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Abstract—In this paper, we analyse performance and energy
consumption of four OpenMP runtime systems over a NUMA
platform. We present an experimental study to characterize
OpenMP runtime systems on the three main kernels in dense
linear algebra algorithms (Cholesky, LU and QR) in terms of
performance and energy consumption. Our experimental re-
sults suggest that OpenMP runtime systems can be considered
as a new energy leverage. For instance, a LU factorization with
concurrent write extension from libKOMP achieved up to 1.75
of performance gain and 1.56 of energy decrease.

1. Introduction

Energy-efficiency is one of the four major challenges
that should be overcome in the path to exascale comput-
ing [1]. Despite improvements in energy-efficiency, the total
energy consumed by supercomputers is still increasing due
to the even quicker increase in computational power. High
energy consumption is not only a problem of electricity
costs, but it also impacts greenhouse emissions and dis-
sipating the produced heat can be difficult. As the ability
to track power consumption becomes more commonplace,
with some job schedulers supporting tracking energy use [2],
soon users of HPC systems may have to consider both how
many CPU hours they need and how much energy.

Energy budget limitation imposes a high pressure to the
HPC community making energy consideration a prominent
research field. Most of the gain will come from technology
by providing more energy efficient hardware, memory and
interconnect. Nevertheless, recent processors integrate more
and more leverages to reduce energy consumption (e.g.
classical DVFS, deep sleep states) and low level runtime
algorithms provide orthogonal leverages (e.g. dynamic con-
currency throttling). However few of these leverages are
integrated and employed in today local level software stack
such as middleware, operating system or runtime library.
Due to the complexity of this statement, we restricted our
investigation to local node energy consumption by HPC
OpenMP applications.

OpenMP is an API standard to express parallel portable
programs. Most of controls are implementation defined and
rely on the specific OpenMP programming environment
used. The OpenMP standard does not impose any constraint
on implementations. Even if there are more precise speci-
fications, e.g. mapping of threads to cores, it is very tricky

to precisely control performance or energy consumption
using what OpenMP specification proposes [3]. Previous
works have dealt with a specific OpenMP runtime [4],
[5], [6], [7], [8], [9] that may be difficult to generalize to
other OpenMP runtime systems without strong development
effort. To the knowledge of the authors, there is no related
work comparing OpenMP runtime systems in order to anal-
yse performance and energy consumption.

In this paper, we analysed performance and energy con-
sumption of four OpenMP runtime systems over a NUMA
system. We restrict our experiments on three dense linear
algebra algorithms: Cholesky, LU and QR matrix factoriza-
tions. Source codes are based on KASTORS [10] benchmark
suite and the state of the art PLASMA library using its new
OpenMP implementations [11] that rely on OpenMP tasks
with data dependencies.

The contributions of this paper are:

• We present early experiments of performance and
energy consumption over the dependent tasks model
proposed by OpenMP.

• We report early comparisons of OpenMP runtime
systems in order to present the respective gains with
respect to one of the criteria.

• We observed that a LU factorization with
concurrent-write access mode achieved up to
1.75 in performance gain and 1.56 in energy over
original LU algorithm.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 gives some details
of the OpenMP task programming model and an overview
about five runtime implementations. Our experimental re-
sults are presented in Section 5. Finally, Section 6 and
Section 7, respectively, present the discussion and conclude
the paper.

2. Related Work

Other works use the simplicity proposed by OpenMP to
vary the number of threads, for energy efficiency. Authors
in [12] and [13] defend the Dynamic Concurrency Throttling
(DCT) and underline the fact that using OpenMP to control
the number of threads could be energy efficient, depending
on the algorithm or the chosen hardware.



Previous works show that various energy behaviors of
computing nodes are possible through various leverages
(DVFS, DCT, etc). But none of the previous work focus
on OpenMP runtime systems as a leverage. None of the
previous work dealt with the energy-performance trade-off
and thus underlined possible variability concerning energy
and performance for existing runtime systems. Thus, to
the knowledge of the authors, no related work were trying
to compare several OpenMP runtime libraries together for
various representative workloads, as presented in our paper.

