
Alcom-FT Technical Report Series
ALCOMFT-TR-02-52

Cache Oblivious Distribution Sweeping

Gerth Stølting Brodal∗,† Rolf Fagerberg∗

Abstract

We adapt the distribution sweeping method to the cache oblivi-
ous model. Distribution sweeping is the name used for a general ap-
proach for divide-and-conquer algorithms where the combination of
solved subproblems can be viewed as a merging process of streams.
We demonstrate by a series of algorithms for specific problems the
feasibility of the method in a cache oblivious setting. The problems
all come from computational geometry, and are: orthogonal line seg-
ment intersection reporting, the all nearest neighbors problem, the 3D
maxima problem, computing the measure of a set of axis-parallel rect-
angles, computing the visibility of a set of line segments from a point,
batched orthogonal range queries, and reporting pairwise intersections
of axis-parallel rectangles. Our basic building block is a simplified ver-
sion of the cache oblivious sorting algorithm Funnelsort of Frigo et al.,
which is of independent interest.

Keywords: Cache oblivious algorithms, sorting, distribution sweeping,
computational geometry

1 Introduction

Modern computers contain a hierarchy of memory levels, with each level
acting as a cache for the next. Typical components of the memory hierarchy
are: registers, level 1 cache, level 2 cache, main memory, and disk. The time
for accessing a level in the memory hierarchy increases from one cycle for
registers and level 1 cache to figures around 10, 100, and 100,000 cycles

∗BRICS (Basic Research in Computer Science, www.brics.dk, funded by the Danish
National Research Foundation), Department of Computer Science, University of Aarhus,
Ny Munkegade, DK-8000 Århus C, Denmark. E-mail: {gerth,rolf}@brics.dk. Partially
supported by the Future and Emerging Technologies programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

†Supported by the Carlsberg Foundation (contract number ANS-0257/20).

1

for level 2 cache, main memory, and disk, respectively [16, p. 471], making
the cost of a memory access depend highly on what is the current lowest
memory level containing the element accessed. The evolution in CPU speed
and memory access time indicates that these differences are likely to increase
in the future [16, pp. 7 and 429].

As a consequence, the memory access pattern of an algorithm has be-
come a key component in determining its running time in practice. Since
classic asymptotic analysis of algorithms in the RAM model is unable to
capture this, a number of more elaborate models for analysis have been
proposed. The most widely used of these is the I/O model of Aggarwal
and Vitter [1], which assumes a memory hierarchy containing two levels,
the lower level having size M and the transfer between the two levels taking
place in blocks of B elements. This model is illustrated in Figure 1. The cost
of the computation in the I/O model is the number of blocks transferred.
The model is adequate when the memory transfer between two levels of the
memory hierarchy dominates the running time, which is often the case when
the size of the data significantly exceeds the size of main memory, as the
access time is very large for disks compared to the remaining levels of the
memory hierarchy. By now, a large number of results for the I/O model
exists—see e.g. the survey by Vitter [20]. A significant part of these results
are for problems within computational geometry.

Block
Memory 1

CPU

Memory 2

Figure 1: The I/O model

Recently, the concept of cache oblivious algorithms has been introduced
by Frigo et al. [13]. In essence, this designates algorithms optimized in the
I/O model, except that one optimizes to a block size B and a memory size M
which are unknown. I/Os are assumed to be performed automatically by an
off-line optimal cache replacement strategy. This seemingly simple change
has significant consequences: since the analysis holds for any block and
memory size, it holds for all levels of the memory hierarchy. In other words,
by optimizing an algorithm to one unknown level of the memory hierarchy,

2

it is optimized to each level automatically. Furthermore, the characteristics
of the memory hierarchy do not need to be known, and do not need to
be hardwired into the algorithm for the analysis to hold. This increases the
portability of implementations of the algorithm, which is important in many
situations, including production of software libraries and code delivered over
the web. For further details on the concept of cache obliviousness, see [13].

Frigo et al. introduced the concept of cache oblivious algorithms and
presented optimal cache oblivious algorithms for matrix transposition, FFT,
and sorting [13]. Bender et al. [7], gave a proposal for cache oblivious search
trees with search cost matching that of standard (cache aware) B-trees [5].
Simpler cache oblivious search trees with complexities matching that of [7]
were presented in [8, 11]. Cache-oblivious data structures based on on expo-
nential structures are presented in [6]. Recently, a cache-oblivious priority
queue has been developed [3], which in turn gives rise to several cache-
oblivious graph algorithms.

