Towards a Dependable Architecture for Highly Available Services

Narjess Ayari*, Pablo Neira Ayuso**, Laurent Lefèvre***, Denis Barbaron*, Rafael M. Gasca**
* France FT R&D – LANNION, ** Universidad de SEVILLA, ***France, INRIA / LIP, France.

Agenda

- Current Fault Tolerance framework's deficiencies & constraints
- An end-to-end highly available framework
- The FT-FW architecture
- The Active Replication Architecture
- Conclusion & Future work
Current FT Frameworks Deficiencies & Constraints

- The strength of the fault model
 - Fault detection granularity
 - Group communication style
 - Fault recovery granularity
 - Transparency of the failure recovery
 - ...

- Overhead of the fault handling procedure
 - Fault detection latency
 - Replica launch latency
 - Fault recovery latency
 - ...

- Overhead of the resource consumption
 - CPU, memory, I/O usage
 - Bandwidth usage
 - Energy usage
 - ...

Existing FT frameworks

Fault Tolerance

Resources

Performance

Firewalls and Stateful Devices Requirements

Kernel level and application level states require to be properly replicated and correctly spawned in case of failure of a legitimate device

- Reactivity to failure
- Transparency
- Simplicity
- Low Cost
- Efficiency
An end-to-end Highly Available Architecture

INTERNET

Client 1

DMZ

FT-FW Protocol

Primary FW

Backup FW

Filtering, Routing, NAT

Application Processing

Primary Server

Active Replication Protocol

Backup Server

Event driven architecture

- **CTS**: Connection Tracking
 System tracks connections and store states, we extended it with a **framework** to inject states and to receive state change events.

- **SP**: State proxy, replication daemon which interact with CTS. It stores two caches.
The SP is composed of two parts, the sender and the receiver, the main ideas of the replication protocol are:

- The sender never stops sending messages
- The receiver handles all messages (even those that are out of sequence).

The protocol reduces the number of retransmitted messages in case of message omission.
Experiments
Evaluating FT-FW: The Design Space

Machine specs:
- HP Proliant 145g2, AMD Opteron2.2GHz, 1 GEthernet.
- conntrack-tools: free software (GPL) user-space daemon which implements the SP.
Evaluating FT-FW: Commit Time

Commit time: Time required to inject the states stored in the external cache into the CTS. 25000 states in 250 milliseconds.
Evaluating FT-FW: Replication Cost

CPU consumption during replication (1 TCP connection means 6 state changes): ~40% for 2500 HTTP GET connections per second.

– Ping roundtrip: The solution introduces a delay of 5 milliseconds (negligible)
Because of its asynchronous nature,

- Does not guarantee that firewall replicas are one-copy equivalences as in database replication schemas:
 - Two-phase and three-phase commit protocols are heavyweight since they would introduce an unaffordable delay.

Solution:

- Flexible recovery: Recover states from precedent states (reduce security)
- Initial stages of a flow, the clients usually transparently retry after a short timeout if no response is received.
- When Checkpointing states doesn't apply
 - Use the active replication concept
The concept of Active Replication

"Active Replication" (AR) applied to any "stateful" device

- Enables the failover of a session while avoiding the interruption of the ONGOING ones
- Provides the transparent replication of the kernel states (the Netfilter states, the flow states, etc.) + the application level states (the load balancer states, etc.)

During failure free periods

During failures

Incoming Traffic

Outgoing Traffic

ARP disabled
AR Architecture Components

- Full client/server transparency / Applies to any stateful device / No overhead is incurred to the end-to-end communications during failure free periods / Good performance during failures
AR Implementation Details (1/2)

- The active replication based component for state replication
 - Packet non intrusive interception and processing using [BPF/pcap/libnet] based user space packages
 - ICMP/UDP/TCP support
 - User and kernel space module for TCP state replication
 - Netlink capabilities
 - Structure of a ct_sync msg

- State consistency
 - Netfilter based rules triggered at the backup startup
AR Implementation Details (2/2)

 mogelijk

The failure detection component
- Concept & Properties
 - Detects failures as soon as they occur
 - One error-free instance of the service is running at once
 - STONIGHT & Mon
- Implementation
 - HB based: Light customization to handle time at micro-sec granularity

The failure recovery component
- Availability through Network level takeover
 - GRATUITOUS ARP resource takeover
- Reliability through state replication
- Disabling of the AR process
 - Interception, filtering, ARP module customizations, etc.
- Ongoing connection freezing