We use state of the art PLASMA library [11], on three
main kernels in dense linear algebra (Cholesky, LU and QR
factorizations), that implements dependent tasks model. This
model is new and never addressed in related works. In [4],
[5] the authors based their experiments using the BOTS [14]
benchmarks that require only the independent tasks.

3. OpenMP Task programming model and im-
plementations

In 2013 the OpenMP Architecture Review Board in-
troduced in the OpenMP revision 4.0 a new way of ex-
pressing task parallelism using OpenMP, through the task
dependencies. This section introduces the task dependency
programming model targeted by the selected benchmark
suites. We also present how the model is implemented in
various runtime libraries.

3.1. Dependent task model

OpenMP dependent task model allows to define de-
pendencies between tasks using declaration of accesses to
memory with in,out, or inout. Two tasks are independent
(or concurrent) if and only if they do not violated the data
dependencies of a reference sequential execution order1.

Figure 1 illustrates a LU factorization based on
PLASMA [11]. The programmer declares tasks and the
accesses in,inout they made to a memory region (here
only lvalue or memory reference, i.e. pointer).

The OpenMP library computes tasks and dependencies
at runtime, and schedules concurrent tasks on the available
processors. The strategy for task dependencies and task
scheduling depends on the runtime implementation. Never-
theless, their implementations impact the performance and
the energy consumption. Moreover, the absence of precise
OpenMP specification about the task scheduling algorithm
is the key point to allow research to improve performance
and energy efficiency with implementation concerns.

3.2. Runtime system implementations

Table 1 summarizes the properties of four OpenMP
runtime systems.

libGOMP is the OpenMP runtime that comes with the
GCC compiler. Dependencies between tasks are computed

1. OpenMP does not allows variable renaming to suppress output and
anti-dependencies.

1 for (k=0; k<NB; k++) {
2 #pragma omp task untied shared(M) \
3 depend(inout: M[k*NB+k])
4 lu0(M[k*NB+k]);
5 for (j=k+1; j<NB; j++)
6 #pragma omp task untied shared(M) \
7 depend(in: M[k*NB+k]) depend(inout: M[k*NB+j])
8 fwd(M[k*NB+k], M[k*NB+j]);
9

10 for (i=k+1; i<NB; i++)
11 #pragma omp task untied shared(M)\
12 depend(in: M[k*NB+k]) depend(inout: M[i*NB+k])
13 bdiv(M[k*NB+k], M[i*NB+k]);
14

15 for (i=k+1; i<NB; i++)
16 for (j=k+1; j<NB; j++)
17 #pragma omp task untied shared(M)\
18 depend(in:M[i*NB+k], M[k*NB+j]) depend(inout:M[i*NB+j])
19 bmod(M[i*NB+k],M[k*NB+j],M[i*NB+j]);
20 }

Figure 1. LU factorization with OpenMP dependent task.

TABLE 1. CHARACTERISTICS OF OPENMP RUNTIME SYSTEMS.

Name Dependencies Task Scheduling Remarks
libGOMP hash table centralized list task throttling
libOMP hash table work stealing bounded dequeue

XKaapi hash table* non blocking
work stealing task affinity

libKOMP resizable
hash table

non blocking
work stealing

task affinity
concurrent write

through a hash table that map data (pointer) to the last
task writing the data. Ready tasks are pushed into several
scheduling dequeues. The main dequeue stores all the tasks
generated by the threads of a parallel region. Tasks seem to
be inserted after the position of their parent tasks in order
to keep an order close to the sequential execution order.
Because threads share the main dequeue, serialization of
operations is guaranteed by a pthread mutex which is a
bottleneck for scalability. To avoid overhead in task cre-
ation, libGOMP implements a task throttling algorithm that
serialize task creation when the number of pending tasks
is greater than a threshold proportional to the number of
threads.

libOMP was initially the proprietary OpenMP runtime
of Intel for its C, C++ and Fortran compilers. Now it is
also the target runtime for the LLVM/Clang compiler and
sources are open to community. libOMP manages depen-
dencies in the same way that libGOMP by using a hash
table. Memory allocation during task creation relies on a fast
thread memory allocator. libOMP task scheduling is based
on Cilk almost non blocking work stealing algorithm [15],
but dequeue operations are serialized using locks. Never-
theless, it implies distributed deques management with high
throughput of dequeue operations. libOMP also implements
a task throttling algorithm by using bounded size dequeue.