We consider cache oblivious algorithms within the field of computational
geometry. Existing algorithms may have straightforward cache oblivious
implementation—this is for example the case for the algorithm know as
Graham’s scan [15] for computing the convex hull of a point set [12, 18].
This algorithm first sorts the points, and then scans them while maintain-
ing a stack containing the points on the convex hull of the points visited so
far. Since the sorting step can be done by the Funnelsort algorithm of Frigo
et al. [13] and a simple array is an efficient cache oblivious implementation
of a stack, we immediately get a cache oblivious convex hull algorithm per-
forming optimal O(Sort(N)) I/Os, where Sort(N) is the optimal number of
I/Os required for sorting. In this paper, we devise non-trivial cache oblivious
algorithms for a number of problems within computational geometry.

In Section 2 we first present a version of the cache oblivious sorting
algorithm Funnelsort of Frigo et al., which will be the basic component of
our cache oblivious algorithms and which seems of independent interest due
to its simplicity. In Section 3 we develop cache oblivious algorithms based
on Lazy Funnelsort for a sequence of problems in computational geometry.
Common to these problems is that there exist external memory algorithms
for these problems based on the distribution sweeping approach of Goodrich
et al. [14].

Goodrich et al. introduced distribution sweeping as a general approach
for developing external memory algorithms for problems which in internal
memory can be solved by a divide-and-conquer algorithm based on a plane
sweep. Through a sequence of examples they demonstrated the validity of
their approach. The examples mentioned in [14, Section 2] are: orthog-

3

onal line segment intersection reporting, the all nearest neighbors prob-
lem [21], the 3D maxima problem [17], computing the measure of a set of
axis-parallel rectangles [9], computing the visibility of a set of line segments
from a point [4], batched orthogonal range queries, and reporting pairwise
intersections of axis-parallel rectangles.

We investigate if the distribution sweeping approach can be adapted to
the cache oblivious model, and answer this in the affirmative by developing
optimal cache oblivious algorithms for each of the above mentioned prob-
lems. Theorem 1 summarizes our results. These bounds are known to be
optimal in the I/O model [14] and therefore are also optimal in the cache
oblivious model.

Theorem 1 In the cache oblivious model the 3D maxima problem on a
set of points, computing the measure of a set of axis-parallel rectangles,
the all nearest neighbors problem, and computing the visibility of a set of
non-intersecting line segments from a point can be solved using optimal
O(Sort(N)) I/Os, and the orthogonal line segment intersection reporting
problem, batched orthogonal range queries, and reporting pairwise intersec-
tions of axis-parallel rectangles can be solved using optimal O(Sort(N) + T

B)
I/Os, where N is the input size, T the output size, and Sort(N) the number
of I/Os required to sort N elements.

Goodrich et al. described distribution sweeping as a top-down approach.
We instead describe it bottom-up, which facilitates our use of Funnelsort as
a basic building block. The basic idea of the distribution sweeping approach
is to sort the geometric objects, e.g. points and endpoints of line segments,
w.r.t. one dimension and then apply a divide-and-conquer approach on this
dimension where solutions to adjacent strips are merged to a solution for
the union of the strips. This merging may be viewed as a sweep of the strips
along another dimension. The details of the merging step is unique for
each specific problem to be solved, but the overall structure of the method
resembles Mergesort.

We note that the general method is not confined to problems within com-
putational geometry—rather, any divide-and-conquer algorithm that com-
bines solutions to subproblems in a merge-like fashion seems like a candidate
for using the method, provided that the divide phase of the algorithm can
be done as a separate preprocessing step by e.g. sorting. For such an algo-
rithm, the applicability of the method in a cache oblivious setting is linked
to the degree of locality of the information needed in each merge step, a
point we elaborate on in the beginning of Sect. 3.

