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Abstract. In 1981 Hong and Kung proved a lower bound on the amount of communication (amount of
data moved between a small, fast memory and large, slow memory) needed to perform dense, n-by-n matrix
multiplication using the conventional Oðn3Þ algorithm, where the input matrices were too large to fit in the
small, fast memory. In 2004 Irony, Toledo, and Tiskin gave a new proof of this result and extended it to
the parallel case (where communication means the amount of data moved between processors). In both cases
the lower bound may be expressed as Ωð#arithmetic operations∕

ffiffiffiffiffi
M

p Þ, whereM is the size of the fast memory
(or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms,
including LU factorization, Cholesky factorization, LDLT factorization, QR factorization, the Gram–Schmidt
algorithm, and algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear al-
gebra. The proof works for dense or sparse matrices and for sequential or parallel algorithms. In addition to
lower bounds on the amount of data moved (bandwidth cost), we get lower bounds on the number of messages
required to move it (latency cost). We extend our lower bound technique to compositions of linear algebra
operations (like computing powers of a matrix) to decide whether it is enough to call a sequence of simpler
optimal algorithms (like matrix multiplication) to minimize communication, or whether we can do better.
We give examples of both. We also show how to extend our lower bounds to certain graph-theoretic problems.
We point out recently designed algorithms that attain many of these lower bounds.
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1. Introduction. Algorithms have two kinds of costs: arithmetic and communica-
tion. By communication we mean moving data either between levels of a memory hier-
archy (in the sequential case) or over a network connecting processors (in the parallel
case). There are two costs associated with communication: bandwidth cost (proportional
to the total number of words of data moved) and latency cost (proportional to the num-
ber of messages in which these words are packed and sent). For example, we may model
the cost of sending m words in a single message as αþ βm, where α is the latency
(measured in seconds) and β is the reciprocal bandwidth (measured in seconds per
word). Depending on the technology, either latency or bandwidth costs may be larger,

*Received by the editors August 27, 2009; accepted for publication (in revised form) by Y. Saad May 11,
2011; published electronically September 8, 2011.

http://www.siam.org/journals/simax/32-3/76915.html
†Computer Science Department, University of California, Berkeley, CA 94720. The research of this author

was supported by Microsoft (award 024263) and Intel (award 024894) funding and by matching funding by
U.C. Discovery (award DIG07-10227) (ballard@eecs.berkeley.edu).

‡Mathematics Department and CS Division, University of California, Berkeley, CA 94720. The research of
this author was based on work supported by U.S. Department of Energy grants DE-SC0003959, DE-
SC0004938, and DE-FC02-06-ER25786, as well as Lawrence Berkeley National Laboratory contract DE-
AC02-05CH11231 (demmel@cs.berkeley.edu).

§Departments of Mathematics, University of California, Berkeley, CA 94720, and Technische Universität
Berlin, Berlin, Germany. The research of this author was supported by the Sofja Kovalevskaja program of the
Alexander von Humboldt Foundation (holtz@math.berkeley.edu).

¶Computer Science Department, University of California, Berkeley, CA 94720. Part of this author’s re-
search was performed at The Weizmann Institute of Science and at Technische Universität Berlin. Research
was supported by U.S. Department of Energy grants DE-SC0003959, by ERC Starting grant 239985, and by
the Sofja Kovalevskaja program of the Alexander von Humboldt Foundation (odedsc@eecs.berkeley.edu).

866

SIAM J. MATRIX ANAL. & APPL.
Vol. 32, No. 3, pp. 866–901

© 2011 Society for Industrial and Applied Mathematics

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
15

 to
 1

28
.9

3.
16

2.
74

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



often dominating the cost of arithmetic. So it is of interest to have algorithms minimiz-
ing both bandwidth cost and latency cost.

In this paper we prove a general lower bounds on the amount of data moved (i.e.,
bandwidth cost) for a general class of algorithms, including most dense and sparse linear
algebra algorithms, as well as some graph theoretical algorithms. A similar model was
discussed by Hong and Kung [HK81]. They show that to multiply two dense n-by-n
matrices, using the conventional Θðn3Þ algorithm, on a machine with a large slow mem-
ory (in which the matrices initially reside) and a small fast memory of size M (too small
to store the matrices, but arithmetic may only be done on data in fast memory),
Ωðn3 ∕

ffiffiffiffiffi
M

p Þ words of data must be moved between fast and slow memory. This lower
bound is attained by a variety of “blocked” algorithms. This lower bound may also be
expressed as Ωð#arithmetic operations ∕

ffiffiffiffiffi
M

p Þ.1
This result was proven differently by Irony, Toledo, and Tiskin [ITT04] and general-

ized to the parallel case, where P processors multiply two n-by-n matrices. In the
“memory-scalable” case, where each processor stores the minimal M ¼ Oðn2 ∕ PÞ words
of data, they obtain the lower bound:

Ωð#arithmetic operations per processor ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
memory per processor

p Þ

¼ Ω
�

n3 ∕ Pffiffiffiffiffiffiffiffiffiffiffiffi
n2 ∕ P

p
�

¼ Ω
�

n2ffiffiffiffi
P

p
�
;

which is attained by Cannon’s algorithm [Can69], [Dem96, Lecture 11]. The paper
[ITT04] also considers the so-called “3D” case, which does less communication by repli-
cating the matrices and using OðP1∕ 3Þ times as much memory as the minimal possible.

Here we begin with the proof in [ITT04], which starts with the sum Cij ¼P
kAik · Bkj and uses a geometric argument on the lattice of indices ði; j; kÞ to bound

the number of updates Cij ≔ Cij þ Aik · Bkj that can be performed when a subset of
matrix entries are in fast memory. This proof generalizes in a number of ways: In par-
ticular, it does not depend on the matrices being dense or the output being distinct from
the input. These observations let us state and prove the general Theorem 2.2 in section 2
that a lower bound on the number of words moved into or out of a fast or local memory of
size M is Ωð#arithmetic operations ∕

ffiffiffiffiffi
M

p Þ. This applies to both the sequential case
(where M is a fast memory) and the parallel case (where M is each processor’s local
memory); in the parallel case further assumptions about whether the algorithm is mem-
ory or load balanced (to estimate the effective M and #arithmetic operations) are
needed to get a lower bound on the overall algorithm.

Corollary 2.3 of Theorem 2.2 provides a simple lower bound on latency cost (just the
lower bound on bandwidth cost divided by the largest possible message size, namely, the
memory size M ). Both bandwidth-cost and latency-cost lower bounds apply straight-
forwardly to a nested memory hierarchy with more than two layers, bounding from be-
low the communication between any adjacent layers in the hierarchy [Sav95, BDHS10].

In section 3, we present simple corollaries applying Theorem 2.2 to conventional
(non-Strassen-like) implementations of matrix multiplication and other BLAS opera-
tions [BDD+02, BDD+01] (dense or sparse), LU factorization, Cholesky factorization,
and LDLT factorization, where D is either real diagonal matrix or block-diagonal

1The sequential communication model used here is sometimes called the two-level I/O model or disk access
machine model (see [AV88, BBF+07, CR06]). Our model follows that of [HK81] and [ITT04] in that it assumes
the block-transfer size is one word of data (B ¼ 1 in the common notation).
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matrix, i.e., Bunch–Kaufman [BK77] type factorization. These factorizations may also be
dense or sparse, with any kind of pivoting, and be exact or “incomplete,” e.g., ILU [Saa96]
(for dense matrices some of these results can also be obtained by suitable reductions from
[HK81] or [ITT04], and we point these out). We also introduce a technique to extend these
lower bounds to cases like computing kA · BkF , so the output is a single scalar, and where
eachAði; jÞ and Bðj; kÞ is given by an explicit formula, so there are no inputs to read from
memory (we will require that each explicit formula is evaluated at most once).

Section 4 considers lower bounds for algorithms that involve orthogonal factoriza-
tions. This class includes the QR factorization, the standard algorithms for eigenvalues
and eigenvectors, and the singular value decomposition (SVD). After dealing with the
easier case of Gram–Schmidt in section 4.1, section 4.2 considers the harder case of algo-
rithms that apply sequences of orthogonal transformations. For reasons explained there,
the counting techniques of [HK81] and [ITT04] do not directly apply, so we need a dif-
ferent but related lower bound argument.

Our proofs involving orthogonal transformations require some technical assump-
tions that we conjecture could be removed. They are necessary only for algorithms using
(block) Householder or Givens transformations, not variants of Gram–Schmidt. The
challenges are that there are many ways to reorganize or “block” Householder or Givens
transformation that involve the distributive law, not just summing terms in different
orders, and that there may be many intermediate terms that are computed, used,
and discarded without causing any slow memory traffic. One assumption that allows
us to prove the desired lower bound is that one can do dense or sparse QR with block
Householder transformations of any block size, but with only one Householder transfor-
mation per column; see section 4.2.3. Algorithms that satisfy this assumption include
those currently implemented in (Sca)LAPACK [ABB+92, BCC+97] and the recursive
algorithm of Elmroth and Gustavson [EG98, EG00]. A different proof requires the as-
sumptions that we do not block transformations (e.g., we could use Givens transforma-
tions) and that the algorithm must make “forward progress” (e.g., not fill in previously
zeroed-out entries); see section 4.2. The simplest version of Communication–Avoiding
QR (CAQR) (i.e., one that does not block transformations; see last paragraph in sec-
tion 6.4 of [DGHL08a]) satisfies these assumptions and attains the lower bound (with
the appropriate block size). However, most practical implementations of CAQR do
block transformations to increase efficiency in other levels of the memory hierarchy,
and neither proof applies to these algorithms. The recursive algorithm of Frens andWise
[FW03] is also communication efficient, but again our proofs do not apply. We conjec-
ture that the same lower bound holds for these algorithms.

Section 4.3 extends the lower bounds to eigenvalue and singular value problems.
Section 5 shows how to extend our lower bounds to more general computations where
we compose a sequence of simpler linear algebra operations (like matrix multiplication,
LU decomposition, etc.), so the outputs of one operation may be inputs to later ones. If
these intermediate results do not need to be saved in slow memory, or if some inputs are
given by formulas (like Aði; jÞ ¼ 1 ∕ ðiþ jÞ) and so do not need to be fetched from mem-
ory, or if the final output is just a scalar (the norm or determinant of a matrix), then it is
natural to ask whether there is a better algorithm than just using optimized versions of
each operation in the sequence. We give examples where this simple approach is optimal
and when it is not. We also exploit the natural correspondence between matrices and
graphs to derive communication lower bounds for certain graph algorithms, like
All-Pairs–Shortest-Path.
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Finally, section 6 discusses attainability of these lower bounds and open problems.
Briefly, in the dense case all the lower bounds are attainable (in the parallel case, this is
modulo polylogP factors, and assuming the minimal Oðn2 ∕ PÞ storage per processor);
see Tables 6.1 and 6.2 (some of these algorithms are also pointed out in sections 3
and 4.2). The optimal algorithms for square matrix multiplication are well known,
as mentioned above. Optimal algorithms for dense LU, Cholesky, QR, eigenvalue
problems, and the SVD are more recent and not part of standard libraries like LAPACK
[ABB+92] and ScaLAPACK [BCC+97]. Several of these references describe prototypes
of the new algorithms that attain large speedups over standard libraries. Beyond the
BLAS, only in the case of Cholesky do we know of a sequential algorithm that does
as few flops as the conventional algorithm (modulo lower order terms) as well as achiev-
ing both minimal bandwidth cost and latency cost across arbitrary levels of memory
hierarchy. Beyond Cholesky [BDHS10, DDGP10] and the BLAS, no optimal algorithm
is known for architectures mixing parallelism and multiple memory hierarchies, i.e.,
most real architectures (but some lower bounds for specific architecture/algorithm com-
binations do exist; see, for example, [Saa86]). “3D” algorithms, which use multiple copies
of the data in order to communicate less than “2D” algorithms using minimal total
memory, were obtained in [IT02, Ash91, Ash93, SD11], and are discussed in section 6.
Communication-optimal algorithms for sparse matrices are known only for sparse
Cholesky [DDGP10]. For highly rectangular dense matrices (e.g., matrix-vector multi-
plication) or for sufficiently sparse matrices, our new lower bound is sometimes lower
than the trivial lower bound (#inputsþ #outputs) and therefore not always attainable.

2. First lower bound. We first define our model of computation formally, and
illustrate it on the simplest case of dense matrix multiplication.

We work with n-by-nmatrices, so we defineV ¼ f1; 2; : : : ; ng to be the index set for
the rows and columns. Let Sa ⊆ V × V be the subset of entries of the indices of the input
matrix A that are read by the algorithm (e.g., the indices of the nonzeros entries of a
sparse matrix). Let a∶Sa ↦ M be a mapping from the matrix entries to locations in
memory (on a parallel machine M refers to a location in some processor’s memory;
the processor number is implicit). The map is one-to-one. Similarly define Sb, Sc

and bð·; ·Þ, cð·; ·Þ for the matrices B and C . Note that the ranges of a, b, and c are
not necessarily disjoint. The value of a memory location l is denoted by MemðlÞ.

Now let f ij and gijk be “nontrivial” functions in a sense we make clear below. The
computation we want to perform is for all ði; jÞ ∈ Sc:

Memðcði; jÞÞ ¼ f ijðgijkðMemðaði; kÞÞ;Memðbðk; jÞÞÞ
for k ∈ Sij; any other argumentsÞ.ð2:1Þ

Here f ij depends nontrivially on its arguments gijkð·; ·Þ, which in turn depend nontri-
vially on their arguments Memðaði; kÞÞ and Memðbðk; jÞÞ, in the following sense: We
need at least one word of space to compute f ij (which may or may not beMemðcði; jÞÞ)
to act as “accumulator” of the value of f ij, and we need the values Memðaði; kÞÞ and
Memðbðk; jÞÞ in fast memory before evaluating gijk. Note also that we may not know
until after the computation what SC , f ij, Sij, gijk, or “any other arguments” were, since
they may be determined on the fly (e.g., pivot order).