XKaapi [16] is a task library for multi-CPU and multi-
GPU architectures which provides binary compatible library
with libGOMP [17]. Task scheduling is based on the almost
non blocking work stealing algorithm from Cilk [15] with
extension to combine steal requests in order to reduce
overhead in stealing [18]. Moreover, XKaapi computes de-



pendencies on steal request, which is a perfect application of
the work first principle to report overhead in task creation
to critical path. The XKaapi based OpenMP runtime also
has support to some OpenMP extensions such as task affin-
ity [19] that allows to schedule tasks on NUMA architecture,
and to increase performance by reducing memory transfer
and thus memory energy consumption.

libKOMP [20] is a redesign of [17] on a top of the
Intel runtime libOMP. It includes following features coming
mainly from XKaapi: the dequeue management and work
stealing with request combining; task affinity specific work
stealing heuristic; a dynamically resized hash map that avoid
high conflicts when finding dependencies for large tasks’
graph; and tracing tool based on the OpenMP OMPT API;
and finally a task concurrent write extension with a Clang
modification 2 to provide the OpenMP directive clause. This
latter extension allows better parallelism and was used in
one of our LU benchmark and it very closed of the task
reduction feature currently under discussion in the OpenMP
architecture review board.

3.3. Discussion

In our study of the mentioned OpenMP runtime systems,
none of them include energy leverage such as thread throt-
tling or DVFS. Nevertheless, their different task scheduling
algorithms may impact energy efficiency. The main dequeue
accesses in libGOMP serialize threads using a POSIX mu-
tex. On Linux the mutex will block waiting threads after
short period of active polling which ensure that few core
cycles will be waste in the synchronisation.

On the other hand, libOMP, XKaapi and libKOMP work
stealing actively poll dequeues until the program ends or a
task is found. In order to reduce activity during polling,
libOMP and libKOMP may block threads after an unsuc-
cessful search of work by 200ms (default value). Once work
is found, all threads are waked up.

4. Tools and Methods

This section details the hardware configurations we ex-
perimented on and the OpenMP runtime systems we com-
pared. We also give hints about the methodology used to
process the collected data using statistical tools R.

4.1. Evaluation platform

Our experimental platform was the Brunch machine
composed of four NUMA nodes with one Intel Xeon E7-
8890 processor each (total 4 processors) and 24 cores per
processor (96 cores total) running at 2.2GHz, and 1.5 TB of
main memory. The operating system on Brunch is a Debian
with Linux kernel 4.9.13 with 3 over 5 C-State activated
(idle states: POLL C1-BDW C1E-BDW) with turbo-boost
on and performance governor.

2. http://gitlab.inria.fr/openmp/clang

TABLE 2. BLOCK SIZE FOR EACH ALGORITHM AND MATRIX SIZE.

BRUNCH
Matrix size Cholesky LU QR

8192 224 160 224
16384 288 224 480
32768 352 352 352

4.2. Software description

4.2.1. Benchmarks. We used kernels from two bench-
mark suites: the KASTORS [10] benchmark suite and an
OpenMP-parallelized PLASMA version [11]. Both bench-
mark suites tackle the same computational problems but use
different algorithms in some cases. KASTORS was built
from PLASMA 2.6.0 (released in dec. 2013) at a time
when PLASMA parallelism was supported by a specific task
management library called QUARK.

We focused our study on three dense linear algebra
kernels:

• A Cholesky factorization (dpotrf);
• A LU factorization (dgetrf);
• A QR factorization (dgeqrf).

Cholesky factorization algorithms in both the benchmark
suites are the same. All these linear algebra kernels we used
rely on the BLAS routines, we used the implementation of
OpenBLAS version 0.2.19. Table 2 shows the block size
configuration on each execution test for the three machine
platforms.

4.2.2. Runtime Systems. We compared the following run-
time systems during our experiments:

• LibGOMP – the OpenMP implementation from
GNU that comes with GCC 6.3.0.

• LibOMP – a port of the Intel OpenMP open-source
runtime to LLVM release 4.0.