4

Arge [2] introduced the buffer tree—an external memory data structure
which, among other uses, also can be used to solve the orthogonal line
segment intersection problem, batched range queries, and reporting pairwise
rectangle intersection. It is an open question, if there exists an efficient
cache oblivious version of buffer trees or, more generally, how to adopt other
external memory techniques and ideas to the cache oblivious model.

Preliminaries

By a binary tree we denote a rooted tree where nodes are either internal
and have two children, or are leaves and have no children. The size |T | of a
tree T is its number of leaves. The depth d(v) of a node v is the number of
nodes (including v) on the path from v to the root. By level i in the tree we
denote all nodes of depth i. We use logx y as a shorthand for max{1, logx y}.

2 Lazy Funnelsort

Frigo et al. in [13] gave an optimal cache oblivious sorting algorithm called
Funnelsort, which may be seen as a cache oblivious version of Mergesort.
In this section, we present a new version of the algorithm, termed Lazy
Funnelsort. The benefit of the new version is twofold. First, its descrip-
tion, analysis, and implementation are, we feel, simpler than the original—
features which are important for a problem as basic as sorting. Second, this
simplicity facilitates the changes to the algorithm needed for our cache obliv-
ious algorithms for problems in computational geometry. We also generalize
Funnelsort slightly by introducing a parameter d which allows a trade-off
between the constants in the time bound for Funnelsort and the strength
of the “tall cache assumption” [13]. The choice d = 3 corresponds to the
description in [13].

Central to Funnelsort is the concept of a k-merger, which for each in-
vocation merges the next kd elements from k sorted streams of elements.
As a k-merger takes up space super-linear in k, it is not feasible to merge
all N elements by an N -merger. Instead, Funnelsort recursively produces
N1/d sorted streams of size N1−1/d and then merges these using an N1/d-
merger. In [13], a k-merger is defined recursively in terms of k1/2-mergers
and buffers, and the invocation of a k-merger involves a scheduling of its
sub-mergers, driven by a check for fullness of all of its buffers at appropriate
intervals.

Our modification lies in relaxing the requirement that all buffers of a
merger should be checked (and, if necessary, filled) at the same time. Rather,

5

a buffer is simply filled when it runs empty. This change allows us to “fold
out” the recursive definition of a k-merger to a tree of binary mergers with
buffers on the edges, and, more importantly, to define the merging algorithm
in a k-merger directly in terms of nodes of this tree.

We define a k-merger as a perfectly balanced binary tree with k leaves.
Each leaf contains a sorted input stream, and each internal node contains a
standard binary merger. The output of the root is the output stream of the
entire k-merger. Each edge between two internal nodes contains a buffer,
which is the output stream of the merger in the lower node and is one of
the two input streams of the merger in the upper node. The sizes of the
buffers are defined recursively: Let D0 = ⌈log(k)/2⌉ denote the number of
the middle level in the tree, let the top tree be the subtree consisting of all
nodes of depth at most D0, and let the subtrees rooted by nodes at depth
D0 +1 be the bottom trees. The edges between nodes at depth D0 and depth

D0 + 1 have associated buffers of size
⌈

kd/2
⌉

, and the sizes of the remaining

buffers is defined by recursion on the top tree and the bottom trees. For
consistency, we think of the output stream of the root of the k-merger as a
buffer of size kd. In Figure 2, a 16-merger is illustrated.

Figure 2: 16-merger

A k-merger, including the buffers associated with its middle edges, is laid
out in memory in contiguous locations. This statement holds recursively for
the top tree and for the bottom trees of the k-merger. In effect, a k-merger
is the same as the van Emde Boas layout of a binary tree [19], except that
edges now are buffers and take up more than constant space.

In Figure 3 our algorithm is shown for the binary merge process in each
internal node of a k-merger. The last line means moving the smallest of

6

Procedure Fill(v)
while v’s output buffer is not full

if left input buffer empty
Fill(left child of v)

if right input buffer empty
Fill(right child of v)

perform one merge step

Figure 3: The merging algorithm

the two elements in the fronts of the input buffers to the rear of the output
buffer. The entire k-merger is simply invoked by a call Fill(r) on the root r
of the merger. This will output kd merged elements to the output buffer of
the merger.

