Multiprimary support for the availability of
cluster-based stateful firewalls

Pablo Neira Ayuso, Rafael M. Gasca, Laurent Lefevre
<pneira@us.es>, <gasca@us.es>, <lefevre@inria.fr>

@QEAR C‘Q

Quivir Research Group, University of Sevilla, INRIA/University of Lyon

ESORICS'08, Malaga

Outline

e Short introduction:

— Stateless and stateful firewalls. Fault-tolerant firewalls.
 Related works

« General description of our proposed solution: FT-FW

— Architecture
- Replication algorithm
- Multiprimary support

e Evaluation

e Future works

Firewalls: a very short introduction

A Firewall is a network element that controls the
traversal of packets across different network
segments.

internet

» Firewalls enforce an access control list (ACL).
The ACL is composed of a list of linearly ordered
filtering rules.

« |f the firewall is stateless, each rule contains a
set of packet selectors (for matching purposes)
and one action (eg. accept, drop).

server workstation

« |If the firewall is stateful, it extends the stateless
approach by performing conformance checkings
upon the protocol that it filters.

Stateful firewalls: introduction

« Stateful firewalls enforce the
correct evolution of a
communication between two
peers.

« The stateful firewall stores a
set of variables to represent
the current state of a flow F
(tuple to identify the
communication + state)

* Logic: when a packet P arrives:

- is there any matching rule
in the ACL for P?

syn+ack

- does P triggers a valid
state transition? Example: simple TCP protocol state-machine

Firewalls: fault-tolerance

» The fault-tolerance problem:
Firewalls introduce a single point
of failure. For stateless firewalls,
system-level replication is enough.

internet

 However, this approach is
insufficient for stateful firewalls.
The backup firewall needs to know
the current state of the variable.

» Replicas cannot one-copy
equivalences in this case: we have
to trade off between flow durability
and performance.

seryer workstation

* Primary-backup approach is
wasteful in terms of resource use.

Firewalls: related works

« Many research has been done with regards to firewall during the last decade:

Rule-set design: Difficult task, it requires low-level languages.

Rule-set consistency: Rule-sets may disjoint (use of wildcards can
result in ovelapping rules).

Computational complexity: Packet must be checked against a list of
ordered rules. Algorithms to match packets that tradeoff with memory and
CPU consumption.

Distributed firewalls: Scalable distributed design, ruleset delivery and,
again, computational complexity problems.

Fault-tolerance: Firewalls introduce a single point of failure. Very few
indeed wrt. firewalls.

Fault-tolerance: related works

« Many research has been done in the last three decades in the field of the
application-level fault-tolerance:

Primary-Backup and State-machine replication.

Databases: Synchronous transactions to guarantee high degree of
consistency (mostly eager replication).

Back-end servers: BTCP, FT-TCP, FT-WEB, etc.
Corba: FT-CORBA.
VolP PBX

« Stateful Firewall have different semantics that can be exploited.

Fault-tolerance firewalls:

related works

« Apart of the interesting openBSD effort, very few and nothing open in this
area:

- Proprietary: black box, only commercial papers (only commercial
documentation available).

- OpenBSD

« Very simple in-kernel state replication and crash-only model.

» Replication protocol: no sequence tracking at all, no message
omission, reordering, duplication handling (only corruption is
handled).

Enhancing fault-tolerance: FT-FW

» Reactive fault-tolerance at application level.
» Independent of the failure detection schema (eg. VRRP)

» Transparency: Negligible delay in client responses and quick recovery from
failures. Asynchronous replication that trade-offs between flow durability and
performance (in terms of bandwidth).

« Simplicity: Client transparent solution. The firewall requires minimal and
non-intrusive extension.

« Low cost: Suitable for off-the shelf, software-based solution.
« Multiprimary support: load-sharing to avoid resource waste.

« Qur approach aims to exploit the stateful firewall semantics.

FT-FW architecture

« Event-driven architecture
- CTS: Connection Tracking System tracks connections and store states, we add

extended it with a framework to inject states and receive state change events.
- SP: State proxy, replication daemon which interact with CTS. It stores two caches.

