TOWARDS A MULTI-CRITERIA EVALUATION OF THE ENVIRONMENTAL FOOTPRINT OF GENERATIVE AI SERVICES

Adrien Berthelot^{1,2}, Eddy Caron¹, Mathilde Jay^{1,3} and Laurent Lefèvre¹

¹Univ. Lyon 1 UCBL, EnsL, CNRS, Inria, LIP. Lyon, France

²OCTO Technology. Paris, France

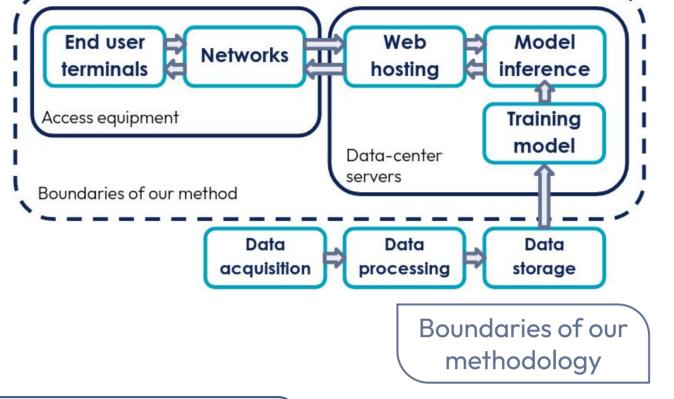
³Univ. Grenoble Alpes, Grenoble INP, LIG. Grenoble, France

Introduction

digital transformation through its many applications. Unfortunately, by accelerating the growth of digital technology, Gen-Al is contributing to the multiple environmental **damages** caused by its sector.

Generative Al represents a new stage in We propose to study not only the impact of developing a model but also that of its deployment and use as a **service**. The figure at the left shows what we consider the standard structure of a Gen-Al service.

Our methodology (presented in the diagram below) is applied and validated on an AI service based on **Stable Diffusion**, an open-source text-to-image generative deep-learning model.