Concerning implementation details, we note that the input buffers of the
merger may run empty during the merging. Exhausting of input elements
should be propagated upward in the merger, marking a buffer as exhausted
when both of its corresponding input buffers are exhausted. This is a simple
extension of the code in Figure 3. We also note that buffers are emptied
completely before they are filled, so they need not be implemented as circular
arrays, in contrast to [13].

Lemma 1 Let d ≥ 2. The size of a k-merger (excluding its output buffer) is
bounded by c ·k(d+1)/2 for a constant c ≥ 1. Assuming B(d+1)/(d−1) ≤ M/2c,

a k-merger performs O(kd

B logM (kd) + k) I/O’s during an invocation.

Proof. The space is given by the recursion formula S(k) = k1/2 · kd/2 +
(k1/2 + 1) · S(k1/2), which has a solution as stated.

For the I/O bound, we consider the recursive definition of buffer sizes in
a k-merger, and follow the recursion until the space bound for the subtree
(top tree or bottom tree) to recurse on is less than M/2, i.e. until k̄(d+1)/2 ≤
M/2c, where k̄ is the number of leaves of the subtree. As k̄ is the first such
value, we know that (k̄2)(d+1)/2 = k̄d+1 > M/2c. The buffers whose sizes
will be determined during this partial recursion we denote large buffers.
Removing the edges containing large buffers will partition the tree of the
merger into a set of connected subtrees, which we denote base trees. By the
tall cache assumption, a base tree and one block for each of the k̄ buffers in

7

its edges to leaves can be contained in memory, as k̄ · B ≤ (M/2c)2/(d+1) ·
(M/2c)(d−1)/(d+1) ≤ M/2c.

If the k-merger itself is a base tree, the merger and one block for each
input stream will fit in memory, and the number of I/Os for outputting the
kd elements during an invocation is O(kd/B + k), as claimed. Otherwise,
consider a call Fill(v) to the root v of a base tree. This call will output
Ω(k̄d) elements to the output buffer of v. Loading the base tree and one
block for each of the k̄ buffers just below the base tree into memory will incur
O(k̄(d+1)/2/B + k̄) I/Os. This is O(1/B) I/Os per element output, since
k̄d+1 > M/2c implies k̄d−1 > (M/2c)(d−1)/(d+1) ≥ B and hence k̄ ≤ k̄d/B.
During the call Fill(v), the buffers just below the base tree may run empty,
which will trigger calls to the nodes below these buffers. Such a call may evict
the base tree from memory, leading to its reloading when the call finishes.
However, a buffer of size Ω(k̄d) has been filled during this call, so the same
calculation as above shows that the reloading of the base tree incurs O(1/B)
I/Os per element inserted into the buffer. The last time a buffer is filled,
it may not be filled completely due to exhaustion. This happens only once
for each buffer, so we can instead charge O(1/B) I/Os to each position in
the buffer in the argument above. As the large buffers are part of the space
used by the entire k-merger, and as this space is sublinear in the output of
the k-merger, this is O(1/B) I/O per element merged.

In summary, charging an element O(1/B) I/Os each time it is inserted
into a large buffer will account for the I/Os performed. As F = (M/2c)1/(d+1)

is the minimal number of leaves for a base tree, each element can be inserted
in at most logF k = O(d logM k) = O(logM kd) large buffers, including the
output buffer of the k-merger. From this the stated I/O bound follows. 2

Theorem 2 Under the assumptions in Lemma 1, Lazy Funnelsort uses
O(dN

B logM N) I/Os to sort N elements.

Proof. The algorithm recursively sorts N1/d segments of size N1−1/d of
the input and then merges these using an N1/d-merger. When the size of a
segment in a recursive call gets below M/2, the blocks in this segment only
needs to be loaded once into memory during the sorting of the segment, as
the space consumption of a merger is linearly bounded in its output. For the
k-mergers used at the remaining higher levels in the recursion tree, we have
kd ≥ M/2c ≥ B(d+1)/(d−1), which implies kd−1 ≥ B(d+1)/d > B and hence
kd/B > k. By Lemma 1, the number of I/Os during a merge involving n′

elements is O(logM (n′)/B) per element. Hence, the total number of I/Os
per element is

8

O

(

1

B

(

1 +
∞
∑

i=0

logM N (1−1/d)i

))

= O (d logM (N)/B) .

