
A Generic and Extensible Framework for Monitoring
Energy Consumption of OpenStack Clouds

François Rossigneux, Jean-Patrick Gelas, Laurent Lefèvre, Marcos Dias de Assunção
Inria Avalon, LIP Laboratory

Ecole Normale Supérieure de Lyon
University of Lyon, France

Abstract—Although cloud computing has been transforma-
tional to the IT industry, it is built on large data centres that
often consume massive amounts of electrical power. Efforts have
been made to reduce the energy clouds consume, with certain
data centres now approaching a Power Usage Effectiveness (PUE)
factor of 1.08. While this is an incredible mark, it also means
that the IT infrastructure accounts for a large part of the power
consumed by a data centre. Hence, means to monitor and analyse
how energy is spent have never been so crucial. Such monitoring
is required not only for understanding how power is consumed,
but also for assessing the impact of energy management policies.
In this article, we draw lessons from experience on monitoring
large-scale systems and introduce an energy monitoring software
framework called KiloWatt API (KWAPI), able to handle Open-
Stack clouds. The framework — whose architecture is scalable,
extensible, and completely integrated into OpenStack — supports
several wattmeter devices, multiple measurement formats, and
minimises communication overhead.

I. INTRODUCTION

Cloud computing [1] has become a key building block
in providing IT resources and services to organisations of all
sizes. Among the claimed benefits of clouds, the most appeal-
ing derive from economies of scale and often include a pay-as-
you-go business model, resource consolidation, elasticity, good
availability, and wide geographical coverage. Despite these
advantages when compared to other provisioning models, in
order to serve customers with the resources and elasticity they
need, clouds generally rely on large data centres that consume
massive amounts of electrical power [2] [3].

Although some data centres now approach a Power Usage
Effectiveness (PUE) factor of 1.081, such a mark means that
the IT infrastructure is now responsible for a large part of
the consumed power. Means to monitor and analyse how
energy is spent are crucial to further improvement, but our
previous work in this area has demonstrated that monitoring
the power consumed by large systems is not always an easy
task [4]–[6]. There are multiple power probes available in the
market, generally with their own APIs, physical connections,
precision, and communication protocols [7]. Moreover, cost
related constraints can lead data centre operators to acquire
and deploy equipments at multiple stages, or to monitor the
power consumption of only part of an infrastructure.

From a cost perspective, monitoring the power consump-
tion of only a small part of deployed equipments is sound,
but it prevents one from capturing important nuances of the

1http://gigaom.com/2012/03/26/whose-data-centers-are-more-efficient-
facebooks-or-googles/

infrastructure. Previous work has shown that as a computer
cluster ages, certain components wear out, while others are
replaced, leading to heterogeneous power consumption among
nodes that were seemingly homogeneous [8]. The difference
between nodes that consume the least power and nodes that
consume the most can reach 20% [9], which reinforces the idea
that monitoring the consumption of all equipments is required
for exploring further improvement in energy efficiency and
evaluate the impact of system-wide policies. Monitoring a
great number of nodes, however, requires the design of an
efficient infrastructure for collecting and processing the power
consumption data.

This paper describes the design and architecture of a
generic and flexible framework, termed as KiloWatt API
(KWAPI), that interfaces with OpenStack to provide it with
power consumption information collected from multiple het-
erogeneous probes. OpenStack is a project that aims to provide
ubiquitous open source cloud computing platform and is cur-
rently used by many corporations, researchers and global data
centres2. We describe how KWAPI is integrated into Ceilome-
ter; OpenStack’s component conceived to provide a framework
to collect a large range of metrics for metering purposes3. With
the increasing use of Ceilometer as the de facto metering tool
for OpenStack, we believe that such an integration of a power
monitoring framework into OpenStack can be of great value
to the research community and practitioners.

The remaining part of this paper is organised as follows.
Section II describes background and related work, whereas
Section III presents the KWAPI architecture. Section IV dis-
cusses experimental results on measuring the throughput of
KWAPI, and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides an overview of Ceilometer’s ar-
chitecture and describes related work on monitoring power
consumption of large-scale computing infrastructure.

