
Cours ENSL:
Big Data – Streaming, Sketching, Compression, Learning
Today: Convolutional Neural Networks,
computational and memory issues

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr



Outline of the talk

• Crash course in CNNs
• very little about usage

no cat pictures
• very little about origins of CNNs no (cat) neuron picture
• what type of task graphs, what type of operations, what type of constraints

• Computational Issues
• During the inference phase:

• Pruning, Quantization (weights and activations), Low Rank Decompositions
(SVD based and TT decomposition)

• During the training phase:
• Parallelism (hyper-parameters, data parallelism, spatial parallelism, model

parallelism), Mixed Precision arithmetic, Memory issues (checkpointing and
offloading)
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Crash Course in DL (1): a little bit of vocabulary

• CNNs have been designed to solve very difficult problems
• "Is there a cat in this picture?"

no obvious algorithm...

• Idea: data-driven approach (supervised learning)
• we start with a network architecture with weights to be determined (a

gigantic family of computable functions)
• we start with a gigantic set of annotated data (input, result).

• Many times:
• we randomly choose a pair (input, result)
• we compute an error between f (input) and result
• we modify the parameters to minimize this error

• We look for the network weights that minimize this error on all pairs

• We hope that this will work also for the other pairs

3
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Crash Course in DL (2): What do networks look like?

AlexNet (2012): 60 million parameters

• Convolutional (next slides) and Fully Connected Layers (matrix)

• Conv should be read Conv + RELU Why?

• Convolutions reshape 3D volume (spatial + RGB locality)
• smaller "image sizes" (width + height), larger number of channels
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Crash Course in DL (2): What do networks look like?

VGG16: 138 million parameters

• max pooling layers to decrease image size

• smaller convolutional filters (3x3 and 1x1 instead of 3, 7 and even 11)

• deeper network (13 vs 5)

6



Crash Course in DL (2): What do networks look like?

ResNet: 60M parameters (same as AlexNet) for 152 layers.

• use of skip connections to mitigate the
problem of vanishing gradients

• state-of-the-art

7



CNNs Zoo

Performance on ImageNet

• Top1: find the the best label
• Top5: find the best label while proposing 5
• size: number of weights
• higher: better accuracy
• right: higher computation cost

8



Outline
Crash Course in DL

Introduction

Focus 1: Convolutional Layers

Focus 2: Stochastic Gradient Descent (SGD)

Computational Issues: Inference Phase

Pruning

Quantization (of weights and activations)

Low Rank Decompositions

Computational Issues: Training Phase

Use of Mixed Precision

Hyper Parameter Search, Data and Spatial and Filter and and Model
parallelism
First remarks and limitations

Data and Model Parallelism, Opportunities

Memory saving techniques: Checkpointing and Offloading

Conclusion 9



Convolution (description)

(a) Filter 5× 5× 3 (b) 2 filters 5× 5× 3 that contribute to
different output feature maps

• input Image: w × h × c

• Filter k × k × c

• D Filters Output image w × h × d (not completely true, padding, stride,
dilation)
• operation:

10



Convolution (VGG example)

11



Cost and Implementation

• d times k × k × c filters

• arranged into a d × k2c matrix

• input images are arranged into a k2c × n matrix (n = wh with no striding
or dilation)

• convolution is performed with a GEMM (GPU friendly)

• Note that there is a lot of redundancy in the input image matrix (see later)

12
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SGD: forward propagation and backward propagation

Nodei

W (size di )
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SGD: forward propagation and backward propagation
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Storage

• we must keep W all the time (and update it)
• we must remember

• x(1), x(2) until the corresponding backward operation
• (or to recompute them when using Checkpointing)

• Forward: compute y (1) et y (2) and then wait...

• Receive ∇y (1) f et ∇y (2) f (same size as y (1) and y (2))

• compute and trasmit ∇x(1) f and ∇x(2) f (same size as x (1) and x (2))

• compute ∇W f et update W

• computational DAG: original DAG + loss + returned DAG
15



Models are getting larger and deeper
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Models are getting larger and deeper

• Size issues
• size problem for inference: must fit into the phone’s memory

• difficult to convince users to download and store a model of 100MB or more
• size problem for training: it must fit into the GPU’s memory

• all network weights (hyper-parameter search, data parallelism)
• all activations during training (and for a long time)

• Time issues
• Training time for Resnet PyTorch with 4 M40 GPUs

• a productivity problem
• Energy Issues

• per game, AlphaGo (1920 CPUs and 280 GPUs) 3000$ electric bill
• critical situation when used on mobile phone, risk of draining the battery
• the main source of energy consumption is memory accesses
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Computational Issues: Inference Phase
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Pruning: removing weights (1)

Source: Learning both Weights and Connections for Efficient Neural Networks.
Han et al. NIPS’15
Goal: how to dramatically prune the model weights (ie to sparsify matrices) ?