2

3 Distribution Sweeping

Before going into the details for the various geometric problems, we below
summarize the main technical differences between applying the distribution
sweeping approach in the I/O model and in the cache oblivious model.

• In the I/O model, distribution sweeping uses Θ(M/B)-ary merging.
For cache oblivious algorithms, we do not know the parameters M and
B, and instead use on binary merging. This is a simplification of the
approach.

• In the I/O model, an entire merging process is completed before an-
other merging process is started. In the cache oblivious model, we
are building on (Lazy) Funnelsort, so this does not hold. Rather, a
scheduling of the various merging processes takes place, and the inter-
mediate outputs of merging processes are stored in buffers of limited
size and used as input for other merging processes. This is a compli-
cation of the approach.

To illustrate the latter point, we note that in the distribution sweeping
algorithms for batched orthogonal range queries, for orthogonal line segment
intersection reporting, and for finding pairwise rectangle intersections, the
merging process at a node needs to access the already merged part like a
stack when generating the required output. In the I/O model this is not
a problem, since there is always only one output stream present. In the
cache oblivious model, the access to already merged parts is a fundamen-
tal obstacle, since this information may already have been removed by the
merger at the parent node. Similar complications arise in the algorithm for
all nearest neighbors. The solutions to these problems form a major part of
the contribution of this paper.

On the other hand, for the 3D maxima problem and for computing the
measure of a set of axis-parallel rectangles, this problem does not show
up. The only difference from the merging performed in Lazy Funnelsort
is that each input and output element is labeled with constant additional
information, and that computing the labeling of an output element requires

9

information of constant size to be maintained at the nodes of the merging
process. For computing the visibility of a set of line segments from a point
the situation is basically the same, except that some input points to a node
in the merging process are removed during the merging.

3.1 3D Maxima Problem

Problem A d dimensional point p = (p1, . . . , pd) dominates a point q =
(q1, . . . , qd) if and only if pi ≥ qi for all 1 ≤ i ≤ d. The maxima problem
consists of given a set of N points, to report the maximal points within the
set, i.e. the points which are not dominated by any other input point.

In one dimension, the maxima problem is just the problem of computing
the maximum of a set. To solve the two dimensional problem, the points
are first sorted w.r.t. the first coordinate. The maximal points are then
identified in a plane sweep through the points in decreasing order of the
first coordinate. The first point is a maximal point, and the current point
visited in the sweep is a maximal point if and only if it is not dominated by
the last maximal point identified. During the sweep it suffices to store the
second coordinate of the last maximal point identified.

The solution for the three dimensional maxima problem makes iterated
use of the plane sweep part for the two dimensional maxima problem. First
all points a sorted w.r.t. the third coordinate. A divide-and-conquer ap-
proach described in [4] is then applied on the third coordinate. The aim is
to produce for each strip a stream of the points contained in the strip, with
the points sorted w.r.t. decreasing first coordinate and with a point being
marked if and only if it is a maximal point among the points in the strip.

The base case consist of strips containing a single point, which by def-
inition must be marked. For a strip being the union of two strips A and
B, with all points in A having smaller third coordinates than points in B,
a merge is performed of the streams for A and B. While scanning B, the
algorithm keeps track of the second coordinate y of the last point in B that
is a maximal point in B when the third coordinate is ignored, using the
above described algorithm for the two dimensional maxima problem. The
algorithm picks the next point p from A and B with largest first coordinate.
If p comes from B, then y is set to max{y, p2}. If p comes from A and is
marked, then p is unmarked if and only if p2 ≤ y. Finally p is output. The
correctness follows from the following facts: no point in A can dominate a
point in B, a point p ∈ B is a maximal point in A ∪ B if and only p is a
maximal point in B, and a point p ∈ A is a maximal point in A ∪ B if and
only if p is a maximal point in A and is not dominated by any point in B.

10

For the initial sorting, we apply Lazy Funnelsort directly. For the sub-
sequent divide-and-conquer approach, we note that the merge process de-
scribed above is standard binary merging extended with the marking of
points. We can therefore mimic Lazy Funnelsort by replacing the binary
mergers in the nodes of a k-merger by the above described merge process.
For each node we only need O(1) additional space (for holding y), so the
analysis of Lazy Funnelsort is still valid, i.e. the 3D maxima problem can be
solved in O(Sort(N)) I/Os by a cache oblivious algorithm.

