v 4

lrreia—

inventeurs du monde numérique

Cours ENSL:

Big Data — Streaming, Sketching, Compression, Learning
Today: Convolutional Neural Networks,

computational and memory issues

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr

QOutline of the talk

e Crash course in CNNs

e very little about usage

QOutline of the talk

e Crash course in CNNs

e very little about usage no cat pictures

QOutline of the talk

e Crash course in CNNs

e very little about usage no cat pictures
e very little about origins of CNNs

QOutline of the talk

e Crash course in CNNs

e very little about usage no cat pictures
e very little about origins of CNNs no (cat) neuron picture

QOutline of the talk

e Crash course in CNNs
e very little about usage no cat pictures
e very little about origins of CNNs no (cat) neuron picture
e what type of task graphs, what type of operations, what type of constraints
e Computational Issues
e During the inference phase:
e Pruning, Quantization (weights and activations), Low Rank Decompositions
(SVD based and TT decomposition)
e During the training phase:
e Parallelism (hyper-parameters, data parallelism, spatial parallelism, model
parallelism), Mixed Precision arithmetic, Memory issues (checkpointing and
offloading)

Crash Course in DL

ras ourse In

Introduction

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?"

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)
e we start with a network architecture with weights to be determined (a
gigantic family of computable functions)
e we start with a gigantic set of annotated data (input, result).
e Many times:
e we randomly choose a pair (input, result)
e we compute an error between f(input) and result
e we modify the parameters to minimize this error

We look for the network weights that minimize this error on all pairs

We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)
e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)
e we start with a gigantic set of annotated data (input, result).
e Many times:
e we randomly choose a pair (input, result)
e we compute an error between f(input) and result
e we modify the parameters to minimize this error

We look for the network weights that minimize this error on all pairs

We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)

e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)

e we start with a gigantic set of annotated data (input, result).
https://www.mturk.com

Many times:
e we randomly choose a pair (input, result)
e we compute an error between f(input) and result
e we modify the parameters to minimize this error

We look for the network weights that minimize this error on all pairs

e We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)

e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)

e we start with a gigantic set of annotated data (input, result).
https://www.mturk.com

Many times:
e we randomly choose a pair (input, result) or a mini-batch of pairs (HP)
e we compute an error between f(input) and result
e we modify the parameters to minimize this error

We look for the network weights that minimize this error on all pairs

e We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)
e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)
e we start with a gigantic set of annotated data (input, result).
https://www.mturk.com

e Many times:
e we randomly choose a pair (input, result) or a mini-batch of pairs (HP)
e we compute an error between f(input) and result choice of loss L (HP) is
crucial, returns a single number, regularization, overfitting
e we modify the parameters to minimize this error

We look for the network weights that minimize this error on all pairs

We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)

e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)

e we start with a gigantic set of annotated data (input, result).
https://www.mturk.com

e Many times:

e we randomly choose a pair (input, result) or a mini-batch of pairs (HP)

e we compute an error between f(input) and result choice of loss L (HP) is
crucial, returns a single number, regularization, overfitting

e we modify the parameters to minimize this error Stochastic Gradient

Descent, estimate ODML/_, update W; with learning rate (HP)

We look for the network weights that minimize this error on all pairs

We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

e CNNs have been designed to solve very difficult problems

e "Is there a cat in this picture?" no obvious algorithm...

Idea: data-driven approach (supervised learning)

e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)

e we start with a gigantic set of annotated data (input, result).
https://www.mturk.com

Many times:

e we randomly choose a pair (input, result) or a mini-batch of pairs (HP)

e we compute an error between f(input) and result choice of loss L (HP)
crucial, returns a single number, regularization, overfitting

e we modify the parameters to minimize this error Stochastic Gradient

Descent, estimate da—ML/ update W; with learning rate (HP)
i

is

e We look for the network weights that minimize this error on all pairs
Optimization Strategy, validation set and error

e We hope that this will work also for the other pairs

Crash Course in DL (1): a little bit of vocabulary

CNNs have been designed to solve very difficult problems
e "Is there a cat in this picture?" no obvious algorithm...

e Idea: data-driven approach (supervised learning)

e we start with a network architecture with weights to be determined (a
gigantic family of computable functions) Hyper Parameters (HP)

e we start with a gigantic set of annotated data (input, result).
https://www.mturk.com

e Many times:

e we randomly choose a pair (input, result) or a mini-batch of pairs (HP)

e we compute an error between f(input) and result choice of loss L (HP) is
crucial, returns a single number, regularization, overfitting

e we modify the parameters to minimize this error Stochastic Gradient

Descent, estimate (;D—ML/ update W; with learning rate (HP)
;

e We look for the network weights that minimize this error on all pairs
Optimization Strategy, validation set and error
e We hope that this will work also for the other pairs test set and error,

training and inference phases

Crash Course in DL (2): What do networks look like?

AlexNet (2012): 60 million parameters

lnpul data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8
13x nxzaa 15X 13304 13 13 % 256
27% 27 % 256
55% 55 x 96
1000
227% 227 x 3 4096 4096

e Convolutional (next slides) and Fully Connected Layers (matrix)

— Sofiplus
4 — Rectier

e Conv should be read Conv + RELU T Why?

Crash Course in DL (2): What do networks look like?

AlexNet (2012): 60 million parameters

lnpul data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

/A 4 :-

II! _I 1

1313 % 384 13x 13 x 384 13% 13 % 256
27x 27 X 256
55% 55 X 96
1000
227x 227 %3 4096 4096

Convolutional (next slides) and Fully Connected Layers (matrix)

— Sofiplus
4 — Rectier

Conv should be read Conv + RELU T Why?

Convolutions reshape 3D volume (spatial + RGB locality)
ny

e smaller "image sizes" (width + height), larger number of channels

Crash Course in DL (2): What do networks look like?

AlexNet (2012): 60 million parameters

lnpul data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8
13x nxzaa 15X 13304 13 13 % 256
27% 27 % 256
55% 55 x 96
1000
227% 227 x 3 4096 4096

e Convolutional (next slides) and Fully Connected Layers (matrix)

— Sofiplus
4 — Rectier

e Conv should be read Conv + RELU T Why?

Crash Course in DL (2): What do networks look like?