• Loop
• Train the network (full network)
• Prune edges (weights forced to be 0)
• Train remaining weights

• It works!
• Could this (fix the sparsity pattern) work to build preconditioners?

19
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Pruning: removing weights (2)

• Loop Retraining is crucial:
• train + prune for AlexNet: -4% accuracy with 80% pruning
• train + prune + retrain for AlexNet: 80% pruning improves accuracy! Why?

• (train + prune)∗ same accuracy up to 90% pruning
• AlexNet (ImageNet) from 60M parameters to 6M with the same accuracy

??
• Something even more surprising:

• source DSD: Dense-Sparse-Dense Training for Deep Neural Networks, Song
Han, ICLR 2017

• Retraining with all removed weights improves the accuracy (by 1 to 2%) ??

??
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Quantization of the weights (1)

source: Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding, Song Han ICLR’16
Goal: discretize model weights... make 2.09, 2.12, 1.92 the same value

• How to perform quantization?

• use of clustering algorithms on the weights
• associate each weight to its closest representative

• Does it work? basically, there are averaging mechanisms, but loss of
accuracy

22
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Quantization of the weights (2)

• How to make it work?

use retraining again !
• How to retrain? train, cluster the weights, generate a dictionary of weights,

assign of word in the dictionary to each weight , retrain the dictionary (but
not the assignment)!

• How to do that ? compute the gradients (as usual), average the gradients
corresponding the same number in the dictionary, then update the weights!

• It works!

23
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Approximation of Convolutional Layers (1)

source: Efficient and Accurate Approximations of Nonlinear Convolutional
Networks Xiangyu Zhang et al. CVPR’14
goal: find a more compact (low rank) representation of the convolutional layers

More specifically, the goal is to find such a decomposition

• exchange d times k × k × c filters (storage k2dc, flops wh × dk2c)
• against d ′ times k × k × c filters and d times 1× 1× d ′ filters (storage

k2d ′c + dd ′, flops wh × (dk2c + d ′d)) 25



Approximation of Convolutional Layers (2)

• Difficulty: what is the rank of W after the training process (SGD)?

full
• What has a chance of being low rank ? y = Wx ∈ Rd because x contains

information about data! How to do this ?
• Collect (through sampling) plenty (N) of yi ’s (different locations and

training images) (Y is a N × d matrix)
• Compute the SVD of Y , write y = M(y − ȳ) + ȳ where M = P × QT is

low rank (d ′)
• And finally y = P × (Q′ = QTW )x + b

• Q′ is a d ′ × k2c matrix than can be used as W ′

•

26
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low rank (d ′)

• And finally y = P × (Q′ = QTW )x + b

• Q′ is a d ′ × k2c matrix than can be used as W ′

•

26



Approximation of Convolutional Layers (2)

• Difficulty: what is the rank of W after the training process (SGD)? full
• What has a chance of being low rank ? y = Wx ∈ Rd because x contains

information about data! How to do this ?
• Collect (through sampling) plenty (N) of yi ’s (different locations and

training images) (Y is a N × d matrix)
• Compute the SVD of Y , write y = M(y − ȳ) + ȳ where M = P × QT is
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• Difficulty: what is the rank of W after the training process (SGD)? full
• What has a chance of being low rank ? y = Wx ∈ Rd because x contains

information about data! How to do this ?
• Collect (through sampling) plenty (N) of yi ’s (different locations and

training images) (Y is a N × d matrix)
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Generalization TT Decompositions

source: Tensorizing Neural Networks, Novikov et al, NIPS’15
goal: generalization

• d filters of size k × k × c: (k2c, d) −→ (k2, d ′) and (d ′, d) (previous slide)
• this is only one possible option!
• Tensor Train Decompositions introduced by Oseledets et al.:

• A is a tensor of dimension d . A in TT tensor format if
• A(j1, j2, . . . , jd ) = G j1 × G jd where
• G jk is a rk−1 × rk matrix (r0 = rd = 1) and r = max rk is the rank of the

TT decomposition.
• Decomposition is not unique and we look for low rank decompositions.