A. OpenStack Ceilometer

Ceilometer — whose logical architecture4 is depicted in
Figure 1 — is OpenStack’s framework for collecting perfor-
mance metrics and information on resource consumption. As
of writing, it allows for data collection under three methods:

2http://www.openstack.org/user-stories/
3https://wiki.openstack.org/wiki/Ceilometer
4http://docs.openstack.org/developer/ceilometer/architecture.html

• Bus listener agent, which picks events on Open-
Stack’s notification bus and turns them into Ceilometer
samples (e.g. cumulative type, gauge or delta) that can
then be stored into the database or provided to an
external system via publishing pipeline.

• Push agents, more intrusive, consist in deploying
agents on the monitored nodes to push data remotely
to be taken by the collector.

• Polling agents that poll APIs or other tools to collect
information about monitored resources.

Ceilometer
collector

Notification Bus

External
system

OpenStack
components

API

Publishing
pipeline

Ceilometer
agents

Ceilometer
API

Ceilometer
Evaluator

Ceilometer
Notifier

External
system

External
system

Publishing
pipeline

Database

Alarm queue

Set alarm

Send alarm

Oslo notifications

Oslo
RPC

Fig. 1. Overview of Ceilometer’s logical architecture.

The last two methods depend on a combination of central
agent, computer agents and collector. The compute agents
run on nodes and retrieve information about resource usage
related to a given virtual machine instance and a resource
owner. The central agent, on the other hand, executes pollsters
on the management server to retrieve data that is not linked
to a particular instance. Pollsters are software components
executed, for example, to poll resources by using an API or
other methods. The Ceilometer database, which can be queried
via Ceilometer API, allows an external system to view the
history of a resource’s metrics, and enables the system to set
and receive alarms.

The hmac module of Python’s library can be used for
signing metering messages, and a shared secret value can
be provided in the configuration settings. The collector and
systems accessing the API use signatures included in the
messages for verification.

B. Energy Monitoring and Efficiency in Clouds

Over the past years, several techniques have been provided
to minimise the energy consumed by computing infrastructure.
At the hardware level, for instance, processors are able to
operate at multiple frequency and voltage levels, and the
operating systems or resource managers can choose the level
that matches the current workload [10]. At the resource
management level, several approaches are proposed, including
resource consolidation [11] and rescheduling requests [4],
generally with the goal of switching off unused resources or
setting them to low power consumption modes. Attempts have

also been made to assess the power consumed by individual
applications [12].

A means to monitor the energy consumption is key to
assess potential gains of techniques to improve software and
cloud resource management systems. Cloud monitoring is not
a new topic [13] as tools to monitor computing infrastructure
[14], [15] as well as ways to address some of the usual
issues of management systems have been introduced [16], [17].
Moreover, several systems for measuring the power consumed
by compute clusters have been described in the literature [5].
As traditional system and network monitoring techniques lack
the capability to interface with wattmeters, most approaches
for measuring energy consumption have been tailored to the
needs of projects for which they were conceived.

In our work, we draw lessons from previous approaches
to monitor and analyse energy consumption of large-scale
distributed systems [4]–[6], [9], [18]. We opt for creating a
framework and integrating it with a successful cloud platform
(i.e. OpenStack), which we believe is of value to the research
community and practitioners working on the topic. To the best
of our knowledge, this is the first generic energy monitoring
framework to be integrated with OpenStack.

III. THE KWAPI ARCHITECTURE

An overview of the KWAPI architecture is presented in
Figure 2. The architecture follows a publish/subscribe model
based on a set of layers comprising:

• Drivers, considered data producers responsible for
measuring the power consumption of monitored re-
sources and providing the collected data to consumers
via a communication bus; and

• Data Consumers — or Consumers for short — that
subscribe to receive and process the measurement
information.