Now we illustrate the model in (2.1) by applying it to sequential dense n-by-n ma-
trix multiplication C ¼ A · B, where A, B, and C are stored columnwise in memory: We
take Sc as all pairs ði; jÞ with 0 ≤ i, j < n with Cði; jÞ stored in location
cði; jÞ ¼ iþ j · n. Aði; kÞ is analogously stored at location aði; kÞ ¼ iþ k · n, and
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Bðk; jÞ is stored at location bðk; jÞ ¼ kþ j · n. The set Sij ¼ f0; 1; : : : ; n− 1g for all
ði; jÞ. Operation gijk is scalar multiplication, and f ij computes the sum of its n
arguments.

The question is, How many slow memory references are required to perform this com-
putation, when all we are allowed to do is compute the gijk in a different order, and com-
pute and store the f ij in a different order? This appears to restrict possible reorderings to
those where f ij is computed correctly, since we are not assuming it is an associative or
commutative function, or those reorderings that avoid races because some cði; jÞ may be
used later as inputs. But there is no need for such restrictions: The lower bound applies to
all reorderings, correct or incorrect, yielding the same bound in both cases.

Using only structural information, e.g., about the sparsity patterns of the matrices,
we can sometimes deduce that the computed result f ijð·Þ is exactly zero, to possibly
avoid a memory reference to store the result at cði; jÞ. Section 3.2.1 discusses this pos-
sibility more carefully and shows how to carefully count operations to preserve the
validity of our lower bounds.

The argument, following [ITT04], is
• Break the stream of instructions executed into segments, where each segment

contains exactly M load and store instructions (i.e., that cause communica-
tion), where M is the fast (or local) memory size.

• Bound from above the number of evaluations of functions gijk that can be per-
formed during any segment, calling this upper bound F .

• Bound from below the number of (complete) segments by the total number of
evaluations of gijk (call it G) divided by F , i.e., bG ∕ Fc.

• Bound from below the total number of loads and stores, by M (load/stores per
segment) times the minimum number of complete segments, bG ∕ Fc, so it is at
least M · bG ∕ Fc.

Now we compute the upper bound F using a geometric theorem of Loomis and Whitney
[LW49, BZ88]. We need only the simplest version of their result here.2

LEMMA 2.1 [LW49, BZ88]. Let V be a finite set of lattice points in R3, i.e., points
ðx; y; zÞ with integer coordinates. LetVx be the projection ofV in the x-direction, i.e., all
points ðy; zÞ such that there exists an x so that ðx; y; zÞ ∈ V . Define Vy and Vz similarly.
Let j · j denote the cardinality of a set. Then jV j ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijVxj× jVyj× jVzj

p
.

To see the relationship of this geometric result to our model in (2.1), see Figure 2.1,
shown for the special case of n-by-n matrix multiplication, for n ¼ 3. We model the
computation as an n-by-n-by-n set of lattice points, drawn as a set of n3 1-by-1-by-
1 cubes for easier labeling: Each 1-by-1-by-1 cube represents the lattice point at its bot-
tom front right corner. The cubes (or lattice points) are indexed from corner ði; j; kÞ ¼
ð0; 0; 0Þ to ðn− 1; n− 1; n− 1Þ. Cube ði; j; kÞ represents the multiplication Aði; kÞ ·
Bðk; jÞ and its accumulation into Cði; jÞ. The 1-by-1 squares on the top face of the cube,
indexed by ði; jÞ, represent Cði; jÞ, and the 1-by-1 squares on the other two faces repre-
sent Aði; kÞ and Bðk; jÞ, respectively. The set of all multiplications performed during a
segment are some subset (V in Lemma 2.1) of all the cubes. All the Cði; jÞ needed to
store the results are the projections of these cubes onto the “C-face” of the cube (Vz in
Lemma 2.1). Similarly, the Aði; kÞ needed as arguments are the projections onto the
“A-face” (Vy in Lemma 2.1), and the Bðk; jÞ are the projections onto the “B-face”
(Vx in Lemma 2.1).

2An intuition for the correctness of this special case of Loomis and Whitney bound is as follows: Think of a
box of dimensions a× b× c. Then its (rectangular) projections on the three planes have areas a · b, b · c, and
a · c, and we have that its volume a · b · c is equal to the square root of the product of the three areas.
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Now we must bound the maximum number of possibly different Memðcði; jÞÞ (or
corresponding “accumulators”), Memðaði; kÞÞ, and Memðbðk; jÞÞ that can reside in fast
memory during a segment. Since we want to accommodate the most general case where
input and output arguments can overlap, we need to use a more complicated model than
in [ITT04], where no such overlap was possible. To this end, we consider each input or
output operand of (2.1) that appears in fast memory during a segment of M slow mem-
ory operations. It may be that an operand appears in fast memory for a while, disap-
pears, and reappears, possibly several times (we assume there is at most one copy at a
time in the sequential model and at most one for each processor in the parallel model;
this assumption is consistent with obtaining a lower bound). For each period of contin-
uous existence of an operand in fast memory, we label its root (how it came to be in fast
memory) and its destination (what happens when it disappears):

• Root R1: The operand was already in fast memory at the beginning of the
segment, and/or read from slow memory. There are at most 2M such operands
altogether, because the fast memory has sizeM , and because a segment contains
at most M reads from slow memory.

• Root R2: The operand is computed (created) during the segment. Without
more information, there is no bound on the number of such operands.

• DestinationD1:An operand is left in fast memory at the end of the segment (so
that it is available at the beginning of the next one), and/or written to slowmem-
ory. There are at most 2M such operands altogether, again because the fast
memory has size M , and because a segment contains at most M writes to slow
memory.

FIG. 2.1. Geometric model of matrix multiplication.
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• Destination D2: An operand is neither left in fast memory nor written to slow
memory, but simply discarded. Again, without more information, there is no
bound on the number of such operands.

We may correspondingly label each period of continuous existence of any operand in
fast memory during one segment by one of four possible labels Ri ∕ Dj, indicating the
root and destination of the operand at the beginning and end of the period. Based on the
above description, the total number of operands of all types except R2 ∕ D2 is bounded
by 4M (the maximum number of R1 operands plus the number of D1 operands, an upper
bound).3 The R2 ∕ D2 operands, those created during the segment and then discarded
without causing any slow memory traffic, cannot be bounded without further informa-
tion. For our simplest model, adequate for matrix multiplication, LU decomposition,
etc., we have no R2 ∕ D2 arguments; they reappear when we analyze the QR decomposi-
tion in section 4.2.

Using the set of lattice points ði; j; kÞ to represent each function evaluation
gijkðMemðaði; kÞÞ;Memðbðk; jÞÞÞ, and assuming there are no R2 ∕ D2 arguments, then
we can use Lemma 2.1 to bound F : We let V be the set of indices ði; j; kÞ of the gijk
operations, Vz be the set of indices ði; jÞ of their destinations cði; jÞ with jVzj ≤
4M , Vy be the set of indices ði; kÞ of their arguments aði; kÞ with jVyj ≤ 4M , and
Vx be the set of indices ðj; kÞ of their arguments bðj; kÞwith jVxj ≤ 4M . Then Lemma 2.1
bounds F ¼ jV j ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijVxj× jVyj× jVzj

p
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4MÞ3

p
. Therefore the total number of

loads and stores is bounded by MbGFc ¼ Mb Gffiffiffiffiffiffiffiffiffiffi
ð4MÞ3

p c ≥ G
8
ffiffiffiffi
M

p −M . This proves the first
lower bound.

THEOREM 2.2. In the notation defined above, and, in particular, assuming there
are no R2 ∕ D2 arguments (created and discarded without causing memory traffic),
the number of loads and stores needed to evaluate (2.1) is at least G ∕ ð8 ffiffiffiffiffi

M
p Þ−M .

We may also write this as Ωð#arithmetic operations∕
ffiffiffiffiffi
M

p Þ, understanding that we
only count arithmetic operations required to evaluate the gijk for ði; jÞ ∈ SC and k ∈ Sij.
We note that a more careful, problem-dependent analysis that depends on howmuch the
three arguments can overlap may sometimes increase the lower bound by a factor of as
much as 8, but for simplicity we omit this.

This lower bound is not always attainable, even for dense matrix multiplication: If
the matrices are so small that they all fit in fast memory simultaneously, so 3n2 ≤ M ,
then the number of loads and stores may be just 3n2, which can be much larger than
n3 ∕

ffiffiffiffiffi
M

p
. So a more refined lower bound is maxðG ∕ ð8 ffiffiffiffiffi

M
p Þ−M; #inputsþ #outputsÞ.

We generally omit this detail from statements of later corollaries.
Theorem 2.2 is a lower bound on bandwidth cost, the total number of words

communicated. But it immediately provides a lower bound on latency cost as well,
the minimum number of messages that need to be sent, where each message may contain
many words.

COROLLARY 2.3. In the notation defined above, the number of messages needed to
evaluate (2.1) is at least G ∕ ð8M 3∕ 2Þ− 1 ¼ #evalution of gijk ∕ ð8M 3∕ 2Þ− 1.

The proof is simply that the largest possible message size is the fast (or local) mem-
ory size M , so we divide the lower bound from Theorem 2.2 by M .

On a parallel computer it is possible for a processor to pack M words into a single
message to be sent to a different processor. But on a sequential computer the words to be
sent in a single message must generally be located in contiguous memory locations,
which depends on the data structures used. This model is appropriate to capture the

3More careful but complicated accounting can reduce this upper bound to 3M .
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behavior of real hardware, e.g., cache lines, memory prefetching, disk accesses, etc. This
requirement means that to attain the latency-cost lower bound on a sequential compu-
ter, rather different matrix data structures may be required than row-major or column-
major [BDHS10, FLPR99, EGJK04, AGW01, AP00].

Finally, we note that real computers typically do not have just one level of memory
hierarchy, but many, each with its own underlying bandwidth and latency costs. So it is
of interest to minimize all communication, between every pair of adjacent levels of the
memory hierarchy. As has been noted before [Sav95, BDHS10], when the memory hier-
archy levels are nested (the L2 cache stores a subset of L3 cache, etc.), we can apply
lower bounds like ours at every level in the hierarchy.

3. Consequences for BLAS, LU, Cholesky, and LDLT. We now show how
Theorem 2.2 applies to a variety of conventional algorithms from numerical linear al-
gebra, by which we mean algorithms that would cost Oðn3Þ arithmetic operations when
applied to dense n-by-n matrices, as opposed to Strassen-like algorithms.

It is natural to ask whether algorithms exist that attain these lower bounds. We point
out cases where we know such algorithms exist, which are therefore optimal in the sense of
minimizing communication. In the case of dense matrices, many optimal algorithms are
known, though not yet in all cases. In the case of sparse matrices, little seems to be known.

3.1. Matrix multiplication and the BLAS. We begin with matrix multiplica-
tion, on which our model in (2.1) is based.

COROLLARY 3.1. G ∕ ð8 ffiffiffiffiffi
M

p Þ−M is the bandwidth-cost lower bound for multiplying
explicitly stored matrices C ¼ A · B on a sequential machine, where G is the number of
multiplications performed in evaluating all the Cij ¼

P
kAik · Bkj, and M is the fast

memory size. In the special case of multiplying a dense n-by-r matrix times a dense
r-by-m matrix, this lower bound is n · r · m ∕

ffiffiffiffiffiffiffiffi
8M

p
−M .

This nearly reproduces a result in [ITT04] for the case of two distinct, dense ma-
trices, whereas we need no such assumptions; their bound is

ffiffiffi
8

p
times larger than ours,

but as stated before our bound could be improved by specializing it to this case. We note
that this result could have been stated for sparse A and B in [HK81]: Combine their
Theorem 6.1 (their ΩðjV jÞ is the number of multiplications) with their Lemma 6.1
(whose proof does not require A and B to be dense).

As noted in the previous section, an independent lower bound on the bandwidth cost
is simply the total number of inputs that need to be read plus the number of outputs that
need to be written. But counting the number of inputs is not as simple as counting the
number of nonzero entries of A and B: If A and B are sparse, and column i of A is filled
with zeros only, then row i of B need not be loaded at all, since C does not depend on it.
An algorithm that nevertheless loads row i of B will still satisfy the lower bound. And an
algorithm that loads and multiplies by explicitly stored zero entries of A or B will also
satisfy the lower bound. Multiplications that involve such zero entries is an optimization
sometimes used in practice (e.g., [VDY05]).

When A and B are dense and distinct, there are well-known algorithms mentioned
in the introduction that (nearly) attain the combined lower bound

Ωðmaxðn · r ·m ∕
ffiffiffiffiffi
M

p
; #inputsþ#outputsÞÞ

¼ Ωðmaxðn · r · m ∕
ffiffiffiffiffi
M

p
; n · r þ r · mþ n · mÞÞ;

see [ITT04] for a more complete discussion. Attaining the corresponding latency-
cost lower bound of Corollary 2.3 requires a different data structure than the usual
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row-major or column-major orders, so that words to be sent in a single message are con-
tiguous in memory, and is variously referred to as recursive-block storage or storage
using space-filling curves; see [FLPR99, EGJK04, BDHS10] for discussion. Some of
these algorithms also minimize bandwidth cost and latency cost for arbitrarily many
levels of memory hierarchy. Little seems to be known about the attainability of this
lower bound for general sparse matrices.

Now we consider the parallel case, with P processors. Let nnzðAÞ be the number of
nonzero entries of A; then NNZ ¼ nnzðAÞ þ nnzðBÞ þ nnzðCÞ is a lower bound on the
total memory required to store the inputs and outputs.We need tomake some assumption
about how these data are spread across processors (each of which has its own memory),
since ifA, B, and C were all stored in one processor, and all arithmetic done there (i.e., no
parallelism at all), then no communication would be needed. It is enough to assume either
that (1) the memory is balanced among the processors or that (2) the arithmetic is
balanced. In the first case, each processor stores an equal share NNZ ∕ P of the data
(and perhaps at most oðNNZ ∕ PÞ more words). Then at least one processor must per-
form at least G ∕ P multiplications, where G is the total number of multiplications (they
cannot all be below average); the theorem below will apply to the communication done by
this processor. In the second case, each processor does G ∕ P multiplications (give or take
oðG ∕ PÞ). Then at least one processor stores at mostNNZ ∕ P words (they cannot all be
above average); the theorem below will apply to the communication done by this proces-
sor. Combining all this with Theorem 2.2 yields4 the following corollary.