Firewall Replica AI Firewall Replica B| Firewall Replica CI
state flows table state flows table state flows table
framework framework framework
A
Slétlfﬁsbe state ' 'stat.e SZZT;sbe state . 'stat'e Szz?flzbe state . .stat'e
inject events injection inject events injection inject events injection
External cache External cache External cache
INTERNAL INTERNAL c INTERNAL 5
CACHE Bl € CACHE A CACHE A

DEDICATED LINK

FT-FW replication protocol

We have to replicate states asynchronously:
replicas are not one-copy equivalence.

The SP is composed of two parts, the sender
and the receiver, the replication protocol
exploits the semantics of stateful firewalls:

- The sender never stops sending messages

- The receiver handles all messages (even
those that are out of sequence).

- The protocol reduces the number of
retransmitted messages under message
omission: It only resends the last state
reached, not the whole state history.

primary

F1-51(seql)

F2- 51 (seq 2)
F1-52(seq3)
F1-53(seq4)
F2-52(seq3)
F2-53(seq6)

F2-54(seq7)

F1-53(seq8)

F1-54 (seq9)

¢F1-537

ACK[L.2]
MACK [3.5]

F1-53

FT-FW: multiprimary support

« We support two load-sharing approaches to remove the resource waste:

- Static or client-based, ie. we set different gateways for clients via DHCP.

- Dynamic or hash-based packet distribution between the firewall replicas:
The packet P is seen by all the replica firewalls {FW_, FW_, ... FW } but

only FW, _handles the packet.

« Each node has an unique identifier (nid).

* hash(src) % total _nodes & (1 << nid) == true ?
If so, then handle the packet.

* Depending on the path routing, we support:

- Symmetric path and the cache write back policy.

- Asymmetric path and the cache write through policy.

Evaluation: testbed setup

FW1

- Machine specs: HP Proliant

host B 14592, AMD Opteron2.2GHz,
1 GEthernet.

- conntrack-tools: free software

Server (GPL) userspace daemon

which implements the SP.

http://people.netfilter.org/pablo/conntrack-tools/

Evaluation: Replication MP

- CPU consumption during replication (1 TCP connection means 6
state changes): ~30% for 2500 HTTP GET connections per second.
- Ping roundtrip: The solution introduces a delay of ~4 milliseconds

(negligible)
100 T B B T 220 T T I. R T
w/o replication -~ * w/o replication
with replication (write back) ——— e with replication (write back) ———
30 | with replication (write through) S 210 with replication (write through) |
0}
2 200
g o 8
5 _ @190 |
S o
= =
E 40 L 5 180 |
© i
o 170 o
20 &
------------------ |_ 160 B
................ T
o e 1 ! !] 150] 1 !]
0 500 1000 1500 2000 2500 0 500 1000 1500 2000
HTTP GET requests per seconds Round-trip time (microseconds)

Future Works

Reduce the overhead in the replication by means of hybridation: mixture
of proactive and reactive fault-tolerance.
« Exploit error detection and correction hardware and software
facilities to enable proactive fault-tolerance.
« Exploit the semantics of stateful firewalls to relax reactive
replication — trade-off between nhumber of messages and flow

durability.

- Then, what if an error happens?

« Was it detected by the error detection facilities? The proactive
approach migrates the states to a sane firewall replica.
e ... butifit was it not? The relaxed reactive replication should
recover the filtering.
... what if reactive cannot recover? Bad luck :-(
Distributed firewalling in mobile wireless networks: the fault-tolerance
problem is contained in the hand-over problem.

Conclusions

This works presents the FT-FW architecture to enable fault-
tolerant stateful firewalls from the multiprimary perspective.
Many research works in terms of firewalling but no previous
related, open research in the fault-tolerance field apart from
the community-based OpenBSD effort.

Replication requires extra computational resources, by
means of proactive fault-tolerance we plan to reduce such
consumption.

Our replication protocol exploits the semantics of stateful
firewalls.

Questions?

Thank you for your attention!

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17