• LibKOMP [20] – a research runtime system, based
on the Intel OpenMP runtime, developed at INRIA.
It offers several non-standard extensions to OpenMP.
We evaluate the concurrent write (CW) feature in
our experiments coupled with Cilk T.H.E work steal-
ing protocol. We make experiments with version
efb6c363.

• XKAAPI [16] – research runtime system developed
at INRIA. It has lightweight task creation over-
head, and it offers several non-standard extensions
to OpenMP [17] We evaluate its version efa5fdf4.

4.3. Energy measurement methodology

Since several metrics have to be considered depending
on the objective, we consider performance (GFlop/s) and
energy consumption (energy-to-solution). GFlop/s is mea-
sured by the each benchmark itself: it corresponds to the

3. Git hash from https://gitlab.inria.fr/openmp/libkomp
4. From http://kaapi.gforge.inria.fr



algorithmic count of the number of floating point operations
over the elapsed time, using fact that matrix-matrix product
does not rely on a fast algorithm such as Strassen like
algorithm. Times are get using the Linux clock_gettime
function with CLOCK_REALTIME clock.

We employed two sources of data acquisition for en-
ergy measurement. One was the Intel RAPL (Running
Average Power Limit) feature that exposes the energy
consumption of several components on the chip (such as
the processor package and the DRAM) through MSRs
(Model Specific Registers). Due to access limitation of
MSRs on the tested system, we designed a small tool
querying periodically the RAPL counters based on LIK-
WID [21]: Energy consumption for the whole package
(PWR_PKG_ENERGY), for the cores (PWR_PP0_ENERGY),
for the DRAM (PWR_DRAM_ENERGY), as well as the core
temperature (TEMP_CORE). The tool gets the counter values
periodically and associate them with a timestamp.

The Brunch machine has been instrumented through a
high-accuracy (error < 0.1%) power meter LMG450 from
Zimmer5. The power meter is attached to the wall outlet
and it measures the entire energy consumption of the ma-
chine, including power supply, disk, motherboard, etc. The
output of the power meter (energy and power) periodically
send data recorded with a timestamp. The Brunch machine
measured 176W to the wall outlet on the same period
of inactivity. The idle power is a mean of 20 minutes of
inactivity on the system with a process monitoring the RAPL
counters.

4.4. Experimental methodology

All benchmarks are composed of two steps: the first allo-
cates and initializes a matrix; the second step is the compu-
tation. We report execution time only from the computation
step. Each experiment is repeated at least 30 times, each
computation on a newly random matrix (as implemented by
the benchmark). All the processes are spawned within the
context of numactl to distribute memory pages among the
NUMA nodes. In parallel of the computation, we monitor
the system by collecting various energy counters from RAPL
and the watt meter plugged on the wall outlet.

For each computation we collect the performance
(GFlop/s) timestamped by the beginning and the end of the
computation. This two timestamps are used in data post-
processing to compute energy consumed by the computation
between the two timestamps. Values are interpolated by
linear function if missing in the collected energy values
sampled periodically. Post-processing employs R script to
compute energy per computation and to output basic statistic
for each configuration. In our experimental results, energy
values are the mean computed among the at least 30 com-
putations of each configuration.

5. https://www.zes.com/en/Products/Precision-Power-Analyzer/
LMG450

5. Experimental results

The presented runtime systems have been experimented
on the two benchmark suites presented in section 4.2.1.
We build two configurations of libKOMP using two sets of
options [20]. On the following libkomp refers to libKOMP
configured with T.H.E Cilk work stealing queue and requests
combining protocol; and libkomp_cw is the same configura-
tion than libkomp with addition to support concurrent write
extension used in the KASTORS LU code dgetrf [10].

5.1. Runtime impact

Figure 2 shows performance and energy results with
three matrix sizes and over all machine resources available.
We used as reference the GCC runtime to compute the
difference over the other three runtime systems, represented
on the bar plots by a percentage value.

These results suggest that libkomp and xkaapi attained
the best performance results in most cases. Xkaapi outper-
formed others with Cholesky and QR on smaller input sizes
(8192 and 16384), while libkomp had better results with
input size 32768 on both algorithms. The LU algorithm
with CW showed significant improvement compared to other
runtime systems (up to 107.4% over gcc), followed by state
of the art LU with libkomp.