COROLLARY 3.2. Suppose we have a parallel algorithm on P processors for multiply-
ing matrices C ¼ A · B that is memory balanced in the sense described above. Then at
least one processor must communicate ΩðG ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P · NNZ

p
−NNZ ∕ PÞ words, where G

is the number of multiplications Aij · Bkj performed. In the special case of dense n-by-n

matrices, this lower bound is Ωðn2 ∕
ffiffiffiffi
P

p Þ.
There are again well-known algorithms that attain the bandwidth-cost and latency-

cost lower bounds in the dense case, but not in the sparse case.
We next extend Theorem 2.2 beyond matrix multiplication. The simplest extension

is to the so-called BLAS3 (Level-3 Basic Linear Algebra Subroutines [BDD+01,
BDD+02]), which include related operations like multiplication by (conjugate) trans-
posed matrices, by triangular matrices, and by symmetric (or Hermitian) matrices. The
last two corollaries apply to these operations without change (in the case of AT · A we
use the fact that Theorem 2.2 makes no assumptions about the matrices being multiplied
not overlapping).

More interesting is the BLAS3 operation TRSM, computing C ¼ A−1B, where A is
triangular. The inner loop of the algorithm (when A is upper triangular) is

Cij ¼
�
Bij −

Xn
k¼iþ1

Aik · Ckj

�
∕ Aii;ð3:1Þ

which can be executed in any order with respect to j, but only in decreasing order with
respect to i. None of this matters for the lower bound, since (3.1) still matches (2.1), so
the lower bounds apply. To see this, we make the correspondences that Cij is stored at
location cði; jÞ ¼ bði; jÞ, Aik is stored at location aði; kÞ, gijk multiplies Aik · Ckj, and f ij
performs the indicated sum, subtracts it from Bij, and divides by Aii. The fact that

4We present the conclusions for the parallel model in asymptotic notation. One could instead assume that
each processor had memory of sizeM ¼ μ · n

2

P for some constantμ, and obtain the hidden constant of the lower
bounds as a function of μ, as done in [ITT04].
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output Cij coincides with the input (so it could be of type R2 ∕ D1) does not matter.
Sequential algorithms that attain these bounds for dense matrices, for arbitrarily many
levels of memory hierarchy, are discussed in [BDHS10].

We note that our lower bound also applies to the so-called Level 2 BLAS (like
matrix-vector multiplication) and Level 1 BLAS (like dot products), but the larger lower
bound #inputsþ #outputs is attainable.

3.2. LU factorization. Independent of sparsity and pivot order, the formulas de-
scribing LU factorization are as follows, with the understanding the summations may be
over some subset of the indices k in the sparse case, and pivoting has already been
incorporated in the interpretation of the indices i, j, and k.

Lij ¼
�
Aij −

X
k<j

Lik · Ukj

�
∕ Ujj for i > j;

Uij ¼ Aij −
X
k<i

Lik · Ukj for i ≤ j.ð3:2Þ

We see that these formulas correspond to our model in (2.1), with aði; jÞ ¼ bði; jÞ ¼
cði; jÞ (since L and U are both inputs and outputs, overwriting A), gijk identified with
multiplying Lik · Ukj, and f ij summing the operands, subtracting from Aij, and possibly
dividing byUjj. The fact that the “outputs” Lij andUij coincide with the inputs (so they
could be of type R2 ∕ D1) does not matter, as before.

We discuss the more subtle question of incomplete LU (ILU) in the next section.
A sequential dense LU algorithm that attains this bandwidth-cost lower bound is

given by [Tol97], although it does not always attain the latency-cost lower bound
[DGHL08a]. The conventional parallel dense LU algorithm implemented in ScaLAPACK
[BCC+97] attains the bandwidth-cost lower bound (modulo anOðlog PÞ factor), but not
the latency-cost lower bound. A parallel algorithm that attains both lower bounds (again
modulo a factor Oðlog PÞ) is given in [DGX08], where significant speedups are reported.
Interestingly, it does not seem possible to attain both lower bounds and retain conven-
tional partial pivoting; a different (but still stable) kind of pivoting is required. We also
know of no dense sequential LU algorithm thatminimizes bandwidth cost and latency cost
across multiple levels of a memory hierarchy (unlike Cholesky). There is an elementary
reduction proof that dense LU factorization is “as hard as dense matrix multiplication”
[DGHL08a], but it does not address sparse or incomplete LU, as does our approach.

3.2.1. How to count operations gijk carefully. Once an algorithm has com-
pleted running, the type Ri∕ Dj of each argument is well defined based on the actual
sequence of operations performed, but it may be hard to tell by inspecting the source
code of the algorithm (or other high level description) which operations to count as gijk
in the total G used in the statement of Theorem 2.2.

A sufficient, but not necessary, condition for counting gijk is as follows: If aði; kÞ and
bðk; jÞ are originally stored in memory and never modified, then they can only be R1 and
not R2; they are always D2. If cði; jÞ is only computed once and eventually stored to mem-
ory, it can only be D1 and not D2; it could be either R1 or R2, depending on the segment.
In this situation, which covers the BLAS, LU, and other “complete” factorizations, there
are clearly no R2 ∕ D2 arguments, and we count all multiplications. (Arguments of type
R2 ∕ D2 appear later in section 4 and require different counting techniques.)

In other situations, where it may be difficult to tell which gijk to count, it may be
easier to identify a subset of them that are recognized as satisfying a condition as in the
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last paragraph, and just count this subset. This may undercount the total number G of
gijk, but still provides a valid lower bound.

We give some examples to illustrate the counting process.
Example 1. Consider incomplete LU (ILU) factorization [Saa96], where some en-

tries of L andU are omitted in order to speed up the computation. In particular, consider
threshold based ILU, which computes a possible nonzero entry Lij orUij and compares it
to a threshold, storing it only if it is larger than the threshold and discarding it otherwise.
Which multiplications Lik · Ukj do we count? We may underestimate the total number
G of multiplications by simply not counting any multiplications that lead to a value of
Lij or Uij that is discarded. Thus we see that analogues of Corollaries 3.1 and 3.2 apply
to ILU as well (and later to incomplete Cholesky, etc.).

Example 2. Using only structural information, e.g., about the sparsity patterns of
the underlying matrices, it is sometimes possible to deduce that the computed result
f ijð·Þ is exactly zero, and so to possibly avoid a memory reference to location cði; jÞ
to store the result. This may be either because the values gijkð·Þ being accumulated
to compute f ij are all identically zero or, more interestingly, because it is possible to
prove there is exact cancellation (independent of the values of the nonzero arguments
Memðaði; kÞÞ and Memðbðk; jÞÞ). Here is an example.

Consider a matrix A that is nonzero in its first r rows and columns, and possibly in
the trailing (n− 2r)-by-(n− 2r) submatrix; call this submatrix A 0. First suppose
A 0 ¼ 0, so that A has rank at most 2r, and that pivots are chosen along the diagonal.
It is easy to see that the first 2r − 1 steps of Gaussian elimination will generically fill in
the entire matrix with nonzeros, but that step 2r will cause cancellation to zero (in exact
arithmetic) in all entries of A 0. If A  0 starts as a nonzero sparse matrix, then this can-
cellation will not be to zero but to the sparse LU factorization of A  0 alone. So one can
imagine an algorithm that may or may not recognize this opportunity to avoid work in
some or all of the entries of A 0. To accommodate all these possibilities, we could, as
above, count only those multiplications gijk (3.2) that contribute to a result Lij or
Uij that is stored in memory, possibly underestimating G.

Analogous examples exist for factorizations discussed later, such as LDLT and QR.
As a shorthand, in section 4.2 we will sometimes refer to a matrix entry as being

treated as nonzero if the algorithm assumes that its value could be nonzero in deciding
whether to bother performing gijk. Thus an algorithm for dense matrices treats all
entries as nonzero, even if the input matrix is sparse, whereas a sparse factorization
algorithm would not.

Example 3. Consider n-by-n boolean matrix multiplication C ¼ A · B, where the
first column of A and first row of B consist entirely of ones. Then one can deduce that
C consists entirely of ones without reading any other columns ofA or rows of B. Thus an
algorithm could perform as few as n2 gijk evaluations (boolean and’s) along with 2nþ n2

loads and stores, or as many as n3 gijk evaluations along with Ωðn3 ∕
ffiffiffiffiffi
M

p Þ loads and
stores, depending on the algorithm and input matrices. Either way, the theorem applies.

Example 4. It is possible to have no R2 ∕ D2 arguments, even if a matrix entry, say,
aði; kÞ, requires nomemory accesses, as long as it is processed in a way like the following:
In segment 1, aði; jÞ is computed by a formula and left in fast memory, so it is R2 ∕ D1 in
segment 1. In segment 2, aði; jÞ starts in fast memory at the start of the segment and
is left there at the end, so it is R1 ∕ D1 in segment 2. Finally, in segment 3, aði; jÞ starts
in fast memory at the start of the segment and discarded before the end, so it is R1 ∕ D2
in segment 3. To see that we could potentially have many such arguments, consider
the realistic problem of computing the determinant of a matrix A from its LU
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decomposition, where each entry of A is given by a formula, and we discard the LU
decomposition after computing the product

Q
i Uði; iÞ. We give a more systematic

way of counting gijk accurately for examples like this in section 5.

3.3. Cholesky factorization. Now we consider Cholesky factorization. Indepen-
dent of sparsity and (diagonal) pivot order, the formulas describing Cholesky factoriza-
tion are as follows, with the understanding the summations may be over some subset of
the indices k in the sparse case, and pivoting has already been incorporated in the inter-
pretation of the indices i, j, and k.

Ljj ¼
�
Ajj −

X
k<j

L2
jk

�
1 ∕ 2

;

Lij ¼
�
Aij −

X
k<j

Lik · Ljk

�
∕ Ljj for i > j.ð3:3Þ

It is easy to see that these formulas correspond to our model in (2.1), with gijk identified
with multiplying Lik · Ljk. As before, the fact that the “outputs” Lij can overwrite the
inputs does not matter, and the subtraction fromAij, division by Lii, and square root are
all accommodated by (2.1). As before, these formulas are general enough to accommo-
date incomplete Cholesky factorization [Saa96].

Dense algorithms that attain these lower bounds are discussed in [BDHS10], both
parallel and sequential, including analyzing one that minimizes bandwidth cost and la-
tency cost across all levels of a memory hierarchy [AP00]. We note that there was a proof
in [BDHS10] showing that dense Cholesky was “as hard as dense matrix multiplication”
by a method analogous to that for LU.

The bound on Cholesky decomposition applies also to Bunch–Kaufman-type factor-
izations [BK77]: The symmetric indefinite factorization A ¼ LDLT , where D is block di-
agonal with 1-by-1 and 2-by-2 blocks, and L is a lower triangular matrix with 1’s on the
diagonal. If A is positive definite, then all the blocks of D are 1-by-1; this is essentially the
Cholesky decomposition algorithm, and the formulas correspond to our model in (2.1):

Djj ¼ Ajj −
X
k<j

L2
jkDkk;ð3:4Þ

Lij ¼
1

Djj

�
Aij −

X
k<j

Lik · LjkDkk

�
for i > j.ð3:5Þ

In the general case, whereD has some 2-by-2 diagonal blocks and they are treated as dense
(as in standard implementations), the above model captures a subset of the work done (at
least half) and the model applies.5

3.3.1. Sparse Cholesky factorization on matrices whose graphs are
meshes. Hoffman, Martin, and Rose [HMR73] and George [Geo73] prove that a lower
bound on the number of multiplications required to compute the sparse Cholesky fac-
torization of an n2-by-n2 matrix representing a 5-point stencil on a two-dimensional grid
of n2 nodes is Ωðn3Þ. This lower bound applies to any matrix containing the structure of
the 5-point stencil. This yields the following corollary.

5One could imagine a nonstandard implementation that took advantage of zero diagonals in 2-by-2 blocks,
so a slightly different proof would be needed for this set of inputs of measure zero.
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COROLLARY 3.3. In the case of the sparse Cholesky factorization of the matrix repre-
senting a 5-point stencil on a two-dimensional grid of n2 nodes, the bandwidth-cost lower
bound is Ωðn3 ∕

ffiffiffiffiffi
M

p Þ.
George [Geo73] shows that this arithmetic lower bound is attainable with a nested

dissection algorithm in the case of the 5-point stencil. Gilbert and Tarjan [GT87] show
that the upper bound also applies to a larger class of structured matrices, including
matrices associated with planar graphs. Recently, David et al. [DDGP10] obtained
new algorithms for sparse cases of Cholesky decomposition that are proven to be com-
munication optimal using our lower bounds.

3.4. Imposing reads and writes. In this example we consider a single linear al-
gebra operation, where inputs are given by formulas and the output is a scalar (e.g.,
norm of the product of two matrices given by formulas, each used once; computing
the determinant of a matrix with entries given by formulas, where one does the LU
decomposition and takes the product of the diagonal elements of U , etc.).

Even though this seems to eliminate a large number of reads and writes, we can
prove (for this and similar examples) that the communication lower bound is still
Ωð#flops ∕ ffiffiffiffiffi

M
p Þ, by using a technique of imposing reads and writes: We take an algo-

rithm to which Theorem 2.2 does not apply, because it may potentially have R2 ∕ D2
operands, and add (impose) memory traffic to eliminate such operands. Then we use
Theorem 2.2 to bound below the communication of this modified algorithm and subtract
the amount of imposed communication to get a lower bound for the original algorithm.