AlexNet (2012): 60 million parameters

lnpul data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

/A 4 :-

II! _I 1

1313 % 384 13x 13 x 384 13% 13 % 256
27x 27 X 256
55% 55 X 96
1000
227x 227 %3 4096 4096

Convolutional (next slides) and Fully Connected Layers (matrix)

— Sofiplus
4 — Rectier

Conv should be read Conv + RELU T Why?

Convolutions reshape 3D volume (spatial + RGB locality)
ny

e smaller "image sizes" (width + height), larger number of channels

Crash Course in DL (2): What do networks look like?

VGG16: 138 million parameters

e max pooling layers to decrease image size
e smaller convolutional filters (3x3 and 1x1 instead of 3, 7 and even 11)

e deeper network (13 vs 5)

Crash Course in DL (2): What do networks look like?

ResNet: 60M parameters (same as AlexNet) for 152 layers.

VG619

34-layer plain

34-layer residual

A

weight layer

X
identity

e use of skip connections to mitigate the
problem of vanishing gradients

e state-of-the-art

CNNs Zoo

Performance on ImageNet

Top-1 accuracy [%]

Topl: find the the best label

Topb: find the best label while proposing 5

size: number of weights

Operations [G-FLOPs]

Operations [G-FLOPS)

s L [
‘SE-ResNeX1-101(32x4d) SEResNexL101(321d) Inception-ResNet-v2.
Inception-ResNet-v2 9 tion-vd ot
SE-ResieX50032140) o - et 131" 154 B Pcapton vt Apatve. 131 V154
Xeoption JPathNet 98 et @ it
st G Goosn AP
SE-ResNet Net-152 \(ResNeXt-101(64xdd) i TG vt 101 BNt 152 ResNext-101(64x40)
SERNeLD capton- g 101327 @R 152 o e 101 (BT 152
WSkt ol SISt f i
o e seNet- 169 Vobzion
o @rsecso @t tor VG194 3, RN
OusateL 63 i w10 e | Gt
Osrsee 121
ousig Puovie
@ NASNet e ISy
s o g B Son @Rk 34
viocSon @Rt 34 Vo613 4 = o voo13 6
B
8
@ hobsienet.v2 VoG8N g TR IR A VGG-11.8N
we § wen
e voc16 Py voG16
. & et-18
cot1 s e
= 2 Yobithett
V6613
P ShuieNet VG611
D Gooptaet =t
jLeNet L
ot 8, ShuffleNet
Saumeshotv1.1
S OM SO TS oo 150M S oM SO 7M. oM 150w
sttt 1 g
Pps—"
@ ere @ et
0 5 10 15 20 25 0 5 10 15 20

ras ourse In

Focus 1: Convolutional Layers

Convolution (description)

(a) Filter 5 x 5 x 3 (b) 2 filters 5 X 5 x 3 that contribute to
different output feature maps

input Image: w X h X ¢
Filter k x k x ¢
e D Filters Output image w X h x d (not completely true, padding, stride,

dilation)
e operation:
Input Filter Result
4|92 8|3k =
5|62 o3|
2045 5|2]
s|e|s5|a|7]|8[Parameters:
el] e BT
slelslofelel g, we E

nyxn,xn.= 6x6x3 ttps://indo 10

Convolution (VGG example)

Case Study: VGGNet ==
f CE=)
[Simonyan and Zisserman, 2014] CEwm Cema
=) =
Small filters, Deeper networks —
=
8 layers (AlexNet) =
-> 16 - 19 layers (VGG16Net) =
[—cr—]
== 1
Only 3x3 CONV stride 1, pad 1 ———
and 2x2 MAX POOL stride 2 Cm) C =
11.7% top 5 error in ILSVRC'13 !) -
(ZFNet)) = = B
->7.3% top 5 error in ILSVRC'14 AlexNet VGG16 VGG19
INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases

CONV3-64: [224x224x64] memory: 224°224*64=32M params: (3'3"3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224*224°64=3.2M params: (3'3°64)"64 = 36,864
POOL2: [112x112x64] memory: 112°112'64=800K params: 0

CONV3-128: [112x112x128] memory: 112°112*128=1.6M params: (3*3"64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)"128 = 147,456
POOL2: [56x56x128] memory: 56°56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)"256 = 294,912
CONV3-256: memory: 56°56' =800K params: (3*3°256)"256 = 589,824
CONV3-256: memory: 56°56°256=800K params: (3°3"256)"256 = 589,824
POOL2: [28x28x256] memory: 28*28°256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28'512=400K params: (3*3"256)'512 = 1,179,648
CONV3-512: [28x28x512] memory: 282851 00K params: (3°3"512)"512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28'512=400K params: (3'3'512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14°512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14°512=100K params: (3*3"512)'512 = 2,359,296
CONV3-512: [14x14x512) memory: 14*14*512=100K params: (3'3°512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14°51 00K params: (3°3°512)"512 = 2,359,296
POOL2: [7x7x512] memory: 7*7°512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7°7°512°4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 40961000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

akil,

Cost and Implementation

d times k x k x c filters

e arranged into a d X k*c matrix

e input images are arranged into a k’c x n matrix (n = wh with no striding
or dilation)

e convolution is performed with a GEMM (GPU friendly)

e Note that there is a lot of redundancy in the input image matrix (see later)

Conv weights: D filters, each Kx Kx C Feature map: Hx W x C

s \

[—

[—

[—] >
[—] % Matrix multiply

% b D xNresult;
D x (K*C) matrix (KZC) x N matrix reshape to output tensor

12

ras ourse In

Focus 2: Stochastic Gradient Descent (SGD)

'3}

SGD: forward propagation and backward propagation

W (size d;)

14

SGD: forward propagation and backward propagation

W (size d;)

14

SGD: forward propagation and backward propagation

W (size d;)

14

SGD: forward propagation and backward propagation

W (size d;)

14

SGD: forward propagation and backward propagation

Vwf + update | | W (size d;)

af _ _of oy af oy))
¢ axM T ay® 9, + 9y() oy ° Slze(vx(l)):s'ze(x(l))
o _Of _ _or oy af _ oy e the costs of forward and backward

9x(2) ay(1) 2) ay(2) 5,(2) .
&y P @ A phases are approximately the same
for CONV and FC layers

of _ _of oy af oyt
® aw, ~ a0 +;

o
E

14

SGD: forward propagation and backward propagation

+(1)

Vwf + updateHW (size d;)

Storage

e we must keep W all the time (and update it)

e we must remember

o x(1) x(2) until the corresponding backward operation
e (or to recompute them when using Checkpointing)

Forward: compute y*) et y(z) and then wait...

