protool (ANEP). RFC Draft, Category : Experimental, July 1997.

[2℄ AMP Projet. http://www.pgp.om/researh/nailabs/distributed/amp.asp.

[3℄ Nanette Boden, Danny Cohen, Robert Felderman, Alan Kulawik, Charles Seitz, Jakov Seizovi, and Wen-King

Su. Myrinet : a gigabit per seond loal area network. IEEE-Miro, 15(1):29{36, February 1995.

[4℄ D. Deasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner. A salable, high performane ative

network node. In IEEE Network, volume 13, January 1999.

[5℄ D. Feldmeier, A. MAuley, J. Smith, D. Bakin, W. Marus, and T. Raleigh. Protool boosters. IEEE Journal

On Seleted Areas in Communiations, 16(3):437{444, April 1998.

[6℄ GCJ. The GNU Compiler for the Java Programming Language. http://soureware.ygnus.om/java/.

[7℄ Jean-Patrik Gelas and Laurent Lef�evre. Tamanoir: A high performane ative network framework. In

C. S. Raghavendra S. Hariri, C. A. Lee, editor, Ative Middleware Servies, Ninth IEEE International Sym-

posium on High Performane Distributed Computing, pages 105{114, Pittsburgh, Pennsylvania, USA, August

2000. Kluwer Aademi Publishers. ISBN 0-7923-7973-X.

[8℄ Jean-Patrik Gelas and Laurent Lef�evre. Mixing high performane and portability for the design of ative

network framework with java. In 3rd International Workshop on Java for Parallel and Distributed Computing,

International Parallel and Distributed Proessing Symposium (IPDPS 2001), San Fransiso, USA, April 2001.

[9℄ IBM. IBM Java Developer Kit for Linux. http://www.alphaworks.ibm.om/teh/linuxjdk.

[10℄ Java programming language. http://java.sun.om/.

13

[11℄ L. Lef�evre, C. Pham, P. Primet, B. Touranheau, B. Gaidioz, J.P. Gelas, and M. Maimour. Ative networking

support for the grid. In Noaki Wakamiya Ian W. Marshall, Sott Nettles, editor, IFIP-TC6 Third International

Working Conferene on Ative Networks, IWAN 2001, volume 2207 of Leture Notes in Computer Siene,

pages 16{33, ot 2001. ISBN: 3-540-42678-7.

[12℄ Laurent Lef�evre and Olivier Reymann. Combining low-lateny ommuniation protools with multithreading

for high performane dsm systems on lusters. In 8th Euromiro Workshop on Parallel and Distributed

Proessing, pages 333{340, Rhodes, Greee, Jan 2000. IEEE Computer Soiety Press.

[13℄ Erik L.Nygren, Stephen J.Garland, and M.Frans Kaashoek. PAN: A High-Performane Ative Network Node

Supporting Multiple Mobile Code Systems. In IEEE OPENARCH '99, Marh 1999.

[14℄ S. Merugu, S. Bhattaharjee, Y. Chae, M. Sanders, K. Calvert, and E. Zegura. Bowman and anes: Imple-

mentation of an ative network. In 37th Annual Allerton Conferene, Montiello, IL, September 1999.

[15℄ S. Merugu, S. Bhattaharjee, E. Zegura, and K. Calvert. Bowman: A node os for ative networks. In IEEE

INFOCOM '2000, mar 2000.

[16℄ Rusty Russell. Linux Filter Haking HOWTO. net�lter desription and usage, july 2000.

[17℄ SUN. Kit de dveloppement java de sun. http://java.sun.om/.

[18℄ David Tennenhouse and David Wetherall. Towards an ative network arhiteture. Computer Communiations

Review, 26(2):5{18, April 1996.

[19℄ David Wetherall, John Guttag, and David Tennenhouse. ANTS : a toolkit for building and dynamially

deploying network protools. In IEEE OPENARCH '98, April 1998.

[20℄ Tilman Wolf and Dan Deasper. Tags for high performane ative networks. In OpenArh2000, Tel Aviv,

Marh 2000, 2000.

[21℄ Tilman Wolf and Jonathan S. Turner. Design issues for high performane ative routers. IEEE Journal on

Seleted Areas of Communiation, 19(3):404{409, Marh 2001.

[22℄ Wensong Zhang. Linux Virtual Server for Salable Network Servies. In Ottawa Linux Symposium, 2000.

14