Here is an example. Consider computing r ¼ kA · Bk2F ¼ P
ijðA · BÞ2ij, where Aik ¼

1 ∕ ðiþ kÞ and Bkj ¼ k1 ∕ j are given by formulas. Let C ¼ A · B. Whenever the final va-
lue of some Cij is computed, squared, and added to r, we impose a write (if it is missing)
so that Cij is saved in slow memory, and so has destination D1 instead of possibly D2 (it
may still have root R2). Thus no entries ofC can beR2 ∕ D2. Whenever the value of some
Aik or Bkj is computed by a formula, we impose a read to get it from a location in slow
memory, so it has root R1 instead of R2 (it may still have destination D2). Now, no
entries of A or B can be R2 ∕ D2. Thus this modified algorithm has lower bound
n3 ∕ ð8 ffiffiffiffiffi

M
p Þ−M by Theorem 2.2.

To get a lower bound for the original algorithm, we need to bound how many reads
and writes we imposed. There are clearly at most n2 imposed writes. If the original algo-
rithm evaluates each formula forAik andBkj only once, and keeps their computed values
in memory if necessary for later use, then the number of imposed reads is 2n2, and
the communication lower bound for the original algorithm is n3 ∕ ð8 ffiffiffiffiffi

M
p Þ−M−

3n2 ¼ Ωðn3 ∕
ffiffiffiffiffi
M

p Þ, close to standard dense matrix multiplication.
On the other hand, if the original algorithm evaluates the formulas for Aik and Bkj

whenever it needs them, so n3 times, then the communication lower bound for the ori-
ginal algorithm becomes n3 ∕ ð8 ffiffiffiffiffi

M
p Þ−M − n2 − 2n3, which degenerates to zero.

4. Orthogonal factorizations. In this section we consider algorithms that
compute matrix factorizations with at least one orthogonal factor. This includes algo-
rithms that apply sequences of orthogonal transformations to a matrix, which includes
the most widely used algorithms for least squares problems (the QR factorization),
eigenvalue problems, and the SVD. We need to treat algorithms that apply orthogonal
transformations separately because many of the operations to which we would like to
apply the model in (2.1) involve R2 ∕ D2 arguments, so the model does not directly
apply.
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We start with the easier case of algorithms that compute the QR factorization with-
out applying orthogonal transformations (e.g., Gram–Schmidt), for which we can
use (2.1).

4.1. QR factorization without applying orthogonal transformations. We
first discuss algorithms for computing the QR decomposition whose computations cor-
respond to our model in (2.1). Although Cholesky-QR, classical Gram–Schmidt, and
modified Gram–Schmidt do not share the same stability characteristics as when apply-
ing orthogonal transformations, they are advantageous in various situations and are
used in practice.

Cholesky-QR. Consider anm-by-nmatrixA. The Cholesky-QR algorithm consists of
forming ATA and computing the Cholesky decomposition of that n-by-n matrix. The R
factor is the upper triangular Cholesky factor and Q is obtained by solving the equation
A ¼ QR using TRSM. The communication lower bounds for TRSM (see section 3.1) thus
apply to the Cholesky-QR algorithm (and reflect at least 6

13 of the total number of multi-
plications of the overall dense algorithm). Since the steps of the algorithm (from ATA,
Cholesky, TRSM) can all be done with minimal communication, so can the overall
algorithm.

Classical Gram–Schmidt. We recall the Gram–Schmidt algorithm for orthonorma-
lizing a set of vectors in an inner product space: Let ProjuðvÞ≡ hv;ui

hu;ui u. Let fvigi∈½n� be a
set of n input vectors in Rm. Then the output of the Gram–Schmidt algorithm is
fuigi∈½n�, where

uk ¼ vk −
Xk
i¼1

Projui
ðvkÞð4:1Þ

as well as the triangular R factor. Equation (4.1) does not match (2.1). In order to apply
Theorem 2.2 here, we consider the inner product hvi; uji (which is computed for every
i > j). The operation gijk corresponds to the multiplication of the kth element of vi with
the kth element of uj. Now we have an algorithm that computes hvi; uji for all i > j and
does some other extra computations. Ignoring all the extra computation, the algorithm
agreeswith (2.1),withAbeing the input (R1)vectorsfvigi,B being theoutput (D1)vectors
fujgj, and C being the dot products that become entries of the output (D1) matrix R.

We can now apply Theorem 2.2 to obtain a lower bound of Ωðmn2 ∕
ffiffiffiffiffi
M

p Þ on the
bandwidth cost (since Θðmn2Þ flops are performed). This is not matched by existing
algorithms [DGHL08a].

Modified Gram–Schmidt. The argument for the modified Gram–Schmidt is similar
to the above. Recall that in this modified algorithm, each vi is replaced with new vectors,
u
ðkÞ
i , where k is different for each inner product. That is, instead of (4.1) we have the

modified algorithm

u
ð1Þ
k ≔ vk − Proju1

ðvkÞ
u
ð2Þ
k ≔ u

ð1Þ
k − Proju2

ðuð1Þ
k Þ

..

.

u
ðk−2Þ
k ≔ u

ðk−3Þ
k − Projuk−2

ðuðk−3Þ
k Þ

uk ≔ u
ðk−2Þ
k − Projuk−1

ðuðk−2Þ
k Þ.
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To apply the model in (2.1), we note that a standard implementation will over-
write uðj−1Þ

k by u
ðjÞ
k , so that aði; kÞ points to the common location storing the (D1) values

u
ðjÞ
k ðiÞ for all 1 ≤ j ≤ k. Again, the resulting communication lower boundsΩðmn2 ∕

ffiffiffiffiffi
M

p Þ
are not matched by existing algorithms [DGHL08a].

4.2. Applying orthogonal transformations. The case of applying orthogonal
transformations is more subtle to analyze for several reasons: (1) There is more than one
way to represent the Q factor (e.g., Householder reflections and Givens rotations). (2)
The standard ways to reorganize or “block” QR to minimize communication involve
using the distributive law, not just summing terms in a different order [BVL87,
SVL89, Pug92, Dem97, GVL96]. (3) There may be many intermediate terms that
are computed, used, and discarded without causing any slow memory traffic (i.e.,
are of type R2 ∕ D2).

This forces us to use a different argument than [ITT04], but still using Loomis–
Whitney, to bound the number of arithmetic operations in a segment. To be concrete,
we consider the widely used Householder reflections, in which an n-by-n elementary real
orthogonal matrix Qi is represented as Qi ¼ I − τiuiu

T
i , where ui is a column vector

called a Householder vector and τi ¼ 2 ∕ kuik22. A single Householder reflection Qi is cho-
sen so that multiplying Qi · A zeros out selected rows in a particular column of A and
modifies one other row in the same column (for later use, we let ri be the index of this
other row).

We furthermore model the way libraries like LAPACK [ABB+92] and
ScaLAPACK [BCC+97] may “block” Householder vectors, writing Qk · · · Q1 ¼ I−
UkTkU

T
k , where Uk ¼ ½u1; u2; : : : ; uk� is n-by-k and Tk is k-by-k. Uk is nonzero only

in the rows being modified, and furthermore column i of Uk is zero in entries
r1; : : : ; ri−1 and nonzero in entry ri.

6 Next, we will apply such block Householder trans-
formations to a (sub)matrix by inserting parentheses as follows: ðI − U · T · UT Þ · A ¼
A− U · ðT · UT · AÞ≡ A− U · Z , which is also the way Sca/LAPACK does it. Finally,
we overwrite the output onto A ≔ A− U · Z , which is how most fast implementations
do it, analogously to LU decomposition, to minimize memory requirements. We will also
assume that each entry of Z is computed only once.

But we do not need to assume any more commonality with the approach in
Sca/LAPACK, in which a vector ui is chosen to zero out all of column i of A below
the diagonal. For example, we can choose each Householder vector to zero out only part
of a column at a time, as is the case with the algorithms for dense matrices in [DGHL08a,
DGHL08b]. Nor do we even need to assume we are zeroing out any particular set of
entries, such as those below the main diagonal as the usual QR algorithm; later this
generality will let us apply our result to algorithms for eigenproblems and the SVD.

To get our lower bound, we consider just the multiplications in all the different
applications of block Householder transformations A ≔ A− U · Z . We argue in
section 4.2.3 that this constitutes a large fraction of all the multiplications in the algo-
rithm (it is a valid lower bound in any event).

There are two challenges to straightforwardly applying our previous approach to
the matrix multiplications in all the updates A ≔ A− U · Z . The first challenge is that
we need to collect all these multiplications into a single set, indexed in an appropriate
one-to-one fashion by ði; j; kÞ. The second challenge is that entries of Z may be R2 ∕ D2;
i.e., they need not be read from or written to memory. Rather, they may be computed on

6In conventional algorithms for dense matrices (e.g., the implementation available in LAPACK [ABB+92])
this means ri ¼ i, and Uk is lower trapezoidal with a nonzero diagonal, but our proof does not assume this.
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the fly from U and A, used, and discarded. So we have to account for Z ’s memory
traffic more carefully. Furthermore, each Householder vector (column of U) is created
on the fly by modifying certain (sub)columns of A, so it is both an output and an
input. Therefore we will also have to account for U ’s and A’s memory traffic more
carefully.

Here is how we address the first challenge: Let index k indicate the number of the
Householder vector; in other words Uð:; kÞ are all the entries of the kth Householder
vector. Thus, k is not the index of the column of A from which Uð:; kÞ arises (there
may be many Householder vectors associated with a given column as in [DGHL08a])
but k does uniquely identify that column. Then the operation A− U · Z may be rewrit-
ten as Aði; jÞ−P

kUði; kÞ · Zðk; jÞ, where the sum is over the Householder vectors,
indexed by k, making up U that both lie in column j and have entries in row i. The
use of this index k lets us combine all the operations A ≔ A−U · Z for all different
Householder vectors into one collection

Aði; jÞ ≔ Aði; jÞ−
X
k

Uði; kÞ · Zðk; jÞ;ð4:2Þ

where all operands Uði; kÞ and Zðk; jÞ are uniquely labeled by the index pairs ði; kÞ and
ðk; jÞ, respectively.

For the second challenge, we separately handle two cases. The first (easier) case is
when the number of R2 ∕ D2 Z ’s is relatively small. We can then use the imposed-writes
technique from section 3.4 and apply Loomis–Whitney to obtain the lower bounds. In
the second case, no such bound on the Z ’s is guaranteed. We then use a “forward-
progress” assumption, combined with assuming T is 1-by-1 to obtain a matching lower
bound.

4.2.1. When the number of R2 ∕ D2 Z’s is not too large. Consider the number
of R2 ∕ D2 Z ’s in the entire algorithm, where each R2 ∕ D2 Z value is computed once
(alternatively, if we allow recomputation, each such value that may be computed several
times and is then counted with corresponding multiplicity). We can impose writes (as in
section 3.4) on each R2 ∕ D2 Z element, i.e., writing it to memory when it would have
been discarded, making it D1. Thus allA,U , and Z arguments are non-R2 ∕ D2, allowing
as to directly apply Loomis–Whitney by Theorem 2.2. If the number of R2 ∕ D2 Z ’s is
bounded above by a constant times the number of inputs plus the number of outputs, we
obtain the desired lower bound.

LEMMA 4.1. Consider dense or sparse QR, done with block Householder transforma-
tions of any block size, but at most one Householder transformation per column. Then the
number of words moved is at least

Ω
�
max

�
#flopsffiffiffiffiffi

M
p ; #inputsþ #outputs

��
:

Proof. Consider the first block Householder transformation, of block size b1. From

Zð1∶b1; kÞ ¼ Tð1∶b1; 1∶b1Þ · ðUð:; 1∶b1ÞÞT · Að:; kÞ

and

Að:; kÞ ¼ Að:; kÞ þ Uð:; 1∶b1Þ · Zð1∶b1; kÞ
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and the fact that Uði; iÞ is nonzero, we see that if Zði; kÞ ≠ 0, then Aði; kÞ ¼ Aði; kÞ þ
Uði; iÞ · Zði; kÞþ · · · is generically nonzero.7 So for the first block Householder transfor-
mation, the number of entries in Zð1∶b1; kÞ is bounded by the number of entries in
Að1∶b1; kÞ, which are all TAN. The next block Householder transformation, of block
size b2, is treated similarly, with the number of entries in Zðb1 þ 1∶b1 þ b2; kÞ bounded
by the number of entries in Aðb1 þ 1∶b1 þ b2; kÞ.

If we impose writes (as in section 3.4) on R2 ∕ D2 Z entries, then we obtain a lower
bound from Theorem 2.2, which must be adjusted to account for the imposed writes.
However, since the number of imposed writes is bounded by the number of A entries
(which is the number of inputs and outputs), we obtain a lower bound on the number
of words moved of

Ω
�
max

�
#flopsffiffiffiffiffi

M
p − ð#inputsþ #outputsÞ; #inputsþ #outputs

��
;

and the result follows. ▯
We can conclude a similar bound for reduction to Hessenberg or tridiagonal form:

Instead of assuming we are doing QR (so that Uði; iÞ is nonzero, since Aði; iÞ “accumu-
lates” nonzero entries below it), we could be accumulating into a different but unique
row destination.

Note that the approach of imposing writes does not easily apply to communication-
avoiding QR [DGHL08a], since there are potentially Θð #flops

block sizeÞ different Z elements.

4.2.2. When the number of R2 ∕ D2 Z’s is large. We next consider the harder
general case, where the number of R2 ∕ D2 Z ’s cannot be bounded by a constant factor
times the number of inputs and outputs. We first introduce some notation:

• Let UðkÞ be the kth column of U (which is the kth Householder vector). We will
use UðkÞ and Uð:; kÞ interchangeably when the context is clear.

• Let col src UðkÞ be the index of the column in which U ðkÞ introduces zeros.
• Let rows UðkÞ be the set of indices of rows TAN in UðkÞ. Let row dest U ðkÞ be

the index of the row in column col src UðkÞ in which nonzero values in that
column are accumulated by UðkÞ, and let zero rows UðkÞ be rows UðkÞ with
row dest U ðkÞ omitted.