Receive V o)f et V z)f (same size as y® and y®)
e compute and trasmit V u)f and V)f (same size as x® and x(2))
e compute Vy f et update W

e computational DAG: original DAG + loss + returned DAG
15

Models are getting larger and deeper

IMAGE RECOGNITION

16X

Model

152 layers

22.6 GFLOP
-3.5% error

8 layers
1.4 GFLOP
-16% Error

2012 2015
AlexNet ResNet

Microsoft

SPEECH RECOGNITION

10X

Training Ops

465 GFLOP

12,000 hrs of Data
5% Error

80 GFLOP
7,000 hrs of Data

-8% Emor

2014 2015
Deep Speech 1 Deep Speech 2

Baidu

16

Models are getting larger and deeper

e Size issues
e size problem for inference: must fit into the phone's memory
e difficult to convince users to download and store a model of 100MB or more
e size problem for training: it must fit into the GPU’s memory
e all network weights (hyper-parameter search, data parallelism)
e all activations during training (and for a long time)

17

Models are getting larger and deeper

e Size issues
e size problem for inference: must fit into the phone's memory
e difficult to convince users to download and store a model of 100MB or more
e size problem for training: it must fit into the GPU’s memory
e all network weights (hyper-parameter search, data parallelism)
e all activations during training (and for a long time)
e Time issues
e Training time for Resnet PyTorch with 4 M40 GPUs

Erorrate Training time

ResNet18: 10.76% 2.5 days
ResNet50: 7.02% 5 days
ResNet101: 6.21% 1 week
ResNet152: 6.16% 1.5 weeks

e a productivity problem
e Energy Issues
e per game, AlphaGo (1920 CPUs and 280 GPUs) 3000$ electric bill

e critical situation when used on mobile phone, risk of draining the battery
e the main source of energy consumption is memory accesses

Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1 |
32 bit float ADD 0.9 9 |—
32 bit Register File 1 10 | —
32 bit int MULT 3.1 31 —
32 bit float MULT 37 37 [—
32 bit SRAM Cache 5 50 —
32 bit DRAM Memory 640 6400 —
1 10 100 1000 10000

17

Computational Issues: Inference Phase

Computational Issues: Inference Phase

Pruning

18

Pruning: removing weights (1)

Source: Learning both Weights and Connections for Efficient Neural Networks.
Han et al. NIPS'15
Goal: how to dramatically prune the model weights (ie to sparsify matrices) 7

19

Pruning: removing weights (1)

Source: Learning both Weights and Connections for Efficient Neural Networks.
Han et al. NIPS'15
Goal: how to dramatically prune the model weights (ie to sparsify matrices) 7
e Loop
e Train the network (full network)

e Prune edges (weights forced to be 0)
e Train remaining weights

before pruning after pruning

pruning
synapses

—->

pruning
neurons

Figure 3: Synapses and neurons before and after
pruning.
e |t works!

e Could this (fix the sparsity pattern) work to build preconditioners?
19

Pruning: removing weights (2)

e Loop Retraining is crucial:
e train + prune for AlexNet: -4% accuracy with 80% pruning
e train + prune + retrain for AlexNet: 80% pruning improves accuracy! Why?

20

Pruning: removing weights (2)

e Loop Retraining is crucial:
e train + prune for AlexNet: -4% accuracy with 80% pruning
e train + prune + retrain for AlexNet: 80% pruning improves accuracy! Why?
e (train 4 prune)* same accuracy up to 90% pruning
e AlexNet (ImageNet) from 60M parameters to 6M with the same accuracy
-O-L2 regularization w/o retrain L1 regularization w/o retrain

L1 regularization w/ retrain L2 regularization w/ retrain
~®-.2 regularization w/ iterative prune and retrain

40% 50% 60% 70% 80% 90% 100%
Parametes Pruned Away 2

20

Pruning: removing weights (2)

e Loop Retraining is crucial:
train + prune for AlexNet: -4% accuracy with 80% pruning

train + prune + retrain for AlexNet: 80% pruning improves accuracy! Why?
(train 4 prune)* same accuracy up to 90% pruning

AlexNet (ImageNet) from 60M parameters to 6M with the same accuracy

0.5%

0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

Accuracy Loss

-O-L2 regularization w/o retrain
L1 regularization w/ retrain
~®-.2 regularization w/ iterative prune and retrain

L1 regularization wio retrain
L2 regularization w/ retrain

8

40% 50% 60% 70%
Parametes Pruned Away 2

e Something even more surprising:

e source DSD: Dense-Sparse-Dense Training for Deep Neural Networks, Song
Han, ICLR 2017
e Retraining with all removed weights improves the accuracy (by 1 to 2%) ??

7

80% 90% 100%

20

Computational Issues: Inference Phase

Quantization (of weights and activations)

21

Quantization of the weights (1)

source: Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding, Song Han ICLR'16
Goal: discretize model weights... make 2.09, 2.12, 1.92 the same value

e How to perform quantization?

22

Quantization of the weights (1)

source: Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding, Song Han ICLR'16
Goal: discretize model weights... make 2.09, 2.12, 1.92 the same value

e How to perform quantization?
e use of clustering algorithms on the weights
e associate each weight to its closest representative

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

e Does it work?

22

Quantization of the weights (1)

source: Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding, Song Han ICLR'16
Goal: discretize model weights... make 2.09, 2.12, 1.92 the same value

e How to perform quantization?
e use of clustering algorithms on the weights
e associate each weight to its closest representative

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

e Does it work? basically, there are averaging mechanisms, but loss of
accuracy
22

Quantization of the weights (2)

e How to make it work?