The communication between layers is handled by a bus,
as explained in detail later. Data consumers can subscribe to
receive information collected by drivers from multiple sites.
Both drivers and consumers are easily extensible to support,
respectively, several types of wattmeters and provide additional
data processing services. A REST API is designed as a data
consumer to provide a programming interface for developers
and system administrators. In this work it is used to interface
with OpenStack by providing the information (i.e. by polling
monitored devices) required by a KWAPI Pollster that feeds
Ceilometer.

The following sections provide more details on the main
architecture components and their relationship with OpenStack
Ceilometer.

A. Driver Layer

Drivers are threads initialised by a Driver Manager with a
set of parameters loaded from a file compliant with the Open-
Stack configuration format. These parameters are used to query
the meters (e.g. IP address and port) and determine the sensor
ID to be used in the collected metrics. The measurements that
a driver obtains are represented as JavaScript Object Notation
(JSON) dictionaries that maintain a small footprint and that

OpenStack

Driver Layer (Data Producers)

IPMI Driver

SNMP DriverSerial

VM

VM

IPMI

Server

VM

VM

Server

IPMI Driver

SNMP DriverSerial

VM

VM

VM

VM

Server Server

Power Distribution Unit

Data Centre 1
Data Centre 2

Communication Bus ForwardersForwarders

Web pages
and RRD files

Cumulative and
gauge data

IPMI

Driver Layer (Data Producers)

Data Consumers

VisualisationREST API

Ceilometer

KWAPI Pollster

Central Agent Nova

......

External
system

External
system

KWAPI

Fig. 2. Overview of KWAPI’s architecture.

{
"probe_id": "164",
"w": 92,
"a": 0.4,
"v": 230.0,
"message_signature": "bb45c88f3ba64..."

}

Fig. 3. Example of JSON payload.

can be easily parsed. The size of dictionaries varies depending
on the number of fields set by drivers (i.e. whether message
signing is enabled).

Figure 3 shows a simple example of a JSON payload
containing one measurement. Optional fields such as voltage
and current can be included. ACK messages have a fixed size
of 66 bytes when using TCP connection; drivers and data
consumers communicate via IPC sockets when running on the
same machine.

Drivers can manage incidents themselves, but the manager
also checks periodically if all threads are active, restarting
them if necessary. It is important to avoid losing measurements
because the reported information is in W instead of kWh. The
loss of a measurement may be significant.

Wattmeters available in the market vary in terms of physical
interconnection, communication protocols, packaging and pre-
cision of measurements they take. They are mostly packaged
in multiple outlet power strips called Power Distribution Units
(PDUs) or enclosure PDUs (ePDUs), and more recently in
the Intelligent Platform Management Interface (IPMI) cards
embedded in the computers themselves. Support for several
types of wattmeter has been implemented, which drivers can

use to interface with a wide range of equipments. In our
work, we used IPMI initially at Nova to shutdown and turn
on compute nodes, but nowadays we also use it to query a
computer chassis remotely.

Although Ethernet is generally used to transport IPMI or
SNMP packets over IP, USB and RS-232 serial links are also
common. Wattmeters that use Ethernet are generally connected
to an administration network (isolated from the data centre
main data network). Moreover, wattmeters may differ in the
manner they operate; some equipments send measurements to
a management node on a regular basis (push mode), whereas
others respond to queries (pull mode). Other characteristics
that differ across wattmeters include:

• refresh rate (i.e. maximum number of measurements
per second);

• measurement precision; and

• methodology applied to each measurement (e.g. mean
of several measurements, instantaneous values, and
exponential moving averages).

Table I shows the characteristics of equipments we de-
ployed and used with Kwapi in our cloud infrastructure.