3.2 Measure of N Axis-Parallel Rectangles

Problem Given N axis-parallel rectangles in the plane, compute the mea-
sure of the union of the rectangles.

We first extract the 4N rectangle corners, and let each corner store the
coordinates of the diagonally opposite corner. We sort the rectangle corners
w.r.t. the first dimension, and then apply a divide-and-conquer approach on
this dimension.

For a vertical strip S we will produce a stream containing the rectangle
corners in S in increasing order w.r.t. the second dimension. Each corner p
will be annotated with the one dimensional measure of the intersection of ℓ
and (the union of) the rectangles with a corner in S, where ℓ is a horizontal
line segment exactly covering the strip and lying strictly between p and the
next point above p in the strip.

The base case consist of strips containing just two corner points, namely
the two leftmost or the two rightmost corner points of a single rectangle. For
a strip consisting of the union of two strips A and B, we merge the streams
of points computed for the strips A and B by a plane sweep for increasing y.
During the sweep we remember the last points a and b from A and B,
and maintain a counter cA describing how many rectangles with a corner
in strip A spans strip B completely at the current y value, and similarly
cB describing how many rectangles with a corner in strip B spans strip A
completely. These counts can easily be maintained in the merging process.
For instance, if the next point is the lower left corner of a rectangle from
strip A that spans strip B completely, we increase cA, and if the next point is
the upper right corner of a rectangle from B that spans strip A completely,
we decrease cB . When outputting a corner point p, we can compute the
measure to be associated from the information maintained. As an example,
if p ∈ A and both strips A and B are spanned completely by rectangles at
the sweep line, i.e. cA > 0 and cB > 0, then we assign the width of the strip

11

A ∪ B to p. If only A is spanned completely by a rectangle, i.e. cA = 0 and
cB > 0, we assign to p the width of A plus the measure associated with b.

When the final merge has produced a strip containing all rectangles,
the algorithm computes the total measure of the union of the rectangles
by a linear scan through the computed one dimensional measures at the
different y values, where each one dimensional measure is multiplied by the
difference between the current y value and the y value of the next point,
and the product is added the measure computed so far.

As for the 3D maxima problem, we perform exactly the binary merging
as done by Funnelsort and only need O(1) space at each node to store the
status of the current sweep line, implying that the Funnelsort I/O bound
also applies to this problem.

3.3 Visibility of Line Segments from a Point

Problem Given N non-intersecting line segments in the plane and a point
p, compute the line segments visible from p.

We use a divide-and-conquer approach on the set of line segments, split-
ting sets arbitrarily into two subsets of equal size. For a given subset of
the lines we will compute the sequence of line segments visible from p when
rotating the viewing angle 360 degrees clockwise around p—more precisely,
the sequence of endpoints of line segments visible together with the line
segment visible to the right of the endpoint.

The base case consists of a single line, which will be represented twice in
the sequence if it crosses the initial/final viewing angle. Given two sequences
of visible endpoints for two sets of line segments A and B, the corresponding
sequence for A ∪ B can be constructed by a rotation of the viewing angle
through the visible endpoints of line segments from A and B. The merging
process of the two sequences only has to remember the line segments from
A and B which are visible at the current angle. Since a visible endpoint in
B may not be visible in A ∪ B, the output stream is only a subset of the
endpoints visible for A and B.

Lazy Funnelsort does not require that input elements to a merger are
also output by the merger, implying that the analysis for Lazy Funnelsort
also applies to the visibility problem. Alternatively, we could output all
endpoints of line segments, but marking the invisible points as such. Then
the original Funnelsort algorithm and analysis would trivially apply.

12

3.4 Batched Orthogonal Range Queries

Problem Given N points in the plane and K axis-parallel rectangles, report
for each rectangle R all points which are contained in R.

The basic distribution sweeping algorithm for range queries proceeds as
follows. First all N points and the 2K upper left and upper right rectangle
corners are sorted on the first coordinate. Each corner point contains a
full description of the rectangle. After having sorted the points we use a
divide-and-conquer approach on the first coordinate, where we merge the
sequences of points from two adjacent strips A and B to the sequence of
points in the strip A∪B. All sequences are sorted on the second coordinate,
and the merging is performed as a bottom-up sweep of the strip A∪B. The
property maintained is that if a rectangle corner is output for a strip, then
we have reported all points in the strip that are contained in the rectangle.