• Basic example:
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Quantization of the activations

source: Elaina Chai, Quantization Error in Neural Networks
goal: quantize activations (must be extremely cheap)

• compute the activations in FP32, use quantization to store them in INT8
• fixed intervals... Pb: if the order of magnitude of the different components

are very different, it will not work!

• Solution: change the network so that it does not happen
• Batch Normalization tends to homogenize the components (train γ and β)
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Winograd Transformation

Fast Algorithms for Convolutional Neural Networks, A. Lavin et al., CVPR’16
Goal: take advantage of the particular structure of the activation matrix in

convolutions

• Goal is to keep GPUs happy by doing GEMMs

• Toy example with an image 4× 1 and a filter 3× 1

, we obtain: ?

where ?

• so we end up with 4 Mult (and 8 Add) instead of 6 Mult

• In general the improvement is from 36 Mult to 16 Mult (2.25x
improvement) using Winograd transformation

• implemented in cuDNN since version 5.0
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Mixing FP32 and FP16 precisions

Source: Mixed Precision Training, Paulius Micikevicius et al., ICLR’18
Goal: consume less energy during the training phase by using mixed precision

? • Use of FP16 (x4 in energy and area)

• Algorithm:

•
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Source: Mixed Precision Training, Paulius Micikevicius et al., ICLR’18
Goal: consume less energy during the training phase by using mixed precision

? • Use of FP16 (x4 in energy and area)
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Parallelism

• Plenty of potential sources of parallelism
1. Hyper Parameter search (shape of the network, batch size, loss function,

learning rate and optimizer)
2. Data, Spatial, Channel and Kernel Parallelisms: the input of the network is

4 dimensional: batch x channels x height x width, plenty of ways to split it
and generate parallelisme (communication intensive, optimized
MPI_Allreduce to exchange weights updates)

3. Model Parallelism: the network itself can be deep (10s to 100s layers) and it
can be split in turn: be careful, due to backward phase, a priori much much
parallelism !

4. Kernel (GPU) Parallelism: optimization of this special GEMM operation
between the weight matrix (2D conversion of the convolutional filters) and
the activation matrix (equivalent 2D conversion): special because of the
redundancies in the activation matrix.

• Additional Difficulty / Opportunity w.r.t. Numerical Linear Algebra
• Data and Spatial parallelism influence the SGD (batch size in particular)

and thus modify both the convergence speed and the accuracy at the end.
• Model parallelism does not induce any speedup, and data and spatial

parallelism induce to many communications when done at large scale...
• but you can change the rules, what will once again change the convergence

and the accuracy, sometimes for the better and sometimes for the worse!
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Gradient Descent Revisited: Stochastic Gradient Descent (1)

General Idea

• Start with one example (image, class) (x , y)

• Forward propagation for net(x) as for a classical task graph

• Evaluation of loss(net(x), y)

• Backpropagation of loss to determine its sensitivity to the different
parameters as for a classical task graph

• Update the weights Wi (t + 1) = Wi (t)− ε ∂loss
∂Wi

Consequences

• efficiency: depending on the size of the image, GPU usage might not be
optimal (increasing batch size increases the size of the GEMMs)

• general belief: smaller training accuracy but better ability to generalize to
other examples (better test accuracy)
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Gradient Descent Revisited: Mini Batch Stochastic Gradient Descent (2)

General Idea

• Start with a set of B examples (image, class) (x (k), y (k))

• Forward propagation for net(x (k)) as for a classical task graph

• Evaluation of Lk = loss(net(x (k)), y (k))

• Backpropagation of Lk to determine its sensitivity to the different
parameters as for a classical task graph

• Update the weights Wi (t + 1) = Wi (t)− ε
∑

j

∂Lj
∂Wi

Consequences

• efficiency: with a batch size of B,
• same size for network weights, but activation sizes x B

• cost is x B (even better for GPUs)
• everything (including activation stored for the backward phase) must fit into

memory

• general belief: a large batch slows down convergence (less frequent
updates) and affects generalization ability.
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Data Parallelism: Mini Batch Parallelism