In energy our experiments suggest that gcc had generally
better energy efficiency on the three benchmarks, except
for LU with CW. Besides, if we compare only the original
runtime systems coming with gcc and Intel compilers, it
seems that gcc configuration performed better in perfor-
mance and energy. This can be explained by the passive list
scheduling in gcc, which is less reactive than work-stealing
based strategies. Regarding LU energy results, the CW LU
version with libkomp_cw reduced energy up to 24% (RAPL)
and 31% (ZES) over gcc. Other runtime systems had lower
energy efficiency than gcc.

5.2. Focus on LU factorization

Thanks to the concurrent write, the LU algorithm with
libkomp_cw runtime had more parallelism than other run-
time systems due to the CW algorithm extension based on
KASTORS [10]. Figure 3 illustrates a Gantt execution from
the LU factorization using libkomp_cw.

On the LU factorization, even if CW generates more
parallelism, the algorithm has poor efficiency and threads
are frequently idle. The Gantt diagram on all the 96 cores
of brunch illustrates long periods of inactivity. Gcc is the
only runtime where threads lock common dequeue to get
task. Linux will put these lightweight process idle which
is captured by energy sensors (ZES on brunch and by
using RAPL counters). If we do not consider libkomp_cw’s
algorithmic variant, then gcc is the best runtime in term of
energy consumption for LU factorization. This is not true for
runtime systems based on task scheduling by work stealing
such as libKOMP, libOMP or XKaapi which are very active
process that consume energy.
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Figure 2. Performance (GFLop/s) and energy (Joules) results of Cholesky, LU and QR over the Brunch machine. All percentages on top of bar plots are
the difference of current runtime over GCC runtime.
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Figure 3. Gantt of KASTORS LU algorithm from libKOMP CW.

6. Discussion

Majority of best configurations from Figure 2 were
runtime systems using work-stealing based scheduling. On
fine grain problems, xkaapi and libkomp were generally
better. These results can be explained by the smaller task
creation overhead on xkaapi than libkomp and gcc.

The difference between libomp and libkomp is the new
features we add into the original Intel libomp runtime:
the lightweight work stealing algorithm from Cilk and the
request combining protocol from xkaapi. These features
not only impact performance but also the way tasks are
scheduled: it suppresses the bounded dequeue limitation
that may degenerate task creation into task serialization. It
means that at runtime a thread may be forced to execute

immediately tasks for which no or less affinity exist. Without
bounded size dequeue, a thread that completes a task will
always activate one of the successors following a data flow
relationship producer-consumer, thus sharing a data resident
into cache; or the thread becomes idle and try to steal tasks.
We will investigate by more finer experiments the exact
impact of these additions in libkomp.

On LU factorization where algorithmic variant
libkomp_cw was the best, it was followed by xkaapi and
libkomp on performance. LU factorization is a relevant code
with inactivity sections from the dependencies imposed by
the algorithm, mainly due to a search of pivot and swap
of elements. This optimized algorithm allowed to increase
performance while energy is decreased due to libkomp_cw
runtime and concurrent write OpenMP extension [10].
Nevertheless, the platform characteristic, and especially its
memory network, had also an impact on both performance
and energy consumption.

Without these algorithm variants, LU factorization code
consumes less energy using gcc runtime. In gcc the syn-
chronization between threads on the shared task dequeue
resource wastes less cycles. A work stealing based runtime
may have interest to incorporate part of [22] in which is used
to lower the speed of threads that are not in the critical path
with a warranty on performance. One of the big challenges
is the design of adaptive OpenMP runtime capable to saving
energy on short delays of inactivity.



7. Conclusion

In this paper, experiments with four production based
OpenMP runtime systems on the three main kernel in dense
linear algebra were conducted on a NUMA platform. We
showed that OpenMP runtime is a new leverage for con-
trolling energy. Our experimental results suggest that small
algorithmic and runtime improvements may allow perfor-
mance gains up to 1.75 and thus reducing the energy by a
factor of 1.56. Besides, GCC runtime was energy efficient
in some cases due to synchronizations over a shared task
dequeue.

Future works include an extension of our experimental
comparison over a wide range of architectures, including
Intel KNL many-core. In addition, we will evaluate the im-
pact on performance and energy of different configurations
of leverages to control processor consumption and activity
as available at operating system level.
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