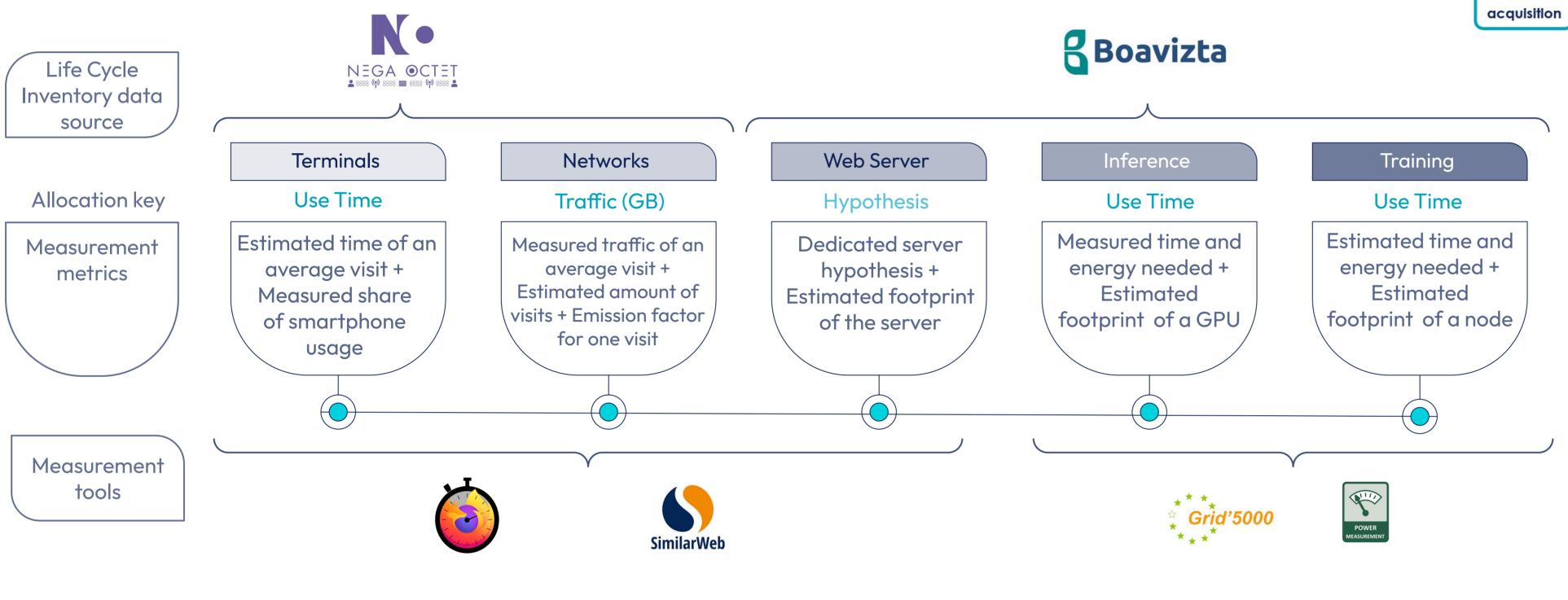


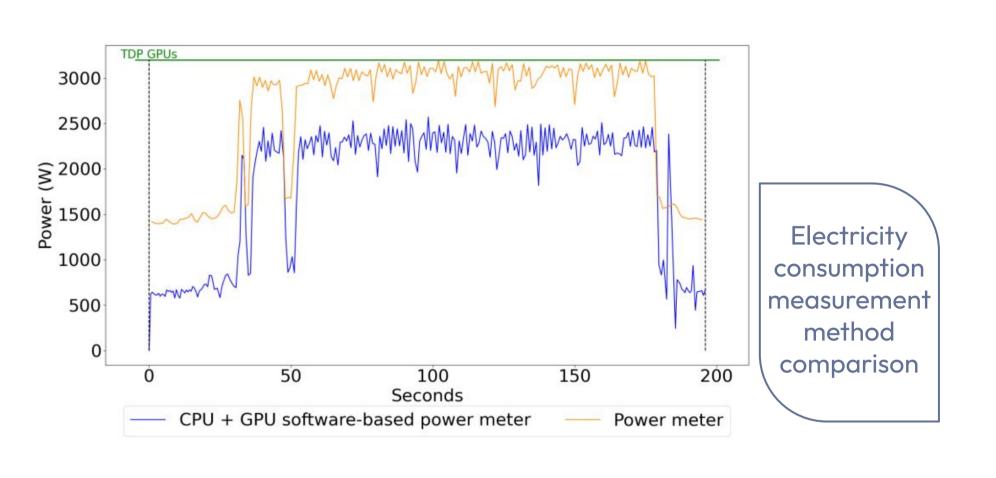
Training electricity cost

Replication is the most reliable method to estimate the electricity consumption. But for training, it would too expensive.

Our solution: replicate a fraction of it and use **linear regression to extrapolate** the results.

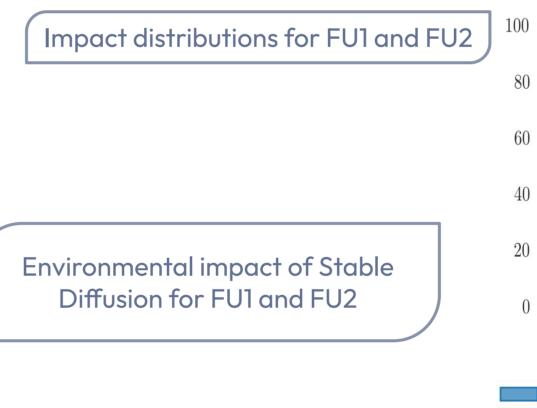
The figure below shows the difference between the methods used to estimate the electricity consumption. It leads to a better understanding of electricity consumption.