B. Data Consumers

A data consumer retrieves and processes measurements
taken by drivers and provided via bus. Consumers expose
the information to other services including Ceilometer and
visualisation tools. By using a system of prefixes, consumers
can subscribe to all producers or a subset of them. When
receiving a message, a consumer verifies the signature, extracts
the content and processes the data. By default KWAPI provides

TABLE I. WATTMETER INFRASTRUCTURE

Device Name Interface Refresh
Time (s)

Precision
(W)

Dell iDrac6 IPMI / Ethernet 5 7

Eaton Serial, SNMP via Ethernet 5 1

OmegaWatt IrDA Serial 1 0.125

Schleifenbauer SNMP via Ethernet 3 0.1

Watts Up? Proprietary via USB 1 0.1

ZEZ LMG450 Serial 0.05 0.01

two data consumers, namely the REST API (used to interface
with Ceilometer) and a visualisation consumer.

1) REST API: The API consumer computes the number of
kWh of each driver probe, adds a timestamp, and stores the
last value in watts. If a driver has not provided measurements
for a long time, the corresponding data is removed. The
REST API allows an external system to retrieve the name
of probes, measurements in W or kWh, and timestamps. The
API is secured by OpenStack Keystone tokens5, whereby the
consumer needs to ensure the validity of a token before sending
a response to the system.

2) Visualisation: The visualisation consumer builds
Round-Robin Database (RRD) files from received measure-
ments, and generates graphs that show the energy consumption
over a given period, with additional information such as
average electricity consumption, minimum and maximum watt
values, last value, total energy and cost in Euros. RRD files
are of fixed size and store several collections of metrics with
different granularities. A web interface displays the generated
graphics and a cache mechanism triggers the creation of graphs
during queries only if they are out of date. These visualisation
resources offer quick feedback to administrators and users
during execution of tasks and applications. Figure 4 shows
an example of generated graph.

C. Internal Communication Bus

KWAPI uses ZeroMQ [19], a fast broker-less messaging
framework written in C++, where transmitters play the role
of buffers. ZeroMQ supports a wide range of bus modes,
including cross-thread communication, IPC, and TCP. Switch-
ing from one mode to another is straightforward. ZeroMQ
also provides several design patterns such as publish/sub-
scribe and request/response. As mentioned earlier, in our
publish/subscribe architecture drivers are publishers, and data
consumers are subscribers. If no data consumer is subscribed
to receive data from a given driver, the latter will not send any
information through the network.

Moreover, one or more optional forwarders can be installed
between drivers and data consumers to minimise network
usage. Forwarders are designed to act as especial data con-
sumers who subscribe to receive information from a driver and
multicast it to all normal data consumers subscribed to receive
the information. Forwarders enable the design of complex
topologies and optimisation of network usage when handling
data from multiple sites. They can also be used to bypass
network isolation problems and perform load balancing.

5http://keystone.openstack.org

D. Interface with Ceilometer

We opted for integrating KWAPI with an existing open
source cloud platform to ease deployment and use. Leveraging
the capabilities offered by OpenStack can help in the adoption
of a monitoring system and reduce its learning curve.

Ceilometer’s central agent and a dedicated pollster (i.e.
KWAPI Pollster) are used to publish and store energy met-
rics into Ceilometer’s database. They query the REST API
data consumer and publish cumulative (kWh) and gauge (W)
counters that are not associated with a particular tenant, since
a server can host multiple clients simultaneously.

Depending on the number of monitored devices and the
frequency at which measurements are taken, wattmeters can
generate a large amount of data, thus demanding storage capac-
ity for further processing and analysis. Management systems
often store and perform pre-processing locally on monitored
nodes, but such an approach can impact on CPU utilisation
and influence the power consumption. In addition, resource
managers may switch off idle nodes or set them to stand
by mode to save energy, which make them unavailable for
processing. Centralised storage, on the other hand, allows for
faster data access and processing, but can generate more traffic
given that measurements need to be continuously transferred
over the network to a central point.

Ceilometer uses its own central database, which is lever-
aged here to store the energy consumption metrics. In this way,
systems that interface with OpenStack’s Ceilometer, including
Nova, can easily retrieve the data. It is important to notice
that, even though Ceilometer provides the notion of a central
repository for metrics, it also uses a database abstraction that
enables the use of distributed systems such as Apache Hadoop
HDFS6, Apache Cassandra7, and MongoDB8.