IEEE International Conference on Availability, Reliability and Security - ARES 2008 – Barcelona, Spain
Experiments
The SIP-based VOIP Use case
The Experimental Setting
SIP-based Voice over IP Use Case

VIP

Load Balancing, Admission Ctrl, Forwarding & Failover through Active Replication

Primary Dispatcher

Heartbeat

Backup Dispatcher

PM Switch

PBX #1

PBX #2

Cluster Network

« External Network »

« Internal Network »

SIP Traffic Generator

Incoming Traffic
Outgoing Traffic
Management Traffic

Performance Evaluation
State replication consistency

<table>
<thead>
<tr>
<th>Generated Traffic</th>
<th>Traffic interception and rewriting at the Backup</th>
<th>Traffic rewriting cost at the Backup</th>
<th>Backup outgoing traffic generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>Correct frames (Data + Headers)</td>
<td>Less than the ms</td>
<td>Correct replies (Data + Headers)</td>
</tr>
<tr>
<td>UDP</td>
<td>Correct frames (Data + Headers)</td>
<td>Less than the ms</td>
<td>Correct replies (Data + Headers)</td>
</tr>
<tr>
<td>TCP</td>
<td>Correct frames (Data + Headers)</td>
<td>Less than the ms</td>
<td>Correct replies (Data + Headers)</td>
</tr>
</tbody>
</table>
Performance Evaluation

Latency incurred to the INCOMING & OUTGOING signaling traffic

Definition

The time from when a legitimate frame is intercepted by the backup node to the time at which a copy of the same frame is delivered to the backup's kernel.
Performance Evaluation

Other Failure-Free Periods Performed Tests

- Failure free periods AR cost
 - Low CPU & memory usage overhead
 - Service level consistency
 - Only one instance of the cluster entry is talking at a time
Performance Evaluation
Failure Recovery Cost

- **Failure recovery effectiveness**
- **Failure recovery latency**
 - **Definition**
 - $\text{latency}_{\text{failure_recovery}} = \text{latency}_{\text{Fault_Detection}} + \text{latency}_{\text{Takeover}}$

<table>
<thead>
<tr>
<th>FDI (sec)</th>
<th>Average Failure Detection Latency (micro-sec)</th>
<th>Average Takeover Latency (micro-sec)</th>
<th>Average Recovery Time (micro-sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 708 375</td>
<td>0 546 748</td>
<td>1 255 123</td>
</tr>
<tr>
<td>3</td>
<td>0 825 868</td>
<td>0 546 748</td>
<td>1 372 616</td>
</tr>
<tr>
<td>5</td>
<td>1 430 499</td>
<td>0 546 748</td>
<td>1 977 247</td>
</tr>
</tbody>
</table>
Performance Evaluation

Failure Recovery Cost

Service throughput (kbps)

Zooming the failure injection time
Scalability measures

- The loss ratio is intuitively defined as the following (cps):

\[
\text{Loss Ratio} = \frac{\text{Average Nber Failed Sessions}}{\text{Total Nber Active Sessions}}
\]
The Experimental Setting
Simple TCP-based Conversation Use Case

During failure free periods

During failures

1. During failure free periods

2. During failures

VIP

1. ARP disabled

TCP server

VIP

1. ARP disabled

TCP client

1. TCP client

Client #1

Client #n

PM Switch

Gratuitous ARP flooding

Gratuitous ARP flooding

Heartbeat

Incoming Traffic

Outgoing Traffic

Caption

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Traffic</td>
<td></td>
</tr>
<tr>
<td>Outgoing Traffic</td>
<td></td>
</tr>
<tr>
<td>Management Traffic</td>
<td></td>
</tr>
</tbody>
</table>

Performance Evaluation

Failure Free AR Cost

Pl. refer to slide 12 for the definition
Performance Evaluation

Kernel-to-User Netlink communication delay

- The time required by the Netlink based kernel module to send back the acknowledgement to the user space application, after successfully updating the state of the fake TCP connection.
Performance Evaluation

Failure Recovery Cost

Pl. refer to slide 14 for the definition

We presented a "true" client/server transparent service high availability through active replication

- Recovers the ongoing and the new offered sessions

Provides

- Replication of kernel level states (transport layer states, etc.) & application level states for stateful devices

Assumes for now

- "Deterministic enough" applications
- A "lightweight" Linux kernel 2.6.x dependency

Room for improvement
Possible extensions

- Active/Active redundancy
 - VRRP
- More AR compliant applications
 - AR + checkpointing (for less deterministic applications)
- More large scale tests
Thanks

Any Questions?

Contact: narjess.ayari@orange-ftgroup.com