We will make two central assumptions in this case. First, we assume that the algo-
rithm does not block Householder updates (i.e., all T matrices are 1-by-1). Second, we
assume the algorithm makes “forward progress,” which we define below. As explained
later, forward progress is a natural property of any efficient implementation that pre-
cludes certain kinds of redundant work.

The first assumption means that we are computing
Q

kðI − τk · Uð:; kÞ · U  0ð:; kÞÞ · A,
where τk is scalar. This seems like a significant restriction, since blocked Householder
transformations are widely used in practice. We do not believe this assumption is neces-
sary for the communication lower bound to be valid, but the reason for the assumption is
that there exists an artificial example, where by using an Oðn4Þ algorithm with Oðn4Þ
additional storage (to form and use a T matrix of dimension Oðn2Þ) on a certain matrix,
we could arrange to have one segment in which OðM 2Þ multiplications were performed,

7We say an element is treated as nonzero (TAN) if it is not ignored by the algorithm, even though it may
actually contain zero, or an arbitrarily small value. In other words, it was not zeroed out by the algorithm, nor
is it assumed to be an input element that is guaranteed to be zero. Otherwise, we say the element is treated as
zero (TAZ).
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thereby creating an obstacle to our proof technique, which depends on bounding the num-
ber of multiplications per segment by OðM 3∕ 2Þ. This (impractical) variant of QR is not a
counterexample to our theorem overall, just our proof technique. We describe this coun-
terexample in detail in Appendix A of [BDHS11b]. Still, we believe this special case gives
insight into why blocking techniques will not do better: By using many small Householder
transformations (including 2-by-2, i.e., analogous to Givens rotations) in place of any one
larger Householder transformation, and applying these in the right order, very similar
memory access patterns as for block Householder transformations can be achieved.

This assumption yields a partial order (PO) in which the Householder updates must
be applied to get the right answer. It is only a partial order because if, say, Uð:; kÞ and
Uð:; kþ 1Þ do not “overlap,” i.e., have no common rows that are TAN, then
ðI − τk · Uð:; kÞ · U  0ð:; kÞÞ and ðI − τkþ1 · Uð:; kþ 1Þ · U  0ð:; kþ 1ÞÞ commute, and either
one may be applied first (indeed, they may be applied independently in parallel).

DEFINITION 4.2 (partial order on householder vectors). Suppose k1 < k2 and
rows U ðk1Þ ∩ rows Uðk2Þ ≠ f∅g, then Uðk1Þ < Uðk2Þ in the partial order.8

Our second assumption is that the algorithm makes forward progress.
DEFINITION 4.3 (forward progress). We say an algorithm that applies orthogonal

transformations to zero out entries makes forward progress (FP) if the following two
conditions hold:

1. an element that was deliberately9 zeroed out by one transformation is never
again zeroed out or filled by another transformation;

2. if
(a) Uðk1Þ; : : : ; UðkbÞ < Uðk̂Þ in PO,
(b) col src Uðk1Þ ¼ · · ·¼ col src UðkbÞ ¼ c ≠ ĉ ¼ col src Uðk̂Þ,
(c) and no other UðkiÞ satisfies U ðkiÞ < Uðk̂Þ and col src UðkiÞ ¼ c,

then

rows Uðk̂Þ ⊂
[b
i¼1

zero rows UðkiÞ ∪ frows of column c that are TAZg:ð4:3Þ

The first condition holds for most efficient Householder algorithms.10 It is easy to see
that it is necessary to prove any nontrivial communication lower bound, since without it
an algorithm could “spin its wheels” by repeatedly filling in and zeroing out entries, doing
an arbitrary amount of arithmetic with no memory traffic at all.

The second condition holds for every correct algorithm for QR decomposition. This
condition means any later Householder transformation (Uðk̂Þ) that depends on earlier
Householder transformations ðUðk1Þ; : : : ; UðkbÞÞ creating zeros in a common column c
may operate only “within” the rows zeroed out by the earlier Householder transforma-
tions. We motivate this assumption in Appendix B of [BDHS11b] by showing that if an
algorithm violates the second condition, it can “get stuck.” This means that it cannot
achieve triangular form without filling in a deliberately created zero.

We note that FP is not violated if an original TAZ entry of the matrix is filled in (so
that it is no longer TAZ); this is a common situation when doing sparse QR.

8We note that this relation is transitive. That is, two Householder vectors Uðk1Þ and Uðk2Þ are partially
ordered if there exists Uðk�Þ such that Uðk1Þ < Uðk�Þ < Uðk2Þ, even if rows Uðk1Þ ∩ rows Uðk2Þ ¼ f∅g.

9By deliberately, we mean the algorithm converted a TAN entry into a TAZ entry with an orthogonal
transformation. The introduction of a zero due to accidental cancellation (such zero entries are still TAN)
is not deliberate.

10We note that the first condition of FP does not hold for the bulge-chasing process within standard QR
iteration or successive band reduction [BLS00b] over multiple bulge chases.
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With these assumptions, we begin the argument to bound from below the number of
memory operations required to apply the set of Householder transformations. As in the
proof of Theorem 2.2, we will focus our attention on an arbitrary segment of computa-
tion in which there are OðM Þ non-R2 ∕ D2 entries in fast memory. Our goal will be to
bound the number of multiplications in a segment involving R2 ∕ D2 entries, since the
number of remaining multiplications can be bounded using Loomis–Whitney as before.
From here on, let us denote by Z2ðk; jÞ the element Zðk; jÞ if it isR2 ∕ D2, and by Znðk; jÞ
if it is non-R2 ∕ D2. We will further focus our attention within the segment on the update
of an arbitrary column of the matrix, Að:; jÞ.

Each Zðk; jÞ in memory is associated with one Householder vectorUð:; kÞ, which will
update Að:; jÞ. We will denote the associated Householder vector by U 2ð:; kÞ if Zðk; jÞ ¼
Z2ðk; jÞ is R2 ∕ D2 and Unð:; kÞ if Zðk; jÞ ¼ Znðk; jÞ is non-R2 ∕ D2. With this notation,
we have the following two lemmas, which make it easier to reason about what happens
to Að:; jÞ during a segment.

LEMMA 4.4. If Z2ðk; jÞ is in memory during a segment, then U 2ð:; kÞ and the entries
Aðrows UðkÞ; jÞ are also in memory during the segment.

Proof. Since Z2ðk; jÞ is discarded before the end of the segment and may not be
recomputed later, the entire Að:; jÞ ¼ Að:; jÞ− Uð:; kÞ · Z2ðk; jÞ computation has to
end within the segment. Thus, all entries involved must be resident in memory. ▯

However, even if a Znðk; jÞ is in memory during a segment, the Unð:; kÞ · Znðk; jÞ
computation will possibly not be completed during the segment, and therefore the
Unð:; kÞ vector and corresponding entries of Að:; jÞ may not be completely represented
in memory.

LEMMA 4.5. If Z2ðk1; jÞ and Z2ðk2; jÞ are in memory during a segment, and Uðk1Þ <
UðkÞ < Uðk2Þ in the PO, then Zðk; jÞ must also be in memory during the segment.

Proof. This follows from our first assumption that all T matrices are 1-by-1 and the
partial order is imposed. Since Uðk1Þ < UðkÞ, Zðk; jÞ cannot be fully computed before
the segment. Since UðkÞ < Uðk2Þ, Uð:; kÞ · Zðk; jÞ has to be performed in the segment
too, at least “enough” 11 to carry the dependency, so Zðk; jÞ cannot be fully computed
after the segment. Thus, Zðk; jÞ is computed during the segment and therefore must
exist in memory. ▯

Emulating the arithmetic operations in a segment. Roughly speaking, our goal now
is to bound the number of U 2ðr; kÞ · Z 2ðk; jÞ multiplications by the number of multi-
plications in a different matrix multiplication Û · Ẑ , where we can bound the number
of Û entries by the number of U entries in memory, and bound the number of Ẑ entries
by the number of A entries plus the number of Zn entries in memory, which lets us use
Loomis–Whitney.

Given a particular segment and column j, we construct Û by first partitioning the
U 2ð:; kÞ by their col src UðkÞ and then collapsing each partition into one column of Û .
Likewise, collapse Zð:; jÞ by partitioning its rows corresponding to the partitioned col-
umns ofU and taking the union of TAN entries in each set of rows to be the TAN entries
of the corresponding row of Ẑð:; jÞ.

DEFINITION 4.6 (Û AND Ẑ). For a given segment of computation and column j of A,
we set Ûðr; cÞ to be TAN if there exists a U 2ð:; kÞ in fast memory such that c ¼

11Note that, ifUð:; kÞ isUnð:; kÞ, not all rows UðkÞ rows ofAð:; jÞmust be updated, but enough for Z2ðk2; jÞ
to be computed and U 2ð:; k2Þ · Z2ðk2; jÞ to be applied correctly. Also, a partial sum ðUðstuff; kÞÞT · Aðstuff; jÞ
may have been computed before the beginning of the segment and used in the segment to compute Znðk; jÞ, but
the final Znðk; jÞ value cannot be computed until the segment.
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col src UðkÞ and r ∈ rows UðkÞ. We set Ẑðc; jÞ to be TAN if there exists a Z 2ðk; jÞ in fast
memory such that c ¼ col src UðkÞ.

We will “emulate” the computation Að:; jÞ ¼ Að:; jÞ−P
U 2ð:; kÞ · Z 2ðk; jÞ with the

related computation Að:; jÞ ¼ Að:; jÞ−P
Ûð:; cÞ · Ẑðc; jÞ in the following sense: We

will show that the number of multiplications done by U 2ð:; kÞ · Z2ðk; jÞ is within a factor
of 2 of the number of multiplications done by Ûð:; cÞ · Ẑðc; jÞ, which we will be able to
bound using Loomis–Whitney.

The following example illustrates this construction on a small matrix, where K2

contains three indices (i.e., there are three Householder vectors that were computed
to zero entries in the second column of A); just TAN patterns are shown.

Uð:; K2Þ ¼

2
6666666666664

•

• •
• •

•
•
•

3
7777777777775

⇒ Ûð:; 2Þ ¼

2
6666666666664

•

•
•

•
•
•

3
7777777777775

.

Note that we do not care what the TAN values of Û and Ẑ are; this computation has
no hope of getting a correct result because the rank of Û · Ẑ is generally less than the
rank of the subset of U · Z it replaces. We emulate in this way only to count the memory
traffic. We establish the following results with this construction.

LEMMA 4.7. Ûð:; cÞ has at least half as many TAN entries, and at most as many TAN
entries, as the columns of U from which it is formed.

Proof. The sets zero rows UðkÞ for k in a partition (i.e., with the same col src UðkÞ)
must be disjoint by the forward-progress assumption, and there are at least as many of
these rows as in all the corresponding row dest UðkÞ, which could potentially all coin-
cide. By Lemma 4.4, we know that complete U 2ð:; kÞ are present (otherwise they could,
for example, all be Givens transformations with the same destination row, and if zero
rows were not present, they would all collapse into one row). And so since every entry of
zero rows UðkÞ contributes to a TAN entry of Ûð:; cÞ, and zero rows UðkÞ constitutes
at least half of the TAN entries of UðkÞ, Ûð:; cÞ has at least half as many TAN entries as
the corresponding columns of U .

If all the U 2ð:; kÞ being collapsed have TAN entries in disjoint sets of rows, then
Ûð:; cÞ will have as many entries TAN as all the Uð:; kÞ. ▯

Because each TAN entry ofUð:; kÞ contributes one scalar multiplication toAð:; jÞ ¼
Að:; jÞ−P

U 2ð:; kÞ · Z 2ðk; jÞ and each TAN entry of Ûð:; cÞ contributes one scalar mul-
tiplication to Að:; jÞ ¼ Að:; jÞ−P

Ûð:; cÞ · Ẑðc; jÞ, we have the following corollary.
COROLLARY 4.8. Û ð:; cÞ · Ẑðc; jÞ does at least half as many multiplications as all the

corresponding U 2ð:; kÞ · Z2ðk; jÞ.
In order to bound the number of Û · Ẑ multiplications in the segment, we must also

bound the number of Ẑ entries available.
LEMMA 4.9. The number of TAN entries of Ẑð:; jÞ is bounded by the number ofAð:; jÞ

entries plus the number of Znð:; jÞ entries resident in memory.
Proof. Our goal is to construct an injective mapping I from the set of Ẑð:; jÞ entries

to the union of the sets of Að:; jÞ and Znð:; jÞ entries. Consider the set of Zðk; jÞ entries
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(both R2 ∕ D2 and non-R2 ∕ D2) in memory as vertices in a graph G. Each vertex has a
unique label k (recall that j is fixed), and we also give each vertex two more nonunique
labels: 2 or n to denote whether the vertex is Z 2ðk; jÞ or Znðk; jÞ and col src UðkÞ to
denote the column source of the corresponding Householder vector. A directed edge
ðk1; k2Þ exists in the graph if Uð:; k1Þ < Uð:; k2Þ in the PO. Note that all the vertices
labeled both 2 and c are Z2ðk; jÞ that lead to Ẑðc; jÞ being TAN in Definition 4.6.

For all values of c ¼ col src UðkÞ appearing as labels in G, in order of which node
labeled c is earliest in PO (not necessarily unique), find a (not necessarily unique) node k
with label col src UðkÞ ¼ c that has no successors inG with the same label c. If this node
is also labeled n, then we let I map Ẑðc; jÞ to Znðk; jÞ. If node k is labeled 2, then we let I
map Ẑðc; jÞ to Aðrow dest UðkÞ; jÞ. By Lemma 4.4, this entry of A must be in fast
memory.

We now argue that this mapping I is injective. The mapping into the set of Znðk; jÞ
entries is injective because each Ẑðc; jÞ can be mapped only to an entry with column
source c. Suppose the mapping into theAð:; jÞ entries is not injective, and let Ẑðc; jÞ and
Ẑðĉ; jÞ be the entries that are both mapped to some Aðr; jÞ. Then there are entries
Z2ðk; jÞ and Z2ðk̂; jÞ such that c ¼ col src UðkÞ, ĉ ¼ col src Uðk̂Þ, r ¼ row dest UðkÞ ¼
row dest Uðk̂Þ, and neither k nor k̂ have successors in G with the same column
source label.