The granularity at which measurements are taken and
metrics are computed is another important factor because user
needs vary depending on what they wish to evaluate. Taking
one or more measurements per second is not common under
certain scenarios, which can be a challenge in an infrastruc-
ture comprising hundreds or thousands of nodes, demanding
efficient and scalable mechanisms for transferring information
on power consumption. Hence, in the next section we evaluate
the throughput of KWAPI under a few scenarios.

IV. PERFORMANCE EVALUATION

This section provides results of a performance evaluation
carried out in our testbed. The goal is not to compare publish/-
subscribe systems since such work has already been performed
elsewhere [20], [21]. The evaluation demonstrates that the
framework serves well the needs of a large range of users
of the Grid’5000 platform [22] — the infrastructure we use
and where the KWAPI framework is currently deployed in
production mode as the means for collecting and providing
energy consumption information to users.

First we want to evaluate the CPU and network usage
of a typical driver to observe the framework’s throughput,

6http://hadoop.apache.org/
7http://cassandra.apache.org/
8http://www.mongodb.org/

Fig. 4. Example of graph generated by the visualisation plug-in (4 monitored servers).

since provisioning a large number of resources for monitoring
purposes is not desirable. For this experiment we deployed
the KWAPI drivers and API on a machine with a Core 2 Duo
P8770 2.53Ghz processor and 4GB of RAM. We considered:

• a scenario where we emulated 1,000 IPMI cards,
each card monitored by a driver thread placing a
measurement per second on the communication bus.

• a case with 100 ten-outlet PDUs, each monitored by
a driver thread placing ten values per second on the
communication bus.

Under both scenarios, 1,000 measurements per second were
placed on the bus, even though monitoring was done using
different types of probes. We have evaluated these scenarios
considering both with and without message signature. Table II
summarises the considered scenarios.

Figure 5 shows the results of CPU usage of drivers under
the evaluated scenarios. The socket type and number of driver
threads do not have a distinguishable impact on the CPU usage.
On the test machine, the KWAPI drivers with message signa-
ture disabled (i.e. IPMI cards unsigned and PDUs unsigned)
consumed on average 20% of the total CPU power.

We also evaluated the CPU consumption of the REST
API data consumer under the scenarios described in Table II.

TABLE II. SCENARIOS CONSIDERED IN THE EXPERIMENTS.

Scenario name Agent thread scheme Message signature

IPMI message signed 1 thread per card Enabled

IPMI message unsigned 1 thread per card Disabled

PDU message signed 1 thread per PDU Enabled

PDU message unsigned 1 thread per PDU Disabled

0 5 10 15 20 25 30
CPU Usage (%)

IPMI cards
signed

PDUs
signed

IPMI cards
unsigned

PDUs
unsigned

Fig. 5. Driver CPU usage under the evaluated scenarios.

In addition to these scenarios, two conditions were assessed,
namely (i) the REST API working as a consumer requesting
data from drivers at a one-second time interval (REST API
only); and (ii) the API requesting data at one-second interval
and also answering a call every second to provide the collected
data to an external system (REST API + 1 req/s). Figure 6
summarises the obtained results. The CPU consumption is in
general low. Even when message signing is enabled and the
API serves a query, its consumption is below 20%. The small
variation between the scenarios without message signing is
caused by the manner ZeroMQ accumulates data on nodes
prior to transmission.

0 5 10 15 20 25 30
CPU Usage (%)

IPMI cards
signed

PDUs
signed

IPMI cards
unsigned

PDUs
unsigned

REST API only
REST API + 1 req./s

Fig. 6. API consumer CPU usage under the evaluated scenarios.

Although the CPU usage often depends on the drivers,
data consumers, and their complexity, and whether message
signature is enabled, the experiments show that a large number
of probes can be managed by a single machine. In our
environment, a management machine per site is more than
enough to accommodate the users’ monitoring needs. The
drivers and API can reuse a machine that already serves other
monitoring purposes.

Time (sec.)