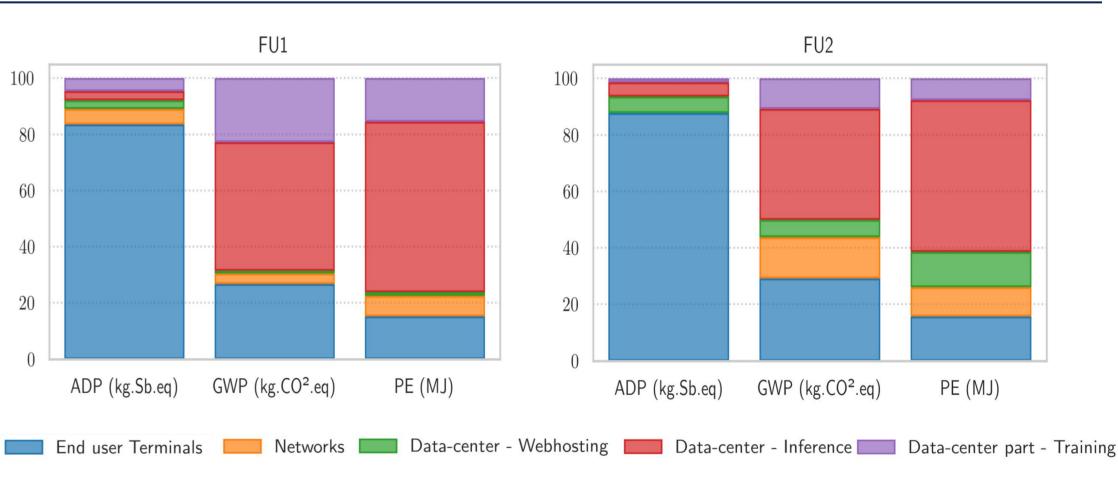




Environmental footprint of the service

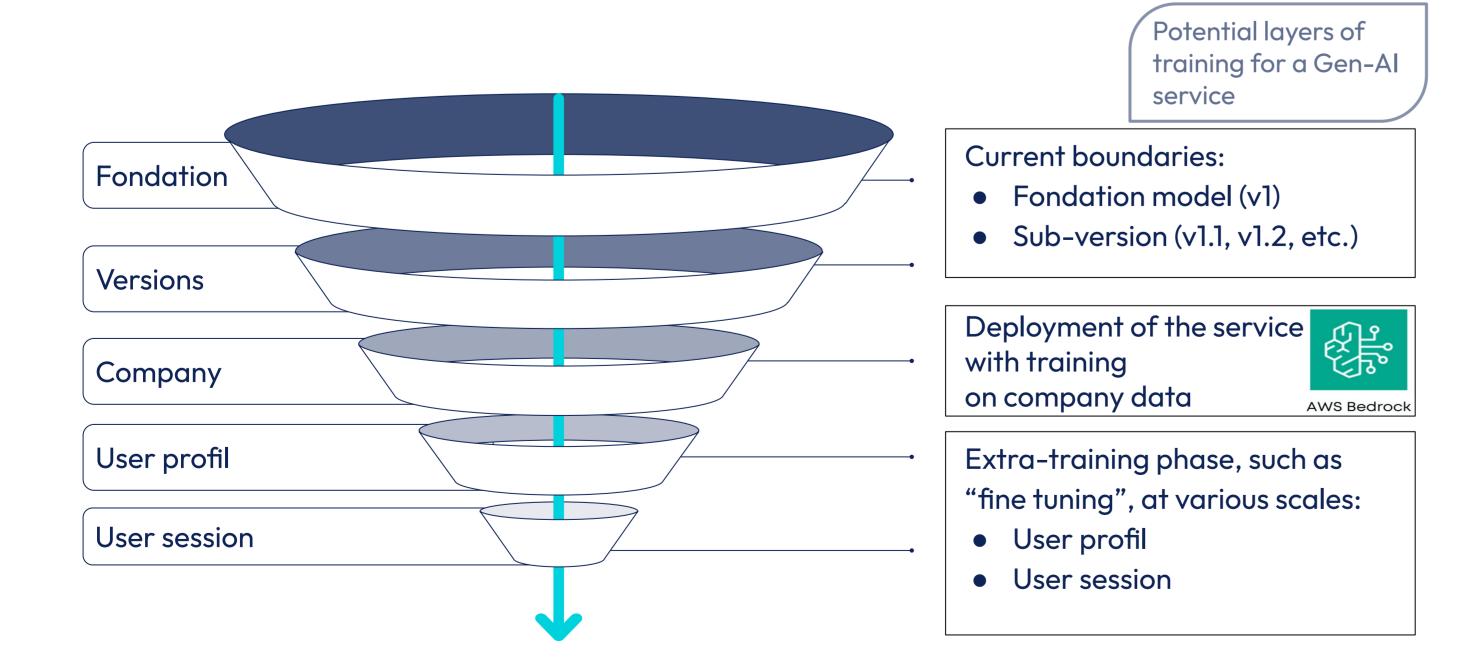
Functional Unit (FU)	Abiotic Depletion Potential (kg.Sb.eq)	Warming Potential (kg.CO2.eq)	Primary Energy (MJ)
FU1 - Average single use of service	6.72e ⁻⁸	7.84e ⁻³	2.02e ⁻¹
FU2 - A year of service	4.64	3.60e ⁺⁵	8.93e ⁺⁶