23

Quantization of the weights (2)

e How to make it work? use retraining again !

e How to retrain? train, cluster the weights, generate a dictionary of weights,
assign of word in the dictionary to each weight , retrain the dictionary (but
not the assignment)!

e How to do that ? compute the gradients (as usual), average the gradients
corresponding the same number in the dictionary, then update the weights!

e It works!
© Pruning + Quantization 4 Pruning Only Quantization Only SVD

0.5%

0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

Accuracy Loss

1 7
2% 5% 8% 1% 14% 17% 20%

Model Size Ratio after Compression

23

Computational Issues: Inference Phase

Low Rank Decompositions

24

Approximation of Convolutional Layers (1)

source: Efficient and Accurate Approximations of Nonlinear Convolutional
Networks Xiangyu Zhang et al. CVPR'14

goal: find a more compact (low rank) representation of the convolutional layers

More specifically, the goal is to find such a decomposition

’ \j

(b)

¢ channels d' channels d channels

e exchange d times k x k x c filters (storage k*dc, flops wh x dk?c)
e against d’ times k X k x c filters and d times 1 x 1 x d’ filters (storage
k*d'c + dd’, flops wh x (dk*c + d’d)) 25

Approximation of Convolutional Layers (2)

(a)

(b)

¥
¥

¥v ¥y
W P¥

¢ channels d’ channels d channels

e Difficulty: what is the rank of W after the training process (SGD)?

26

Approximation of Convolutional Layers (2)

w
)

\NYY¥

(a)

¥ v v X

W P¥

(b)

¥
¥
¥v ¥y

¢ channels d’ channels d channels

e Difficulty: what is the rank of W after the training process (SGD)? full

e What has a chance of being low rank 7

26

w

Approximation of Convolutional Layers (2)

(a)

(b)

)

¥ v ¥ X
NYTY¥

¥
¥

¥v ¥y
W P¥

¢ channels d’ channels d channels

e Difficulty: what is the rank of W after the training process (SGD)? full

e What has a chance of being low rank ? y = Wx € R? because x contains
information about data! How to do this ?

26

Approximation of Convolutional Layers (2)

w

}

\YTY

(a)

LS N R N

¥
¥v ¥y
NS/ 4

®) N

¢ channels d’ channels d channels

e Difficulty: what is the rank of W after the training process (SGD)? full
e What has a chance of being low rank ? y = Wx € R? because x contains
information about data! How to do this ?
e Collect (through sampling) plenty (N) of y;'s (different locations and

training images) (Y is a N X d matrix)
e Compute the SVD of Y, write y = M(y — y) + y where M = P x QT is

low rank (d”)

26

Approximation of Convolutional Layers (2)

w
o
T~
= * v >
@ > —
7
w’ P
M N\
AT o 2
& »
®) 3 —
¢ channels d' channels d channels

e Difficulty: what is the rank of W after the training process (SGD)? full
e What has a chance of being low rank ? y = Wx € R? because x contains
information about data! How to do this ?
e Collect (through sampling) plenty (N) of y;'s (different locations and
training images) (Y is a N X d matrix)
e Compute the SVD of Y, write y = M(y — y) + y where M = P x QT is
low rank (d’)
e And finally y = P x (Q' = QT W)x + b
e Q' isad x k?c matrix than can be used as W’

26

Approximation of Convolutional Layers (2)

w
-
— N
| S >
<
@ < — (@ (b)
> ¥ . g 100 100 /
of
y § s/ 80|
w’ P 2 / /
A \ o 60| 60|/
- g X El |
T A7 - 5 | (
< & 3 |
(b) , N Y g 4 40
g - ' g 20|
<
3
2 o 0
c channels d’ channels d channels 0 32 64 96 0 64 128 192 256
'y @

e Difficulty: what is the rank of W after the training process (SGD)? full
e What has a chance of being low rank ? y = Wx € R? because x contains
information about data! How to do this ?
e Collect (through sampling) plenty (N) of y;'s (different locations and
training images) (Y is a N X d matrix)
e Compute the SVD of Y, write y = M(y — y) + y where M = P x QT is
low rank (d’)
e And finally y = P x (Q' = QT W)x + b
e Q' isad x k?c matrix than can be used as W’

e |t works!

26

Generalization TT Decompositions

source: Tensorizing Neural Networks, Novikov et al, NIPS'15
goal: generalization

o d filters of size k x k x c: (k*c,d) — (k?, d’) and (d’, d) (previous slide)
e this is only one possible option!
e Tensor Train Decompositions introduced by Oseledets et al.:

e Ais a tensor of dimension d. A in TT tensor format if

o A(j1,j2,---,jd) = G x GJd where

e Glkisare_q x rp matrix (ro = ry = 1) and r = maxry is the rank of the

TT decomposition.
e Decomposition is not unique and we look for low rank decompositions.

o Consider a tensor:
A(ir, i, i3) =iy + 2 + i3,
i €{1,2,3}, e{1,2,3,4}, ie{1,23,4,5}
o Its TT-format:
A(ir, i2, i3) = G1[1] Ga[i2] Galis],

where
Glal=[#n 1], 62[7211:[,-12 (13] 63["3]::[H
o Check:
A, i0,i3) = [1]“2 (1)][:13]:
+ Basc cxomple —[i+h 1][“:/1“'2“3.

27

Quantization of the activations

source: Elaina Chai, Quantization Error in Neural Networks
goal: quantize activations (must be extremely cheap)

e compute the activations in FP32, use quantization to store them in INT8
e fixed intervals... Pb: if the order of magnitude of the different components
are very different, it will not work!

v

Ll

e Solution: change the network so that it does not happen

e Batch Normalization tends to homogenize the components (train v and 3)

BatchNorm

X bll BE E
— WL pe

c

28

Winograd Transformation

Fast Algorithms for Convolutional Neural Networks, A. Lavin et al., CVPR’'16
Goal: take advantage of the particular structure of the activation matrix in

Conv weights: D fiters, each K x K x C Feature map: Hx W x C

TREE Y.
= -

D xN result
(K2C) x N matrix reshape to output tensor

*

convolutions

e Goal is to keep GPUs happy by doing GEMMs

e Toy example with an image 4 x 1 and a filter 3 x 1

29

Winograd Transformation

Fast Algorithms for Convolutional Neural Networks, A. Lavin et al., CVPR’'16
Goal: take advantage of the particular structure of the activation matrix in

’i@v cee ﬁ
= -0

N D xN result;
Dx (K'C) matrix (K2C) x N matix reshape to output tensor

Feature map: Hx W x C

N

convolutions

e Goal is to keep GPUs happy by doing GEMMs

e Toy example with an image 4 x 1 and a filter 3 x 1, we obtain: ?