Since rows UðkÞ and rows Uðk̂Þ intersect, they must be ordered with respect to the
PO, so supposeUðkÞ < Uðk̂Þ. Consider the second condition of FP. In this case, premises
(2a) and (2b) hold, but the conclusion (4.3) does not. Thus, premise (2c) must not hold,
so there exists another Householder vector U ðk�Þ such that c ¼ col src Uðk�Þ
and r ∈ zero rows Uðk�Þ.

Again, because their nonzero row sets intersect, each of these Householder vectors
must be partially ordered. By the first condition of FP, since row dest UðkÞ ∈
zero rows Uðk�Þ, we have UðkÞ < Uðk�Þ. Also, since U ðk�Þ satisfies (2a), we have
Uðk�Þ < U ðk̂Þ. Thus, UðkÞ < Uðk�Þ < U ðk̂Þ, and by Lemma 4.5, Zðk�; jÞ must also
be in fast memory and therefore in G. Since Zðk�; jÞ is a successor of Zðk; jÞ in G,
we have a contradiction. ▯

THEOREM 4.10. An algorithm that applies orthogonal transformations to annihilate
matrix entries, does not compute T matrices of dimension 2 or greater for blocked
updates, maintains forward progress as in Definition 4.3, performs G flops of the
form U · Z , and has a bandwidth cost of at least

Ω
�

Gffiffiffiffiffi
M

p
�
−M words:

In the special case of a dense m-by-n matrix with m ≥ n, this lower bound is
Ωðmn2 ∕

ffiffiffiffiffi
M

p Þ.
Proof. We first argue that the number of A, U , and Zn entries available during a

segment are all OðMÞ.
Every Aði; jÞ operand is destined either to be output (i.e., D1) or converted into a

Householder vector. Every Aði; jÞ operand is either read from memory (i.e., R1) or cre-
ated on the fly due to sparse fill-in. So the only possible R2 ∕ D2 operands from A are
entries that are filled in and then immediately become Householder vectors, and hence
become R2 operands of U . We bound the number of these as follows.

All U operands are eventually output, as they compose Q. So there are no D2 op-
erands of U (recall that we may compute each result Uði; kÞ only once, so it cannot be
discarded). So all R2 operands Uði; kÞ are also D1, and so there are at most 2M of them
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(since at most M can remain in fast memory, and at most M can be written to slow
memory, by the end of the segment). This also bounds the number of R2 ∕ D2 operands
Aði; jÞ, and so bounds the total number of Aði; jÞ operands by 6M (the sum of
2M ¼ maximum number ofD1 operands plus 2M¼maximum number of R1 operands
plus M ¼ maximun number of R2 ∕ D2 operands).

The number of Zn entries available in a segment is bounded by 2M because by
definition, all entries are non-R2 ∕ D2.

From Lemma 4.7, the number of Û entries available is OðMÞ because it is bounded
by the number of U2 entries, which is in turn bounded by the number of U entries. From
Lemma 4.9, the number of Ẑ entries available is OðMÞ because it is bounded by the sum
of the number of entries of A and of Zn.

Thus, since the number of entries of each operand available in a segment are OðM Þ,
by Lemma 2.1 (Loomis–Whitney), the number of Û · Ẑ scalar multiplications is
bounded byOðM 3 ∕ 2Þ. By Corollary 4.8, the number ofU · Z scalar multiplications with-
in a segment is also bounded by OðM 3 ∕ 2Þ.

Since there are OðMÞ Znðk; jÞ operands in a segment, the Loomis–Whitney argu-
ment bounds the number of multiplies involving such operands by OðM 3 ∕ 2Þ, so with the
above argument that bounds the number of multiplies involving R2 ∕ D2 Zðk; jÞ oper-
ands, the total number of multiplies involving both R2 ∕ D2 and non-R2 ∕ D2 Z entries
is OðM 3 ∕ 2Þ.

The rest of the proof is similar to before: A lower bound on the number of segments is
then b#multiplies ∕ OðM 3 ∕ 2Þc ≥ #multiplies ∕ OðM 3 ∕ 2Þ− 1, so a lower bound on the
number of slow memory accesses is M · b#multiplies ∕ OðM 3 ∕ 2Þc ≥ Ωð#multiplies ∕
M 1 ∕ 2Þ−M . For dense m-by-n matrices with m ≥ n, the conventional algorithm does
Θðmn2Þ multiplies. ▯

4.2.3. Discussion of QR model. It is natural to wonder whether the G opera-
tions in Theorem 4.10 capture the majority of the arithmetic operations performed by
the algorithm, which would allow us to deduce that the lower bound is as large as pos-
sible. The G operations are just the multiplications in all the different applications of
block Householder transformations A ≔ A−U · Z , where Z ¼ T · UT · A. We argue
that under a natural “genericity assumption” this constitutes a large fraction of all
the multiplications in the algorithm (although this is not necessary for our lower bound
to be valid). Suppose ðUT · AÞðk; jÞ is nonzero; the amount of work to compute this is at
most proportional to the total number of entries stored (and so treated as nonzeros) in
column k of U . Since T is triangular and nonsingular, this means Zðk; jÞ will be gen-
erically nonzero as well, and will be multiplied by column k of U and added to column j
of A, which costs at least as much as computing ðUT · AÞðk; jÞ. The costs of the rest of
the computation, forming and multiplying by T and computing the actual Householder
vectors, are lower order terms in practice; the dimension of T is generally chosen small
enough by the algorithm to try to assure this. Thus, for example, there are both a total of
Θðmn2Þ multiplies done by dense QR factorization on an m-by-n matrix (with m ≥ n),
as well as Θðmn2Þ multiplies counted in our lower bound.

4.3. Eigenvalue and singular value problems. Standard algorithms for com-
puting eigenvalues and eigenvectors, or singular values and singular vectors (the SVD),
start by applying orthogonal transformations to both sides of A to reduce it to a
“condensed form” (Hessenberg, tridiagonal, or bidiagonal) with the same eigenvalues
or singular values, and simply related eigenvectors or singular vectors [Dem97]. This
section presents communication lower bounds for these reductions, and then discusses
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whether analogous lower bounds apply to algorithms that work on the condensed
forms.

Later, in section 6, we discuss eigenvalues algorithms that attain these lower bounds
for dense matrices. For the symmetric eigenproblem and SVD, there are such algorithms
that begin by reduction to a condensed form. But for the nonsymmetric eigenproblem,
the only known algorithm attaining the expected lower bound does not initially reduce
to condensed form, and is not based on QR iteration [DDH07, BDD11].

We extend our argument from the last section as follows. We can have some arbi-
trary interleaving of (block) Householder transformations applied on the left,

A ¼ ðI − UL · TL · UT
L Þ · A ¼ A− UL · ðTL · UT

L · AÞ≡ A− UL · ZL;

and the right,

A ¼ A · ðI − UR · TR · UT
R Þ ¼ A− ðA · UR · TRÞ · UT

R ≡ A− ZR · UT
R:

Combining these, we can write

Aði; jÞ ¼ Aði; jÞ−
X
kL

ULði; kLÞ · ZLðkL; jÞ−
X
kR

ZRði; kRÞ · URðj; kRÞ.ð4:4Þ

Of course, there are lots of possible dependencies ignored here, much as we wrote down a
similar formula for QR. At this point we can apply either of the two approaches in the
last section: We can either assume (1) the number of R2 ∕ D2 ZL’s and ZR’s is bounded
by the number of inputs and outputs OðI þOÞ (see section 4.2.1) or (2) all T matrices
are 1-by-1 and we make “forward progress” (see section 4.2.2). In case (1) it is straight-
forward to see that the same lower bound on the number of words moved applies as in
Lemma 4.1: Ωðmaxð#flops ∕ M 1 ∕ 2; I þOÞÞ.

Case (2) requires a little more discussion to clarify the definitions of partial order
(Definition 4.2) and forward progress (Definition 4.3): There will be two partial orders,
one for UL and one for UR. In parts 1 and 2 of Definition 4.3, we insist that no trans-
formation (from left or right) fills in or rezeros out an entry deliberately zeroed out by
another transformation (left or right). This implies that there is an ordering between left
and right transformations, but we do not need to use this order for our counting argu-
ment. We also insist that part 3 of Definition 4.3 hold independently for the left and for
the right transformations.

With these minor changes, we see that the lower bound argument of section 4.2.2
applies independently to UL · ZL and ZR · UT

R . In particular, insisting that left
(right) transformations cannot fill in or rezeros out entries deliberately zeroed out
by right (left) transformations means that the number of arithmetic operations per-
formed by the left and right transformations can be bounded independently and added.
This leads to the same lower bound on the number of words moved as before (in a
Big-Oh sense).

This lower bound applies to the conventional algorithms in LAPACK [ABB+92]
and ScaLAPACK [BCC+97] for reduction to Hessenberg, tridiagonal, and bidiagonal
forms. See section 6 for a discussion of which lower bounds are attained.

The lower bound also applies to reduction of a pair ðA;BÞ to upper Hessenberg and
upper triangular form: This is done by a QR decomposition of B (to which the lower
bound for QR factorization applies), multiplying QTA (to which we can again apply the
QR lower bound argument (as long as the Householder vectors comprising Q satisfy the
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conditions of forward progress with respect to entries of B), and then reducing A to
upper Hessenberg form (to which the argument in this section applies) while keeping
B in upper triangular form. Since this involves filling in entries of B and zeroing them
out again, our argument does not directly apply, but this is a fraction of the total work,
and so would not change the lower bound in a Big-Oh sense.

Our lower bound also applies to the first phase of the successive-band-reduction
algorithm of Bischof, Lang, and Sun [BLS00a, BLS00b], namely, reduction to narrow
band form, because this satisfies our requirement of forward progress. However, the sec-
ond phase of successive band reduction does not satisfy our requirement of forward pro-
gress, because it involves bulge chasing, i.e., repeatedly creating nonzero entries outside
the band and zeroing them out again. Thus only one “pass” of bulge chasing satisfies
forward progress, not multiple passes. But since the first phase does asymptotically more
arithmetic than the second phase, our lower bound based just on the first phase cannot
be much improved (see section 6 for more discussion of these and other algorithms).

Now we consider the rest of the eigenvalue or singular value problem. Once a sym-
metric matrix has been reduced to tridiagonal form T , it of course requires much less
memory to store, justOðnÞ. AssumingM is at least a few times larger than n, there are a
variety of classical algorithms to compute some or all of T ’s eigenvalues also using just
OðnÞ fast memory. So in the common case that n is at least a few times smaller than the
fast memory size M , this can be done with as many slow memory references as there are
inputs and outputs, which is a lower bound. A similar discussion applies to the SVD of a
bidiagonal matrix B. Once the eigenvectors of T or singular vectors of B have been
computed, they must be multiplied by the orthogonal matrices used in the reduction
to get the final eigenvectors or singular vectors of A. Our previous analysis of applying
Householder transformations applies here, as long as the Householder vectors satisfy
forward progress with respect to the matrix from which they were computed. For
example, in the two-phase successive-band-reduction algorithm, the lower bound does
not apply to updating the eigenvector matrix with Householder vectors computed in
the second phase (involving bulge chasing), but it does apply to updating the eigenvec-
tors with Householder transformations from the first phase (which satisfy forward
progress).

Finally we consider the more challenging computation of the eigenvalues and eigen-
vectors of a Hessenberg matrix H . Our analysis applies to one pass (of bulge chasing) of
standard QR iteration on a dense upper Hessenberg matrix to find its eigenvalues, but this
does Oðn2Þ flops on Oðn2Þ data, and so does not improve the trivial lower bound of the
input size. As discussed above, multiple bulge-chasing passes do not satisfy our forward-
progress definition. We conjecture that improvements of Braman, Byers, and Mathias
[BBM02a, BBM02b] to combine m passes into one increase the flop count to Oðmn2Þ,
while maintaining forward progress, letting us get a lower bound of Ωðmn2 ∕ M 1∕ 2Þ. This
starts to get interesting as soon as m > M 1∕ 2. In practice, for numerical reasons, m is
usually chosen to be 256 or lower, which limits the applicability of this result.

5. Lower bounds for more general computations. We next demonstrate how
our lower bounds can be applied to more general computations where any or all of the
following apply:

1. We might do a sequence of basic operations (matrix multiplication, LU, etc.).
2. The outputs of one operation are the inputs to a later one but do not necessarily

need to be saved in slow memory.
3. The inputs may be computed by formulas (likeAði; jÞ ¼ 1 ∕ ðiþ jÞ) requiring no

memory traffic.
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4. The ultimate output written to slow memory may just be a scalar, like the norm
or determinant of a matrix.

5. An algorithm might compute but discard some results rather than save them to
memory (e.g., ILU might discard entries of L or U whose magnitudes fall below
a threshold).

In particular, we would like a lower bound where we are allowed to arbitrarily inter-
leave all the instructions from all basic operations in the computation together, and so
get a lower bound for a global optimization of the entire program. For example, if two
different matrix multiplications share a common input matrix, is it worth trying to
interleave instructions from these two different matrix multiplications?

A natural question is whether it is good enough to just use optimal implementations
of the basic operations, like matrix multiplication, to attain the global lower bound. This
would clearly be the simplest way to implement the program. We know from experience
that this is not always the case. For example, LU itself can be decomposed in many ways
in terms of operations like matrix multiplication. Yet only recently have optimal LU
algorithms been constructed. Previous LU algorithms did not attain optimal bandwidth
cost and latency cost, even when each of their composing operations had optimal band-
width cost and latency cost.

We give some examples, such as computing matrix powers, where it is indeed good
enough to use repeated calls to an optimal matrix multiplication, as opposed to needing
a new algorithm, and another example where the straightforward composition does not
suffice, and a more careful interleaving of the computation is needed in order to attain
the lower bound.