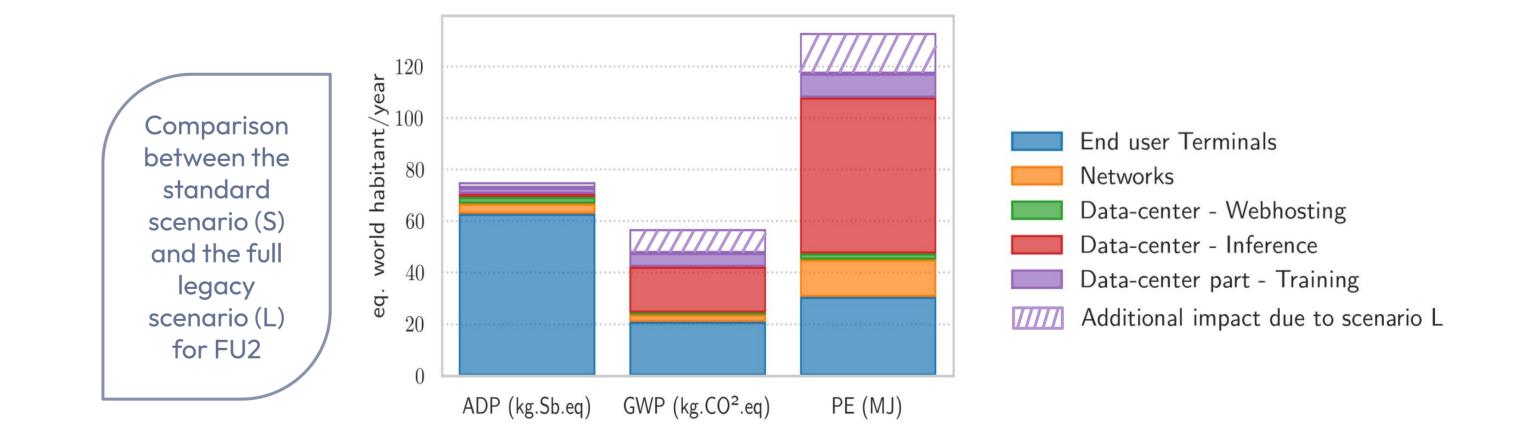




Sensitivity to the utilization rate and the scope of training

- Average utilization rate (AUR) of data center equipment
 - AUR = percentage of time in the equipment lifespan during which it is actively used, as opposed to when it is either idle or on standby.
 - Crucial to the allocation for cost-heavy data center equipment.
 - Impact remains small if the AUR is higher than 20% (is that reasonable?)
- 2. Scope of training phases taken into account.
 - Diagram below shows hierarchical **fine-tuning layers** in training. Our standard scenario (S) only includes versions v1.1 and v1.2.
 - We consider versions up to v1.5 in a full legacy scenario (L). Figure on the right shows the additional impact due to these additional versions.





Conclusions

- Generative Al offers digital services that are particularly costly in environmental terms.
- The total footprint is not concentrated in a single part and a single impact.
- A large proportion of GHG emissions can be avoided, but this will **not be enough**.
- The transformation of data centers induced by the multiplication of these services will generate numerous impacts of 2e and 3e order.
- More than generative AI as a technology, it is the rapid, growing, uncontrolled **deployment** of it as a service that represents a problem for our environment.