90 0+ote
d0 dl @2 ml +m2 + m3] - [
csult [./1 @2 ,/«] ["]J [m: m3 ml] my = (do —da)ge ™2 = (dh +da) 2
2

my = (dy — ds)g2 ms = (dz "IJ”” -+
2

where 7
e so we end up with 4 Mult (and 8 Add) instead of 6 Mult

In general the improvement is from 36 Mult to 16 Mult (2.25x
improvement) using Winograd transformation

implemented in cuDNN since version 5.0

29

Computational Issues: Training Phase

Computational Issues: Training Phase

Use of Mixed Precision

30

Mixing FP32 and FP16 precisions

Source: Mixed Precision Training, Paulius Micikevicius et al., ICLR'18
Goal: consume less energy during the training phase by using mixed precision

Relatve Energy Cost
(Operaton Energy ()

325 SRAM Read (86) s
320 DRAM Read &40

10 100 1000 10000

010 1000

? o Use of FP16 (x4 in energy and area)
o Algorithm:

31

Mixing FP32 and FP16 precisions

Source: Mixed Precision Training, Paulius Micikevicius et al., ICLR'18
Goal: consume less energy during the training phase by using mixed precision

Relatve Energy Cost

(Operatan Enargy o)
oA o |

160 A [T |

320 A0 X |

o0 7P Ad os .

20 FPAda T |

o 02

320 Mot X

160 7P Mt [

52 FP Mot a7

325 SRAVResd 0KB) | 5

o (—

10 100 1000 10000 1 100 1000

? o Use of FP16 (x4 in energy and area)
e Algorithm: store the weights in FP32, do forward and backward in FP16

°
(B} — s 2 s
d <2 BWD-Acty
weghtGrag_nis [
Waster ieights £32) —22{ weigh Updte 22— Updated Master-wes

Figure 1: Mixed precision training iteration for a layer.

31

Mixing FP32 and FP16 precisions

Source: Mixed Precision Training, Paulius Micikevicius et al., ICLR'18
Goal: consume less energy during the training phase by using mixed precision

Relative Encrgy Cost Relative Area Cost
Operaton Enorgy o) Avea ()

BAs o | ® |

160 A0 os | G |

320 Add o v

160 P Add T | 60—
52079 Add 09— oo
o 02 = -

25 Mot 31 %5

325 FP Mt 37 7m0

325 SRAM Read (8KB) | 5 a NA

325 ORAM Read w0 NA

100 1000 10000 010 100

? e Use of FP]16m(x4 in energy and ;rea)

e Algorithm: store the weights in FP32, do forward and backward in FP16
e It works!

EY
— baseline_train
baseline_devo
2 mixed_precision_fp32_weights_copy_train
I mixed_precision_fp32_weights_copy_devo
mixed_precision_no_FP32_weights_copy_train
mixed_precision_no_FP32_weights_copy_devo
20|

oozl | wegns —5(

Ea
A Fa &)
Activation Grad «25 BWD-Acty £1s
[———
e 10
™ e 1
5 TN
o o—g—08-g o—8-8-§ o I I 5
Figure 1: Mixed precision training iteration for a layer. 5 1 20

1
Epoch number

31

Computational Issues: Training Phase

Hyper Parameter Search, Data and Spatial and Filter and and Model
parallelism
First remarks and limitations

32

Parallelism

e Plenty of potential sources of parallelism

1. Hyper Parameter search (shape of the network, batch size, loss function,
learning rate and optimizer)

2. Data, Spatial, Channel and Kernel Parallelisms: the input of the network is
4 dimensional: batch x channels x height x width, plenty of ways to split it
and generate parallelisme (communication intensive, optimized
MPI_Allreduce to exchange weights updates)

3. Model Parallelism: the network itself can be deep (10s to 100s layers) and it
can be split in turn: be careful, due to backward phase, a priori much much
parallelism !

4. Kernel (GPU) Parallelism: optimization of this special GEMM operation
between the weight matrix (2D conversion of the convolutional filters) and
the activation matrix (equivalent 2D conversion): special because of the
redundancies in the activation matrix.

33

Parallelism

e Plenty of potential sources of parallelism

1. Hyper Parameter search (shape of the network, batch size, loss function,
learning rate and optimizer)

2. Data, Spatial, Channel and Kernel Parallelisms: the input of the network is
4 dimensional: batch x channels x height x width, plenty of ways to split it
and generate parallelisme (communication intensive, optimized
MPI_Allreduce to exchange weights updates)

3. Model Parallelism: the network itself can be deep (10s to 100s layers) and it
can be split in turn: be careful, due to backward phase, a priori much much
parallelism !

4. Kernel (GPU) Parallelism: optimization of this special GEMM operation
between the weight matrix (2D conversion of the convolutional filters) and
the activation matrix (equivalent 2D conversion): special because of the
redundancies in the activation matrix.

e Additional Difficulty / Opportunity w.r.t. Numerical Linear Algebra

33

Parallelism

e Plenty of potential sources of parallelism

1. Hyper Parameter search (shape of the network, batch size, loss function,
learning rate and optimizer)

2. Data, Spatial, Channel and Kernel Parallelisms: the input of the network is
4 dimensional: batch x channels x height x width, plenty of ways to split it
and generate parallelisme (communication intensive, optimized
MPI_Allreduce to exchange weights updates)

3. Model Parallelism: the network itself can be deep (10s to 100s layers) and it
can be split in turn: be careful, due to backward phase, a priori much much
parallelism !

4. Kernel (GPU) Parallelism: optimization of this special GEMM operation
between the weight matrix (2D conversion of the convolutional filters) and
the activation matrix (equivalent 2D conversion): special because of the
redundancies in the activation matrix.

e Additional Difficulty / Opportunity w.r.t. Numerical Linear Algebra

e Data and Spatial parallelism influence the SGD (batch size in particular)

and thus modify both the convergence speed and the accuracy at the end.

33

Parallelism

e Plenty of potential sources of parallelism

1.

2.

Hyper Parameter search (shape of the network, batch size, loss function,
learning rate and optimizer)

Data, Spatial, Channel and Kernel Parallelisms: the input of the network is
4 dimensional: batch x channels x height x width, plenty of ways to split it
and generate parallelisme (communication intensive, optimized
MPI_Allreduce to exchange weights updates)

. Model Parallelism: the network itself can be deep (10s to 100s layers) and it

can be split in turn: be careful, due to backward phase, a priori much much
parallelism !