10
20

30
40

50
60 Measurement Interval

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

#
M

ea
su

re
m

en
ts

R
ec

ei
ve

d

0

1000

2000

3000

4000

5000

Fig. 7. Number of observations received over a 60 second interval under
different multiple intervals.

Although a measurement interval of one second meets
the requirements of users in our platform, we wanted to
evaluate the impact of using a communication bus in the

transfer of observations between drivers and the REST API
consumer. In a second experiment we used two machines.
On the first machine we instantiated 1,000 driver threads
placing random observations on the communication bus. On
the second machine we measured the number of measurements
that the API is able to receive over a minute. We varied
the time between measurements from 0.2 to 1.0 seconds.
Figure 7 summarises the obtained results. Though the number
of observations generated in this experiment is much higher
than what we currently need to handle in our platform, we
observe that the framework is able to transfer measurements
from drivers to API under a 0.4 second interval without adding
much jitter. Under smaller measurement intervals, however,
observations start to accumulate and are transferred at large
chunks. We believe that under small measurement intervals,
and consequently a very large number of observations per
second, an architecture based on stream processing systems
that guarantees data processing might be more appropriate.
Hence, although the framework suits the purposes of large
range of users, if measurements are to be taken at very
small time intervals, a stream processing architecture would
probably yield better performance by enabling the placement
of elements to pre-process data closer to where it is generated.

V. CONCLUSION

In this paper, we described a novel framework (KWAPI) for
monitoring the power consumed by resources of an Openstack
cloud. Based on lessons learned by monitoring the power
consumption of large distributed infrastructure, we proposed
an energy monitoring architecture based on a publish/subscribe
model. The framework works in tandem with OpenStack’s
Ceilometer. Experimental results demonstrate that the overhead
posed by the monitoring framework is small, allowing us to
serve the users’ monitoring needs of our large scale infrastruc-
ture.

As future work, we intend to explore means to increase the
monitoring granularity and the number of measured devices
by applying a hierarchy of plug-ins, and a stream processing
system with guarantees on data processing [23], [24] for
processing streams of measurement tuples.

ACKNOWLEDGMENTS

This research is supported by the French Fonds national
pour la Société Numérique (FSN) XLCloud project. Some
experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under the
Inria ALADDIN development action with support from CNRS,
RENATER and several Universities as well as other funding
bodies (see https://grid5000.fr). Authors wish to thank Julien
Danjou for his help during the integration of KWAPI with
OpenStack and Ceilometer.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A Berkeley view of Cloud computing,” Electrical
Engineering and Computer Sciences, University of California at Berke-
ley, Berkeley, USA, Technical report UCB/EECS-2009-28, February
2009.

[2] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker, “Green cloud
computing: Balancing energy in processing, storage, and transport,”
Proceedings of the IEEE, vol. 99, no. 1, pp. 149–167, January 2011.

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, pp. 68–73, January
2009.

[4] A.-C. Orgerie, L. Lefèvre, and J.-P. Gelas, “Save watts in your Grid:
Green strategies for energy-aware framework in large scale distributed
systems,” in 14th IEEE International Conference on Parallel and
Distributed Systems (ICPADS’08), Melbourne, Australia, December
2008, pp. 171–178.

[5] M. D. de Assunção, J.-P. Gelas, L. Lefèvre, and A.-C. Orgerie, “The
green Grid’5000: Instrumenting and using a Grid with energy sensors,”
in 5th International Workshop on Distributed Cooperative Laboratories:
Instrumenting the Grid (INGRID 2010), Poznan, Poland, May 2010.

[6] G. Da Costa, M. D. de Assunção, J.-P. Gelas, Y. Georgiou, L. Lefèvre,
A.-C. Orgerie, J.-M. J.-M. Pierson, O. Richard, and A. Sayah, “Multi-
facet approach to reduce energy consumption in clouds and grids: The
GREEN-NET framework,” in 1st International Conference on Energy-
Efficient Computing and Networking (e-Energy 2010), Passau, Germany,
April 2010, pp. 95–104.