5.1. The sequential case.
5.1.1. Classical and modified Gram–Schmidt. The classical and modified

Gram–Schmidt orthogonalization algorithms discussed in section 4.1 are often used just
to generate an orthonormal basis of the subspace spanned by the input vectors. In this
case, the triangular matrix R may not be written to slow memory. In order to apply
Theorem 2.2, we impose writes (as described in section 3.4) of the entries of R. For
n vectors of length m, these Oðn2Þ imposed writes are a lower order term compared
to the communication lower bound Ωðmn2 ∕

ffiffiffiffiffi
M

p Þ.

5.1.2. A sequence of basic linear algebra operations. In the following exam-
ple, we compose a sequence of basic linear algebra operations where intermediate out-
puts are used as inputs later, and never written to memory (e.g., computing consecutive
powers of a matrix, or repeated squaring). Again, even though this seems to eliminate a
large number of reads and writes, we show that in some cases the lower bound is still
Ωð#flops ∕ ffiffiffiffiffi

M
p Þ, by imposing reads and writes and merging all the operations into a sin-

gle set satisfying (2.1). This means that in such cases we can simply call a sequence of
individually optimized linear algebra routines and do asymptotically as well as we would
do with any arbitrary interleaving.

COROLLARY 5.1 (consecutive powers of a matrix). Let A be an n-by-nmatrix, and let
Alg be a sequential algorithm that computes A2 ¼ A · A, A3 ¼ A2 · A; : : : ;At ¼
At−1 · A, but only needs to save At in slow memory. Let G be the total number of
multiplications performed (e.g.,G ¼ ðt− 1Þn3 if A is dense), where we assume that each
entry of each Ai is computed at most once. Then no matter how the operations of
Alg are interleaved, its bandwidth-cost lower bound is ΩðG ∕

ffiffiffiffiffiffiffiffi
8M

p
−M − ðt− 2Þn2Þ

(if the Ai are sparse, we can subtract less than ðt− 2Þn2 and get a better lower
bound).
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Proof. We give two proofs, each of which may be applied to other examples. For the
first proof, we show how all the operations A2 ¼ A · A; : : : ;At ¼ At−1 · A may be com-
bined into one set to which (2.1), and so Theorem 2.2, applies. For (2.1) to apply, we
must show that all the inputs, outputs, and multiplications can be indexed by one index
set ði; j; kÞ in the one-to-one manner described in section 2.1; this is most easily seen by
writing all the operations as

0
BB@

A2

A3

..

.

At

1
CCA ¼

0
BB@

A
A2

..

.

At−1

1
CCA · A.

Recall that (2.1) permits inputs and outputs to overlap, and “aði; kÞ” and “bðk; jÞ” inputs
to overlap, but the “aði; kÞ” inputs alone must be indexed one-to-one, and similarly the
“bðk; jÞ” inputs alone must be indexed one-to-one; this is the case above.

Next, we impose writes of all the intermediate results A2; : : : ; At−1, yielding a new
algorithm Alg 0. This means that there are no R2 ∕ D2 arguments, so Theorem 2.2 applies
to Alg 0. Thus the bandwidth-cost lower bound of Alg 0 is G ∕ ð ffiffiffiffiffiffiffiffi

8M
p Þ−M , and the band-

width-cost lower bound of Alg is lower by the number of imposed writes, at most
ðt− 2Þn2 (less if the matrices are sparse).

Now we present a second proof, which uses the Loomis–Whitney-based analysis of a
segment more directly. We let #Ai be the number of entries ofAi in fast memory during a
segment of Alg  0. From the definition of a segment, we can bound

P
t
i¼1 #Ai ≤ 4M .

Applying Loomis–Whitney to each multiplication Aiþ1 ¼ Ai · A that one might do
(some of) during a segment, we can bound the number of multiplications during a
segment by F ¼ P

t−1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Aiþ1 · #Ai · #A1

p
. We can now bound F subject to the con-

straint
P

t
i¼1 #Ai ≤ 4M , yielding

F ¼
Xt−1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Aiþ1 · #Ai · #A1

p

¼
ffiffiffiffiffiffiffiffi
#A1

p
·
Xt−1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Aiþ1 · #Ai

p

≤
ffiffiffiffiffiffiffiffi
#A1

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt−1

i¼1

#Aiþ1

vuut ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt−1

i¼1

#Ai

vuut : : : by the Cauchy–Schwarz inequality

≤
ffiffiffiffiffiffiffiffi
4M

p
·

ffiffiffiffiffiffiffiffi
4M

p
·

ffiffiffiffiffiffiffiffi
4M

p
¼ 8

ffiffiffiffiffiffiffi
M 3

p
.

This yields the ultimate bandwidth-cost lower bound of G ∕ ð8 ffiffiffiffiffi
M

p Þ−M . ▯
Both proof techniques also apply to repeated squaring: Aiþ1 ¼ A2

i for i ¼ 1; : : : ;
t− 1, the first proof via the identity

0
BBB@

A2

A4

. .
.

A2t

1
CCCA ¼

0
BBB@

A
A2

. .
.

A2t−1

1
CCCA ·

0
BBB@

A
A2

. .
.

A2t−1

1
CCCA
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and the second proof by bounding the number of multiplications during a segment by
maximizing F ¼ P

t−1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Ai · #Ai · #Aiþ1

p
subject to

P
t
i¼1 #Ai ≤ 4M (here #Ai denotes

the number of entries of A2i−1
available during a segment).

5.1.3. Interleaved vs. phased sequences of operations. In some cases, one can
combine and interleave basic linear algebra operations (e.g., a sequence of matrix multi-
plications) so that the resulting algorithm no longer agrees with (2.1), although the al-
gorithms for performing each of the basic linear algebra operations separately do agree
with (2.1). This may lead to an algorithm whose minimum communication is not
proportional to #flops, but asymptotically better.

Before giving an example, we first observe that a “phased” algorithm, consisting of a
sequence of calls to individually optimized basic linear algebra operations (like matrix
multiplication), where each such basic linear algebra operation (phase) must complete
before the next can begin, can offer no such asymptotic improvements. Indeed, if we
perform Alg1; : : : ;Algt in phases, where Algi has bandwidth-cost lower bound Bi, then
the sequence has bandwidth-cost lower bound B ¼ P

t
i¼1 Bi − 2ðt− 1ÞM . If each Bi is

proportional to the operation count of Algi, then B is proportional to the total operation
count. (The modest improvement 2ðt− 1ÞM arises since we can possibly avoid a little
communication by Algiþ1 using the results left in fast memory by Algi.)

Let us now look at an example, where the interleaved algorithm can do asympto-
tically less communication than the phased algorithm: Consider computing the dense
matrix multiplications C ðkÞ ¼ A · BðkÞ for k ¼ 1; 2; : : : ; t where B

ðkÞ
i;j ¼ ffiffiffiffiffiffiffiffi

Bi;j
k
p

.
The idea is that having both Ai;k and Bk;j in fast memory lets us do up to t evalua-

tions of gijk. Moreover, the union of all these tn3 operations does not match (2.1), since
the inputs Bk;j cannot be indexed in a one-to-one fashion. However, we can still give a
nontrivial lower bound as follows, analyzing the algorithm segment by segment. Let us
begin with the lower bound, then show an algorithm attaining this lower bound.

No operands in a segment are R2 ∕ D2. By the same argument as in section 2, a
maximum of 4M arguments of A, B, and any C ðiÞ’s are available during a segment.
We want to bound the number of gijk’s that we can do during such a segment. Let
#A, #B, and #C ðiÞ denote the number of each type of argument available during the
segment. Then by Loomis–Whitney (applied t times) the maximum number of gijk’s
is bounded by F ¼ P

t
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#A · #B · #C ðiÞp

. We want to maximize F subject to the con-
straint #Aþ #B þP

t
i¼1 #C

ðiÞ ≤ 4M . Applying Cauchy–Schwarz as before yields

F ¼
ffiffiffiffiffiffi
#A

p
·

ffiffiffiffiffiffi
#B

p
·
Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffi
#C ðiÞ

p
≤

ffiffiffiffiffiffi
#A

p
·

ffiffiffiffiffiffi
#B

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt

i¼1

#C ðiÞ

vuut ·
ffiffi
t

p

≤
ffiffiffiffiffiffiffiffi
4M

p
·

ffiffiffiffiffiffiffiffi
4M

p
·

ffiffiffiffiffiffiffiffi
4M

p
·

ffiffi
t

p ¼ 8
ffiffiffiffiffiffiffiffiffi
tM 3

p
.

The number of segments is thus at least b tn3

8M 3 ∕ 2t1 ∕ 2
c and the number of memory operations

at least t1 ∕ 2n3

8M 1 ∕ 2 −M . This is smaller than the “phased” lower bound for t matrix multipli-
cations in sequence, tn3 ∕ ð8 ffiffiffiffiffi

M
p Þ− tM , by an asymptotic factor of Θð ffiffi

t
p Þ.

We next show that this bound is indeed attainable, using a different blocked
matrix multiplication algorithm whose block sizes b1 and b2 depend on M and t (see
Algorithm 1). The bandwidth-cost count for this algorithm is as follows. In the inner-
most loop we read/write t blocks of C ð1Þ; : : : ; C ðtÞ, of M ∕ 3t words each. So we have
2M ∕ 3 reads/writes for the innermost loop. Before this loop we read two blocks
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(of A and B) ofM ∕ 3 words each. This adds up to OðMÞ reads/writes. This is performed
n3

b21b2
times. So the total bandwidth-cost count is O

�
M ·

�
n3

b21b2

��
¼ O

� ffiffi
t

p
n3ffiffiffiffi
M

p
�
.

ALGORITHM 1. MATRIX–MATRICES MULTIPLICATION.
1: b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M ∕ 3t

p
, b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mt ∕ 3

p
, {fso b1b2 ¼ M ∕ 3g

2: Break A into blocks of size b1 × b2.
3: Break B into blocks of size b2 × b1.
4: Break each C ðiÞ into blocks of size b1 × b1.
5: Do block matrix multiplication, where the innermost loop reads in a block of A, a

block of B, and one block each of C ð1Þ; : : : ; C ðtÞ, and updates each C ðiÞ:
6: for i ¼ 1 to n∕ b1 do
7: for j ¼ 1 to n∕ b1 do
8: for k ¼ 1 to n ∕ b2 do
9: Read block Ai;k and block Bk;j

10: for m ¼ 1 to t do
11: Read block C

ðmÞ
i;j

12: C
ðmÞ
i;j þ ¼ Ai;k · ðBðmÞ

k;j Þ : : : fðBðmÞ
k;j Þ is recomputed each timeg

13: Write C
ðmÞ
i;j

14: end for
15: end for
16: end for
17: end for

5.2. The parallel case. The techniques in the above section 5.1 for composing
sequential linear algebra operations can be extended to the parallel case in two different
ways. When we impose reads and writes to get an algorithm to which our previous lower
bounds apply, we need to decide which processor’s memory will participate in those
reads and writes. The first option is to create a “twin processor” for each processor, whose
memory will hold these data. This doubles the number of processors to which the pre-
vious lower bound applies, and also requires us to bound the total memory per processor
not by NNZ ∕ P (again assuming memory is balanced among processors) but by the
maximum of NNZ ∕ P and the largest number of reads and writes imposed on any pro-
cessor. The second option is to have all the imposed reads and writes be in the local
processor’s memory. This keeps the number of processors constant, but increases
NNZ ∕ P by adding the largest number of imposed reads and writes on each processor.
The details are algorithm-dependent. For example, similar to the sequential case, we
obtain a tight lower bound for repeated matrix multiplication and for repeated matrix
squaring.

5.3. Applications to graph algorithms. Matrix multiplication algorithms are
used to solve many graph related problems. Thus our lower bounds may hold, as long
as the matrix multiplication algorithm that is used agrees with (2.1). The bounds,
however, do not apply when using a Strassen-like algorithm (e.g., [YZ05]).

In some cases, one can directly match the flops performed by an algorithm to (2.1)
and obtain a communication lower bound (e.g., computing all-pairs–shortest-path
(APSP) using repeated squaring gives an arithmetic count of Θðn3 log nÞ and band-

width cost of Θðn3 log n∕
ffiffiffiffiffi
M

p Þ).
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We next consider, for example, matrix-multiplication-like recursive algorithms for
finding the shortest path between any pair of vertices in a graph (the APSP problem).
For tight upper and lower bounds for the bandwidth cost of Floyd–Warshall and other
related algorithms, see [MPP02]. The algorithm works as follows [CLRS01]. Let lðmÞ

ij be
the minimumweight of any path from vertex i to vertex j that contains at mostm edges,
where the weight of the edge ði; jÞ is wij ¼ l

ð1Þ
ij . Then l

ðmÞ
ij ¼ min1≤k≤nðlðm−1Þ

ik þwkjÞ, and
the recursive naive algorithm for the APSP problems performs exactly these Θðn4Þ com-
putations. If all values lðmÞ

ij are written to slow memory, then, by Theorem 2.2, the band-
width-cost lower bound is Ωðn4 ∕

ffiffiffiffiffi
M

p Þ. Although this may not be the case—some of the
intermediate values may never reach the slow memory—there are fewer than n3 inter-
mediate l

ðmÞ
ij values. Thus, by imposing reads and writes, the bandwidth-cost lower

bound is Ωðn4 ∕
ffiffiffiffiffi
M

p Þ (note that here, similar to the repeated matrix multiplication ar-
guments of Corollary 5.1, after imposing writes, no two gijk operations use the same two
inputs, so (2.1) applies). Similarly, the Θðn3 log nÞ recursive algorithm for APSP has
Oðn2 log nÞ intermediate values; therefore, by Theorem 2.2 and imposing reads and
writes, the bandwidth-cost lower bound is Ωðn3 log n∕

ffiffiffiffiffi
M

p Þ.
Note that these lower bounds are attainable. As noted before (see, e.g., [CLRS01])

any matrix powering algorithm can be converted into an APSP algorithm, by using “þ”

instead of “�” and “min” instead of summation. Starting with any of the communication-
avoiding optimal matrix multiplication algorithms (e.g., [FLPR99]) guarantees a
bandwidth-cost upper bound of Oðn4 ∕

ffiffiffiffiffi
M

p Þ and Oðn3 log n ∕
ffiffiffiffiffi
M

p Þ, respectively. Using
recursive-block data structure further guarantees optimal latency cost for both
algorithms.