. Kernel (GPU) Parallelism: optimization of this special GEMM operation

between the weight matrix (2D conversion of the convolutional filters) and
the activation matrix (equivalent 2D conversion): special because of the
redundancies in the activation matrix.

e Additional Difficulty / Opportunity w.r.t. Numerical Linear Algebra
e Data and Spatial parallelism influence the SGD (batch size in particular)

and thus modify both the convergence speed and the accuracy at the end.

e Model parallelism does not induce any speedup, and data and spatial

parallelism induce to many communications when done at large scale...

33

Parallelism

e Plenty of potential sources of parallelism

1. Hyper Parameter search (shape of the network, batch size, loss function,
learning rate and optimizer)

2. Data, Spatial, Channel and Kernel Parallelisms: the input of the network is
4 dimensional: batch x channels x height x width, plenty of ways to split it
and generate parallelisme (communication intensive, optimized
MPI_Allreduce to exchange weights updates)

3. Model Parallelism: the network itself can be deep (10s to 100s layers) and it
can be split in turn: be careful, due to backward phase, a priori much much
parallelism !

4. Kernel (GPU) Parallelism: optimization of this special GEMM operation
between the weight matrix (2D conversion of the convolutional filters) and
the activation matrix (equivalent 2D conversion): special because of the
redundancies in the activation matrix.

e Additional Difficulty / Opportunity w.r.t. Numerical Linear Algebra

e Data and Spatial parallelism influence the SGD (batch size in particular)
and thus modify both the convergence speed and the accuracy at the end.

e Model parallelism does not induce any speedup, and data and spatial
parallelism induce to many communications when done at large scale...

e but you can change the rules, what will once again change the convergence
and the accuracy, sometimes for the better and sometimes for the worse!

33

Gradient Descent Revisited: Stochastic Gradient Descent (1)

General Idea
e Start with one example (image, class) (x, y)
e Forward propagation for net(x) as for a classical task graph
e Evaluation of loss(net(x), y)

e Backpropagation of loss to determine its sensitivity to the different
parameters as for a classical task graph

2 _ Oloss
Update the weights Wi(t + 1) = Wi(t) — e 552

Consequences

e efficiency: depending on the size of the image, GPU usage might not be
optimal (increasing batch size increases the size of the GEMMs)

e general belief: smaller training accuracy but better ability to generalize to
other examples (better test accuracy)

34

Gradient Descent Revisited: Mini Batch Stochastic Gradient Descent (2)

General Idea

e Start with a set of B examples (image, class) (x¥), y (X))

e Forward propagation for net(x(*)) as for a classical task graph

e Evaluation of L, = loss(net(x(¥), y(*))

e Backpropagation of Ly to determine its sensitivity to the different
parameters as for a classical task graph

e Update the weights W;(t + 1) = Wi(t) — e3>, 25

j OW;

Consequences

e efficiency: with a batch size of B,
e same size for network weights, but activation sizes x B
e cost is x B (even better for GPUs)
e everything (including activation stored for the backward phase) must fit into
memory
e general belief: a large batch slows down convergence (less frequent
updates) and affects generalization ability.

35

Data Parallelism: Mini Batch Parallelism

Principe
e Let us suppose we have N (identical) GPUs
e Each GPU can perform SGD with a batch size of B
We train in parallel a batch size of size BN (B on each GPU)

Each resource computes a gradient (size of all weights)

e MPI Allreduce is used to compute a global gradient

Limitations
e MPI Allreduce is expensive when N becomes large

OK80 OTitan X @V100

ResNet50 Inceptionv3 AlexNet

e N large, NB very large — slow convergence and poor generalization

e there is a strict barrier at the end of each Allreduce operation, bad when

. 36
N is large

Spatial Parallelism: Split Images

Source: "Improving Strong-Scaling of CNN Training by Exploiting
Finer-Grained Parallelism" Nikoli Dryden et al.

o Py

Py | Py P
W ee WRAW 0o Ul
I T~ ~% i‘g

forward (eq 1) backward (eq3) | forward (eq 1) backward (eq 3)
1

backward (eq 2) Alireduce backward (eq 2)
I
dL/dy

00 e 0200 e 00

(a) Sample parallelism

P3
(b) Spatial parallelism halo exchange

Principe
e Split the input image into 4 (slightly overlapping) parts
e Perform the forward phase independently on 4 GPUs

e Perform the backward phase (almost independently, halo communications)
on the 4 GPUs

37

Spatial Parallelism: Split Images

Source: "Improving Strong-Scaling of CNN Training by Exploiting
Finer-Grained Parallelism" Nikoli Dryden et al.

o Py

s
Py ! Py
232 T
L]
L LT i UL
]

dLidx

x_ W x_ _w._ dldx
RO N ==

forward (eq 1) backward (eq3) | forward (eq 1) backward (eq 3)
1

backward (eq 2) Alireduce backward (eq 2)

|
dLidy

00 e 0200 e 00

(a) Sample parallelism

P3

(b) Spatial parallelism halo exchange
Principe
e Split the input image into 4 (slightly overlapping) parts

e Perform the forward phase independently on 4 GPUs

e Perform the backward phase (almost independently, halo communications)
on the 4 GPUs

e It looks a priori great, but then you need to update the weights...

37

Spatial Parallelism: Split Images

Source: "Improving Strong-Scaling of CNN Training by Exploiting
Finer-Grained Parallelism" Nikoli Dryden et al.

o Py

dLidx

X w X w dL/dx
v T~ b ™~}
forward (eq 1) backward (eq 3) | forward (eq 1) backward (eq 3)
'

backward (eq 2) Alireduce backward (eq 2)
I

s
Py ! Py
232 T
L]
L LT i UL
]

00 e 0200 e

(a) Sample parallelism

P3

(b) Spatial parallelism halo exchange
Principe
e Split the input image into 4 (slightly overlapping) parts

e Perform the forward phase independently on 4 GPUs

e Perform the backward phase (almost independently, halo communications)
on the 4 GPUs
e It looks a priori great, but then you need to update the weights...
e for fully connected layers, it is great

37

Spatial Parallelism: Split Images

Source: "Improving Strong-Scaling of CNN Training by Exploiting
Finer-Grained Parallelism" Nikoli Dryden et al.

o Py

dLidx

X w X w dL/dx
v T~ b ™~}
forward (eq 1) backward (eq 3) | forward (eq 1) backward (eq 3)
'

backward (eq 2) Alireduce backward (eq 2)
I

P
Po | Py
2% ol
2
L i L
I

y dL/dw aay | y dL/dw dLidy
00 ee G200 e 02

(a) Sample parallelism

P3

(b) Spatial parallelism halo exchange
Principe
e Split the input image into 4 (slightly overlapping) parts

e Perform the forward phase independently on 4 GPUs

e Perform the backward phase (almost independently, halo communications)
on the 4 GPUs
e It looks a priori great, but then you need to update the weights...