Principe

• Let us suppose we have N (identical) GPUs

• Each GPU can perform SGD with a batch size of B

• We train in parallel a batch size of size BN (B on each GPU)

• Each resource computes a gradient (size of all weights)

• MPI Allreduce is used to compute a global gradient

Limitations

• MPI Allreduce is expensive when N becomes large

• N large, NB very large −→ slow convergence and poor generalization

• there is a strict barrier at the end of each Allreduce operation, bad when
N is large 36



Spatial Parallelism: Split Images

Source: "Improving Strong-Scaling of CNN Training by Exploiting
Finer-Grained Parallelism" Nikoli Dryden et al.

Principe

• Split the input image into 4 (slightly overlapping) parts

• Perform the forward phase independently on 4 GPUs

• Perform the backward phase (almost independently, halo communications)
on the 4 GPUs

• It looks a priori great, but then you need to update the weights...
• for fully connected layers, it is great
• but for convolutional layers, it has the same cost as data parallelism!
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Filter Parallelism: Split Filters

"Channel and Filter Parallelism for Large-Scale CNN Training" Dryden, SC19

General Idea

• start with c channels, produces d channels with d k × k × c filters

• plenty of opportunities for parallelism with 2 GPUs
• take D/2 filters on each GPU

the input feature map (activation) must be
replicated on both and the output feature map must be rebuilt

• take C/2 channels on each GPU the input feature map must be split and
the output feature map must be "reduced"

• Ideas are close to 2.5D algorithms by Demmel et al.
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Data Parallelism – Opportunities

General Idea

• N GPUs

• Pk processes the mini-batch of size B (X (k),Y (k)) and computes
∆W

(k)
i = α∑

k |X (k)|

∑
j

∂Lj
∂Wi

• to do the same thing as what would be achieved with a batch size of NB
• we need to update the weights when all NB batches have been processed
• ie to perform ∆Wi =

∑
k ∆W

(k)
i after mini-batch

• inducing a lot of communications (Allreduce
• a lot of synchronizations (BSP)

Opportunities

1. to limit synchronizations:

consider more asynchronous versions

2. to limit communications: consider compacting weight updates
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Data Parallelism – Asynchronous Versions (1)

Source: Large Scale Distributed Deep Networks, Jeffrey Dean et al., NIPS’12

• use a centralized server for updates
• update the weights each time a contribution is received by one Pk

• the server sends back the new weight to Pk

• Advantages:

no more synchronization
• Drawback: weight updates are done w.r.t. to non-consistent weights )-;
• called average gradient staleness
• In practice affects accuracy at the end (but parallelism Ok)

41
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Data Parallelism – Asynchronous Versions (2)

Source: Revisiting Distributed Synchronous SGD, Jianmin Chen et al., ICLR’16

• reserve 5% extra processors N ′ = 1.05N

• use the synchronized version, but wait only for N updates

• remember that mini-batches are built with randomly chosen images and
have all the exact same complexity

• 5% of spare processors is enough to make homogeneous GPUs actually
homogeneous
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Data Parallelism – Compressed Versions

Source: Scalable distributed DNN training using commodity gpu cloud
computing, Nikko Strom, INTERSPEECH’15

• Amazon AWS
• Allreduce operations are expected to have low performance
• Solution: send smaller updates (synchronous or even P2P based in the

paper)
• pruning:

if the gradient update is smaller than a threshold, make it zero
• quantization: gradients can only take very few values
• delayed update: keep (locally) of copy of what should have been committed

to push it later!

• Drawbacks
• experiments with too little quantization
• on small models where the extra cost of quantization is significant

• there are both accuracy and performance issues in the paper...
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Conclusion and perspectives

• Inference phase: performed with under strong memory / energy constraints

• The training phase induces a lot of calculations and memory (peak) usage
• Many original techniques for inference

• Train with full precision
• then Prune, Quantize, Compress
• and then use retraining !

• Many opportunities to find parallelism in training phase
• but most of them induce large communications
• again, pruning, quantization and compression can be used!
• and original techniques can be designed to trade memory / communications

agains computations

• Difficulties
• This is a field where practice is ahead of theory (by far)
• based on a very experimental approach: "it’s a good idea because it works"
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