The above repeated-matrix-squaring-like algorithm may, in some cases, perform
better than the communication-avoiding implementation of the Floyd–Warshall algo-
rithm [MPP02]. Consider the problem of finding the neighbors within distance t of every
vertex.

One can use the above repeated-matrix-squaring-like algorithm for log t phases, ob-
taining a running time of Θðn3 log tÞ and communication cost Θðn3 log t ∕

ffiffiffiffiffi
M

p Þ for
dense graphs. For sparse input graphs this may be further reduced. For example, when
G is a union of cycles and paths, the running time and communication bandwidth cost
are Oðn22tÞ and Oðn22t ∕

ffiffiffiffiffi
M

p Þ (as the degree of a vertex of the ith phase is at most 22
i
).

If, however, we use the Floyd–Warshall algorithm for this purpose, we have to run it
all the way through, regardless of the input graph, resulting in running time ofΘðn3Þ and
communication cost of Θðn3 ∕

ffiffiffiffiffi
M

p Þ (assuming the above communication-avoiding im-
plementation). Thus, for t ¼ oðlog nÞ the repeated-matrix-squaring-like algorithm per-
forms better for constant-degree inputs, both from flops count and from communication
bandwidth-cost perspectives.

6. Attaining the lower bounds, and open problems. A major problem is to
find algorithms that attain the lower bounds described in this paper, for bandwidth and
latency costs, for the various linear algebra problems, for dense and sparse matrices, and
for sequential and parallel machines. And since real computers generally have many
levels of memory hierarchy, and possibly levels of parallelism as well (cores on a chip,
chips in a node, nodes in a rack, racks in a room, etc.), we would ideally like to minimize
communication between all of them simultaneously (i.e., between L1 and L2 caches,
between L2 cache and main memory, between memories of different processors, and
so on). It is easy to see that our lower bounds can be applied hierarchically to this situa-
tion, for example, by treating L1 and L2 caches as “fast memory” and L3 cache and
DRAM as “slow memory,” to bound below memory traffic between L3 and L2 caches.
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Tables 6.1 and 6.2 summarize the current state-of-the-art (to the best of our knowl-
edge) for the communication cost of algorithms for dense matrices. To summarize, in the
dense sequential case (Table 6.1), for most important problems, the lower bounds are
attained for two levels of memory hierarchy (excluding Gram–Schmidt and modified
Gram–Schmidt algorithms), but fewer are attained so far for multiple levels, at least
without constant factor increases in the amount of arithmetic. In the dense parallel case
(Table 6.2), for most important problems, the lower bounds are also attained (again,
excluding Gram–Schmidt and modified Gram–Schmidt algorithms), assuming minimal
memory Oðn2 ∕ PÞ per processor, and modulo polylogP terms. Again, some of these
algorithms do a constant factor times as much arithmetic as their conventional
counterparts.

However, only a few of these communication-optimal algorithms appear in standard
libraries like LAPACK [ABB+92] and ScaLAPACK [BCC+97]; the complexity of Sca-
LAPACK implementations in Table 6.2 is taken from [BCC+97, Table 5.8]. (Other li-
braries may well attain similar bounds [GGHvdG01, vdG].) Several of the papers cited
below report large speedups compared to these standard libraries.

When there is enough memory per processor for c > 1 copies of the data
(M ¼ cn2 ∕ p instead of M ¼ n2 ∕ p), the lower bound on the number of words decreases
by a factor of c1 ∕ 2 and the lower bound on the number of messages decreases by a factor
c3 ∕ 2. So far only a few algorithms are known that achieve these smaller lower bounds, for
dense matrix multiplication and (just for the number of words) LU decomposition
[SD11, MT99, DNS81, ABG+95]. (We note that c cannot be arbitrarily large; the proof
breaks down when the lower bound on the number of messages reaches 1, i.e.,
c reaches p1 ∕ 3.)

We note that in practice a collection of words must be stored in contiguous locations
in order to be transferred as a single message at maximum bandwidth; this is a conse-
quence of common hardware design limitations. On a parallel computer, the processor
can in principle repack locally stored noncontiguous data into a separate contiguous
region before sending it to another processor. But on a sequential computer, the data

TABLE 6.1
Sequential Θðn3Þ algorithms attaining communication lower bounds. We separately list algorithms that

attain the lower bounds for 2 levels of memory hierarchy, and multiple levels. In each of these cases, we
separately list algorithms that only minimize the number of words moved, and algorithms that also minimize
the number of messages.

Algorithm Two levels of memory Multiple levels of memory

Minimizes
# words moved

and #messages Minimizes #
words moved

and #
messages

BLAS3 Usual blocked or recursive algorithms
[Gus97, FLPR99]

Usual (nested) blocked or recursive
algorithms [Gus97, FLPR99]

Cholesky LAPACK
(with b ¼ M 1 ∕ 2) [Gus97]

[AP00] [BDHS10]

[Gus97] [AP00]
[BDHS10]

[Gus97] [AP00]
[BDHS10]

[Gus97] [AP00]
[BDHS10]

LU with
pivoting

LAPACK (rarely) [Tol97]
[DGX08] [DGX10]

[DGX08]
[DGX10]

[Tol97] ?

QR LAPACK (rarely) [FW03]
[EG98] [DGHL08a]

[FW03]
[DGHL08a]

[FW03] [EG98] [FW03]

Eig, SVD [BDD11] [BDD11]
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structure must have the property that desired data (a submatrix, say) is already stored
contiguously. But if a matrix is stored rowwise or columnwise, then most submatrices
(those not consisting of complete rows or columns) will not have this property. This
means that in order to achieve the lower bound on the number of messages, sequential
algorithms must not store matrices rowwise or columnwise, but blockwise. And in order
to minimize the number of messages when there is more than one level of memory hier-
archy, these blocks must themselves be stored blockwise, leading to data structures
known by various names in the literature, such as recursive-block layout or storage using
space-filling curves orMorton-ordered quadtree matrices [EGJK04]. The algorithms re-
ferred to in Table 6.1 as minimizing the number of messages assume such data structures
are used.

One may imagine that sequential algorithms that minimize communication for any
number of levels of memory hierarchy might be very complex, possibly depending not
just on the number of levels, but their sizes. It is worth distinguishing a class of algo-
rithms, called cache oblivious [FLPR99], that can sometimes minimize communication
between all levels (at least asymptotically) independent of the number of levels and their
sizes. These algorithms are recursive, for example, multiplying two n-by-n matrices by
recursively multiplying n

2-by-
n
2 submatrices and adding these partial products. Provided

a recursive-block layout described above is used, these algorithms may also minimize the
number of messages independent of the number of levels of memory hierarchy. All the
algorithms cited in Table 6.1 that work for arbitrary levels of memory hierarchy are
cache oblivious. (In practice, one does not recur down to 1-by-1 submatrices because
of the high overhead. Also, some cache-oblivious algorithms require a constant factor
more arithmetic operations than nonoblivious alternatives [FW03]. So “pure” cache
obliviousness is not a panacea.)

We now discuss these tables in more detail. There is a very large body of work on
many of these algorithms, and we do not pretend to have a complete list of citations.

TABLE 6.2
Parallel Θðn3

P Þ flops algorithms with M ¼ Θðn2

P Þ memory per processor: In this case the common lower
bounds for all algorithms listed are #words moved ¼ Ωðn2 ∕ P1∕ 2Þ and #messages ¼ ΩðP1∕ 2Þ (both refer to
the number of words and messages sent by at least one processor to some other processors). The table shows
the factors by which the listed algorithms exceed the respective lower bound, i.e., the ratio
upper bound∕ lower bound (so 1 is optimal). ScaLAPACK refers to [BCC+97]. All entries are to be inter-
preted in a Big-Oh sense.

Algorithm Reference Factor exceeding lower
bound for #words_moved

Factor exceeding lower
bound for #messages

Matrix-multiply [Can69] 1 1

Cholesky ScaLAPACK log P log P

LU with pivoting [DGX08] [DGX10]
ScaLAPACK

log P

log P

log P

ðn ∕ P1∕ 2Þ log P

QR [DGHL08a]
ScaLAPACK

log P
log P

log3 P
ðn∕ P1∕ 2Þ log P

SymEig, SVD [BDD11]
ScaLAPACK

log P

log P

log3 P

n ∕ P1∕ 2

NonymEig [BDD11]
ScaLAPACK

log P
P1∕ 2 log P

log3 P
n log P
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Instead we refer just to papers where these algorithms first appeared (to the best of our
knowledge), with or without analysis of their communication costs (often without), or to
survey papers.

Best understood are dense matrix multiplication, other BLAS routines, and
Cholesky, which have algorithms that attain (perhaps modulo polylogP factors) both
bandwidth and latency lower bounds on parallel machines and on sequential machines
with multiple levels of memory hierarchy. The optimal sequential Cholesky algorithm
cited in Table 6.1 was presented in [Gus97, AP00], but first analyzed later in [BDHS10].
The algorithm in [AP00, BDHS10] is cache oblivious, but whether or not the recursive
algorithm in [Gus97] minimizes communication for many levels of memory hierarchy
depends on the implementation of the underlying BLAS library that it uses. The com-
plexity of ScaLAPACK’s parallel Cholesky cited in Table 6.2 assumes that the largest
possible block size is chosen (NB ≈ n ∕

ffiffiffiffi
P

p
in line “PxPOSV” in [BCC+97, Table 5.8]).

More recently, optimal dense LU and QR algorithms have been proposed that attain
both bandwidth and latency lower bounds in parallel or sequentially (with just two le-
vels of memory hierarchy). LAPACK is labeled “rarely” because only for some matrix
dimensions n and fast memory sizesM is it possible to choose a block size b to attain the
lower bound. Interestingly, conventional partial pivoting must apparently be replaced
by a different (but still stable) pivoting scheme in order to minimize latency costs in LU
[DGX08, DGX10]; we can retain partial pivoting if we only want to minimize bandwidth
[Tol97]. Similarly, we must apparently change the standard representation of the Q ma-
trix in QR in order to minimize both latency and bandwidth costs [DGHL08a]; we can
retain the usual representation if we only want to minimize bandwidth costs in the se-
quential case [EG98]. Both [EG98] and [FW03] are cache oblivious, but only [FW03] also
minimizes latency costs; however, it triples the arithmetic operation count to do so. See
the above references for large speedups reported over algorithms that do not try to mini-
mize communication. The ideas behind communication-optimal dense QR first appear
in [GPS88] and include [BLKD07, GG05, EG98]; see [DGHL08a] for a more complete list
of references.

ScaLAPACK’s parallel symmetric eigensolver and SVD routine also minimize
bandwidth cost (modulo a log P factor), but not the latency cost, sending Oðn∕ P1∕ 2Þ
times as many messages. ScaLAPACK’s nonsymmetric eigensolver communicates much
more; indeed, just the Hessenberg QR iteration has n times higher latency cost.
LAPACK’s symmetric and nonsymmetric eigensolvers and SVDminimize neither band-
width nor latency costs, moving Oðn3Þ words. Recently proposed randomized algo-
rithms in [BDD11, DDH07] for the symmetric and nonsymmetric eigenproblems,
generalized nonsymmetric eigenproblems, and SVD do attain the desired communica-
tion cost (modulo polylogP factors) but at the cost of doing a possibly large constant
factor more arithmetic. (This is in contrast to the new dense LU and QR algorithms,
which do at most Oðn2Þ more arithmetic operations than the Oðn3Þ operations done by
their conventional counterparts.) In [BDD11] it is also pointed out that appropriate
variants of the “successive-band-reduction” approach in [BLS00a, BLS00b] can also
minimize communication, at least in the sequential case for the symmetric eigenproblem
and SVD, for a much smaller increase in the arithmetic operation count (nearly no
increase, if eigenvalues/singular values alone are desired).

The eigenvalue algorithms mentioned above use randomization to implement a
URV decomposition that reveals the rank with high probability; here U and V are
orthogonal and R is upper triangular, with the large singular values “in the upper left
corner” of R and the small singular values “in the lower right corner.” In fact, we can
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perform an implicit randomized rank-revealing URV factorization on an arbitrary
product

Q
i A

�1
i without the need to multiply or invert any of the factors Ai, and so

retain numerical stability.
Devising algorithms that attain the communication lower bounds while performing

QR with column pivoting, LU with complete pivoting or LDLT factorization with any
pivoting remains a work in progress. It also remains an open problem to design parallel
algorithms (beside matrix multiplication and LU decomposition) that can take advan-
tage of extra memory (a multiple of the minimal n2 ∕ p per processor) to further reduce
communication. Finally, finding optimal algorithms for heterogenous computers (e.g.,
CPUs and GPUs), where each processor has a different fast memory size, bandwidth,
latency, and floating point speed, remains open.

It is possible to extend our lower bound results to many Strassen-like algorithms
[BDHS11a] for matrix multiplication, which are attained by the natural recursive se-
quential implementations and are attainable in parallel as well. But the lower bound
proof is significantly different than the one used in this paper. By using recursive algo-
rithms in [DDH07], it is possible to compute LU, QR, and other factorizations while
doing asymptotically as little arithmetic and communication (at least sequentially)
as Strassen-like matrix multiplication. But it remains an open problem to extend the
lower bounds to any implementation of “Strassen-like LU,” “Strassen-like QR,” etc.

For the Cholesky factorization of sparse matrices, whose sparsity structure satisfies
certain graph-theoretic conditions (having “good separators”), the lower bounds can also
be attained [DDGP10]. For sparse matrix algorithms more generally, the problems
are open.

We note that for sufficiently rectangular dense matrices (e.g., matrix-vector multi-
plication) or for sufficiently sparse matrices (e.g., multiplying diagonal matrices), our
lower bound may be lower than the trivial lower bound (#inputsþ #outputs) and so
not be attainable. In this case the natural question is whether the maximum of the
two lower bounds is attainable (as it is for dense matrix multiplication).
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