e for fully connected layers, it is great
e but for convolutional layers, it has the same cost as data parallelism! 37

Filter Parallelism: Split Filters

"Channel and Filter Parallelism for Large-Scale CNN Training" Dryden, SC19

ot Frs Aetvaons Erocsgal Graderts [py—

N ey | M. oM.
| el - F i st 72 - e - 72 4=
RN AL
" W ., wcz A
M- @ ™ oM
= - F s Sezne 72 - = = £ v ma—a
B . m. = ..
"o W' ., W cr wF woe

General Idea

e start with ¢ channels, produces d channels with d k x k x c filters

Conv weights: D fiters, each K x K x C Feature map: Hx Wx C

2L . HH HHHH l

D (€°C) matrx

e plenty of opportunities for parallehsm with 2 GPUs
e take D/2 filters on each GPU

Matix mumw
u ot

38

Filter Parallelism: Split Filters

"Channel and Filter Parallelism for Large-Scale CNN Training" Dryden, SC19

nput Fiters Actvations Eror signal Gradients Input eror signal

By 02y - e =) R — - e 2 i
i BCENRY M. : ‘»-l“?-h :
" W ., wcz wF e
| Tt 4—__,%4— - e ma—a
CCEM] R
"o W .. w e wir e

General Idea

e start with ¢ channels, produces d channels with d k x k x c filters

Conv weights: D fiters, each K x K x C Feature map: Hx Wx C

2L . HH HHHH l

D (€°C) matrx

e plenty of opportunities for parallehsm with 2 GPUs
e take D/2 filters on each GPU the input feature map (activation) must be

replicated on both and the output feature map must be rebuilt
e take C/2 channels on each GPU

Matix mumw
u ot

38

Filter Parallelism: Split Filters

"Channel and Filter Parallelism for Large-Scale CNN Training" Dryden, SC19

nput Fiters Actvations Eror signal Gradients Input eror signal

By 02y - e =) R — - e 2 i
i BCENRY M. : ‘»-l“?-h :
" W ., wcz wF e
| Tt 4—__,%4— - e ma—a
CCEM] R
"o W .. w e wir e

General Idea

e start with ¢ channels, produces d channels with d k x k x c filters

Conv weights: D fiters, each K x K x C Feature map: Hx Wx C

2L . HH HHHH l

D (€°C) matrx

e plenty of opportunities for parallehsm with 2 GPUs

e take D/2 filters on each GPU the input feature map (activation) must be
replicated on both and the output feature map must be rebuilt

e take C/2 channels on each GPU the input feature map must be split and
the output feature map must be "reduced"

Matix mumw
u N rosut

e Ideas are close to 2.5D algorithms by Demmel et al. 38

Computational Issues: Training Phase

Data and Model Parallelism, Opportunities

39

Data Parallelism — Opportunities

General Idea

e N GPUs
e Py processes the mini-batch of size B (X, Y(¥)) and computes
(k) _ oL;
A = Zk&(k)\zjaimji

e to do the same thing as what would be achieved with a batch size of NB
we need to update the weights when all NB batches have been processed
ie to perform AW; = 3", AWI.(k) after mini-batch

inducing a lot of communications (Allreduce

a lot of synchronizations (BSP)

Opportunities

1. to limit synchronizations:

40

Data Parallelism — Opportunities

General Idea

e N GPUs
e Py processes the mini-batch of size B (X, Y(¥)) and computes
(k) _ oL;
A = Zk&(k)\zjaimji

e to do the same thing as what would be achieved with a batch size of NB
we need to update the weights when all NB batches have been processed
ie to perform AW; = 3", AWI.(k) after mini-batch

inducing a lot of communications (Allreduce

a lot of synchronizations (BSP)

Opportunities

1. to limit synchronizations: consider more asynchronous versions

40

Data Parallelism — Opportunities

General Idea

e N GPUs
e Py processes the mini-batch of size B (X, Y(¥)) and computes
(k) _ oL;
A = Zk&(k)\zjaimji

e to do the same thing as what would be achieved with a batch size of NB
we need to update the weights when all NB batches have been processed
ie to perform AW; = 3", AWI.(k) after mini-batch

inducing a lot of communications (Allreduce

a lot of synchronizations (BSP)

Opportunities
1. to limit synchronizations: consider more asynchronous versions

2. to limit communications:

40

Data Parallelism — Opportunities

General Idea

e N GPUs
e Py processes the mini-batch of size B (X, Y(¥)) and computes
(k) _ oL;
A = Zk&(k)\zjaimji

e to do the same thing as what would be achieved with a batch size of NB
we need to update the weights when all NB batches have been processed
ie to perform AW; = 3", AWI.(k) after mini-batch

inducing a lot of communications (Allreduce

a lot of synchronizations (BSP)

Opportunities
1. to limit synchronizations: consider more asynchronous versions

2. to limit communications: consider compacting weight updates

40

Data Parallelism — Asynchronous Versions (1)

Source: Large Scale Distributed Deep Networks, Jeffrey Dean et al., NIPS'12

| Parameter Server: W,., = W,- £ MAW, l

aw,, aw, aw, aw,
w, w, w, w,
Machine 1 Machine 2 Machine 3 Machine 4

e use a centralized server for updates

e update the weights each time a contribution is received by one Py
e the server sends back the new weight to Py

Advantages:

a1

Data Parallelism — Asynchronous Versions (1)

Source: Large Scale Distributed Deep Networks, Jeffrey Dean et al., NIPS'12

| Parameter Server: W,., = W,- £ MAW, l

aw,, aw, aw, aw,
w, w, w, w,
Machine 1 Machine 2 Machine 3 Machine 4

e use a centralized server for updates

e update the weights each time a contribution is received by one Py
e the server sends back the new weight to Py

Advantages: no more synchronization

e Drawback:

a1

Data Parallelism — Asynchronous Versions (1)