[7] M. E. M. Diouri, M. F. Dolz, O. Glück, L. Lefèvre, P. Alonso,
S. Catalán, R. Mayo, and E. S. Quintana-Ortı́, “Solving some Mysteries
in Power Monitoring of Servers: Take Care of your Wattmeters!” in
Energy Efficiency in Large Scale Distributed Systems conference (EE-
LSDS), Vienne, Autriche, Apr. 2013, pp. 3–18.

[8] J. Dean, “Some potential areas for future research,” Google Faculty
Summit talk, July 2008.

[9] M. E. M. Diouri, O. Gluck, L. Lefevre, and J.-C. Mignot, “Your
cluster is not power homogeneous: Take care when designing green
schedulers!” in International Green Computing Conference (IGCC
2013). IEEE, June 2013, pp. 1–10.

[10] G. von Laszewski, L. Wang, A. J. Younge, and X. He, “Power-
aware scheduling of virtual machines in DVFS-enabled clusters,” in
IEEE International Conference on Cluster Computing and Workshops
(Cluster 2009), vol. 2, August 2009, pp. 1–10.

[11] A. Beloglazov and R. Buyya, “Openstack neat: A framework for
dynamic and energy-efficient consolidation of virtual machines in open-
stack clouds,” Concurrency and Computation: Practice and Experience,
2014.

[12] A. Noureddine, “Towards a better understanding of the energy con-
sumption of software systems,” PhD thesis, Université Lille 1, Lille,
France, March 2006.

[13] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring:
A survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, June
2013.

[14] A. Brinkmann, C. Fiehe, A. Litvina, I. Luck, L. Nagel, K. Narayanan,
F. Ostermair, and W. Thronicke, “Scalable monitoring system for
clouds,” in IEEE/ACM 6th International Conference on Utility and
Cloud Computing (UCC 2013), December 2013, pp. 351–356.

[15] S. Varrette, V. Plugaru, M. Guzek, X. Besseron, and P. Bouvry, “HPC
performance and energy-efficiency of the openstack cloud middle-
wares,” in Proc. of the 43rd Intl. Conf. on Parallel Processing (ICPP-
2014), Heterogeneous and Unconventional Cluster Architectures and
Applications Workshop (HUCAA’14), September 2014.

[16] J. S. Ward and A. Barker, “Varanus: In situ monitoring for large scale
cloud systems,” in IEEE 5th International Conference on Cloud Com-
puting Technology and Science (CloudCom 2013), vol. 2, December
2013, pp. 341–344.

[17] Y. Tan, V. Venkatesh, and X. Gu, “Resilient self-compressive monitoring
for large-scale hosting infrastructures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 3, pp. 576–586, March 2013.

[18] J. Carpentier, J.-P. Gelas, L. Lefevre, M. Morel, O. Mornard, and J.-
P. Laisne, “CompatibleOne: Designing an energy efficient open source
cloud broker,” in 2nd International Conference on Cloud and Green
Computing (CGC 2012). Washington, USA: IEEE Computer Society,
2012, pp. 199–205.

[19] P. Hintjens, ZeroMQ: Messaging for Many Applications. Sebastopol,
USA: O’Reilly Media, March 2013.

[20] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114–131, June 2003.

[21] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha, “Filtering algorithms and implementation for very fast
publish/subscribe systems,” SIGMOD Rec., vol. 30, no. 2, pp. 115–126,
May 2001.

[22] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lantéri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and T. Iréa, “Grid’5000:
a large scale and highly reconfigurable experimental Grid testbed,”
International Journal of High Performance Computing Applications,
vol. 20, no. 4, pp. 481–494, November 2006.

[23] “Storm: Distributed and fault-tolerant realtime computation,” Project
Website, 2014. [Online]. Available: https://storm.incubator.apache.org/

[24] “S4: Distributed stream computing platform,” Project Website, 2014.
[Online]. Available: http://incubator.apache.org/s4/