Source: Large Scale Distributed Deep Networks, Jeffrey Dean et al., NIPS'12

Parameter Server: W,., = W,- £ MAW,

|

aw,, aw, aw, aw,
w, w, w, w,
Machine 1 Machine 2 Machine 3 Machine 4

Worker 1

Worker 2

Param. Version

Worker 3

Worker 4

e use a centralized server for updates

e update the weights each time a contribution is received by one Py

w |

Wi

[

W

I

Wiz

I

*

2

y_ v
100 |m| 102 |xo:4| 104 ‘ms
A A

2
|we

e the server sends back the new weight to Py

Advantages: no more synchronization

Drawback: weight updates are done w.r.t. to non-consistent weights)-;
called average gradient staleness

41

Data Parallelism — Asynchronous Versions (1)

Source: Large Scale Distributed Deep Networks, Jeffrey Dean et al., NIPS'12
| Parameter Server: W,., = W,- £ MAW, l woser 1 W | Wa [
5) I
AW, AW, AW, AW, , *x
W, w, W, w, Y v
i 5 §) Param. Version | 100 |m | 102 | 103 | 104 ‘ 105 | 106
A A

FEEE =F
Worker & W, | W

Machine 1 Machine 2 Machine 3 Machine 4

e use a centralized server for updates

e update the weights each time a contribution is received by one Py

e the server sends back the new weight to Py

e Advantages: no more synchronization

e Drawback: weight updates are done w.r.t. to non-consistent weights)-;
e called average gradient staleness

e In practice affects accuracy at the end (but parallelism Ok)

41

Data Parallelism — Asynchronous Versions (2)

Source: Revisiting Distributed Synchronous SGD, Jianmin Chen et al., ICLR'16

o reserve 5% extra processors N’ = 1.05/N

e use the synchronized version, but wait only for N updates

42

Data Parallelism — Asynchronous Versions (2)

Source: Revisiting Distributed Synchronous SGD, Jianmin Chen et al., ICLR'16

o reserve 5% extra processors N’ = 1.05/N
e use the synchronized version, but wait only for N updates

e remember that mini-batches are built with randomly chosen images and
have all the exact same complexity

42

Data Parallelism — Asynchronous Versions (2)

Source: Revisiting Distributed Synchronous SGD, Jianmin Chen et al., ICLR'16

o reserve 5% extra processors N’ = 1.05/N
e use the synchronized version, but wait only for N updates

e remember that mini-batches are built with randomly chosen images and
have all the exact same complexity

e 5% of spare processors is enough to make homogeneous GPUs actually

0
PR L, & . s SEL A
0780 o 3

r- — asyncso . —— async100 - — async200
0775 == syncS0 o == syncl00 g - == sync200

“““ syncso+2 e sync100+ Syncz00+10

ot

w o s w w0 5w s s 0w w w m m w w

hours hours hours

42

Data Parallelism — Compressed Versions

Source: Scalable distributed DNN training using commodity gpu cloud
computing, Nikko Strom, INTERSPEECH'15

e Amazon AWS

e Allreduce operations are expected to have low performance
e Solution: send smaller updates (synchronous or even P2P based in the
paper)

e pruning:

43

Data Parallelism — Compressed Versions

Source: Scalable distributed DNN training using commodity gpu cloud
computing, Nikko Strom, INTERSPEECH'15

e Amazon AWS

e Allreduce operations are expected to have low performance
e Solution: send smaller updates (synchronous or even P2P based in the
paper)
e pruning: if the gradient update is smaller than a threshold, make it zero

43

Data Parallelism — Compressed Versions

Source: Scalable distributed DNN training using commodity gpu cloud
computing, Nikko Strom, INTERSPEECH'15

e Amazon AWS

e Allreduce operations are expected to have low performance
e Solution: send smaller updates (synchronous or even P2P based in the
paper)

e pruning: if the gradient update is smaller than a threshold, make it zero
e quantization:

43

Data Parallelism — Compressed Versions

Source: Scalable distributed DNN training using commodity gpu cloud
computing, Nikko Strom, INTERSPEECH'15

e Amazon AWS

e Allreduce operations are expected to have low performance
e Solution: send smaller updates (synchronous or even P2P based in the
paper)
e pruning: if the gradient update is smaller than a threshold, make it zero
e quantization: gradients can only take very few values
e delayed update:

43

Data Parallelism — Compressed Versions

Source: Scalable distributed DNN training using commodity gpu cloud
computing, Nikko Strom, INTERSPEECH'15

e Amazon AWS

e Allreduce operations are expected to have low performance
e Solution: send smaller updates (synchronous or even P2P based in the
paper)
e pruning: if the gradient update is smaller than a threshold, make it zero
e quantization: gradients can only take very few values
e delayed update: keep (locally) of copy of what should have been committed
to push it later!

Compression Update Size Reduction
None (32-bit floating point) 58.4 MB -

16-bit floating point 29.2 MB 50%
Quantized, $\tau=2$ 0.21 MB 99.6%

e Drawbacks
e experiments with too little quantization
e on small models where the extra cost of quantization is significant

e there are both accuracy and performance issues in the paper...
43

Conclusion

Conclusion and perspectives

Inference phase: performed with under strong memory / energy constraints

The training phase induces a lot of calculations and memory (peak) usage

Many original techniques for inference

Train with full precision
then Prune, Quantize, Compress
and then use retraining !

Many opportunities to find parallelism in training phase

but most of them induce large communications

again, pruning, quantization and compression can be used!

and original techniques can be designed to trade memory / communications
agains computations

a4

Conclusion and perspectives

Inference phase: performed with under strong memory / energy constraints

The training phase induces a lot of calculations and memory (peak) usage
e Many original techniques for inference
e Train with full precision
e then Prune, Quantize, Compress
e and then use retraining !
e Many opportunities to find parallelism in training phase
e but most of them induce large communications
e again, pruning, quantization and compression can be used!
e and original techniques can be designed to trade memory / communications
agains computations
e Difficulties

e This is a field where practice is ahead of theory (by far)
e based on a very experimental approach: "it's a good idea because it works"

a4

	Crash Course in DL
	Introduction
	Focus 1: Convolutional Layers
	Focus 2: Stochastic Gradient Descent (SGD)

	Computational Issues: Inference Phase
	Pruning
	Quantization (of weights and activations)
	Low Rank Decompositions

	Computational Issues: Training Phase
	Use of Mixed Precision
	Hyper Parameter Search, Data and Spatial and Filter and and Model parallelism First remarks and limitations
	Data and Model Parallelism, Opportunities
	Memory saving techniques: Checkpointing and Offloading

	Conclusion