While merging strips A and B, two lists LA and LB of points are gen-
erated: LA (LB) contains the input points from A (B), which are by now
below the sweep line. If the next point p is an input point from A (B),
we insert p into LA (LB) and output p. If p is a rectangle corner from A,
and p is the upper left corner of a rectangle R that spans B completely in
the first dimension, then the points in LB ∩R are reported by scanning LB

until the first point below the rectangle is found (if R only spans B partly,
then the upper right corner of R is contained in B, i.e. LB ∩ R has already
been reported). On the RAM this immediately gives an O(N log N) time
algorithm. The space usage is O(N), since it is sufficient to store the L lists
for the single merging process in progress. In the I/O model, a merging
degree of Θ(M

B) gives an O(Sort(N)) time algorithm with a space usage of
O(N

B) blocks.
Unfortunately, this approach does not immediately give an optimal cache

oblivious algorithm. One problem is that the interleaved scheduling of the
merge processes at nodes in a k-merger seems to force us to use Θ(n log n)
space for storing each input point in an L list at each level in the worst case.
This space consumption is sub-optimal, and is also a problem in the proof
of Theorem 2, where we for the case N ≤ M/2 use that the space is linearly
bounded.

We solve this problem in three phases: First we calculate for each node
of a k-merger how many points will actually be reported against some query
rectangle—without maintaining the L lists. By a simple change in the al-
gorithm, we can then reduce the space needed at a node to be bounded by
the reporting done at the node. Finally, we reduce the space consumption
to O(N

B) blocks by changing the scheduling of the merging processes such

13

that we force the entire merging process at certain nodes to complete before
returning to the parent node.

In the following we consider a k-merger where the k input streams are
available in k arrays holding a total of N points, and where k = N1/d. In the
first phase we do no reporting, but only compute how much reporting will
happen at each of the k−1 nodes. We do so by considering a slightly different
distribution sweeping algorithm. We now consider all N input points and
all 4K corners of the rectangles. When merging the points from two strips A
and B, we maintain the number a (b) of rectangles intersecting the current
sweep line that span strip A (B) completely and have two corners in B
(A). We also maintain the number of points rA (rB) in A (B) below the
sweep line which cause at least one reporting at the node when applying the
above algorithm. Whenever the next point is the lower left (right) corner
of a rectangle spanning B (A) completely, b (a) is increased. Similarly we
decrease the counter when a corresponding topmost corner is the next point.
If the next point is an input point from A (B), we increase rA (rB) by one
if and only if a (b) is nonzero. Since the information needed at each node
is constant, we can apply the Lazy Funnelsort scheduling and the analysis
from Lemma 1 for this first phase.

By including the lower rectangle corner points in the basic reporting
algorithm, we can simultaneously with inserting points into LA and LB

keep track of a and b, and avoid inserting a point from A (B) into LA (B)
if the point will not be reported, i.e. if a (b) is zero. This implies that all
points inserted into LA and LB will be reported at least once, so the space
O(rA + rB) required for La and Lb is bounded by the amount of reporting
generated at the node.

Finally, to achieve space linear in the total input N of the k-merger (not
counting the space needed for storing the reporting generated), we will avoid
allocating the L lists for all nodes simultaneously if this will require more
than linear space. The reporting generated by a k-merger will be partitioned
into iterations, each of which (except the last) will generate Ω(N) reporting
using space O(N). The details are as follows. First we apply the above
algorithm for computing the rA and rB values of each node of the k-merger.
In each iteration we identify (using a post-order traversal principle) a node
v in the k-merger where the sum of the rA and rB values at the descendants
is at least N , and at most 3N (note: for each node we have rA + rB ≤ N).
If no such node exists, we let v be the root. We first allocate an array
of size 3N to hold all the LA and LB lists for the descendants of v. We
now complete the entire merging process at node v, by repeatedly applying
Fill(v) until the input buffers of v are exhausted. We move the content of

14

the output buffer of v to a temporary array of size N , and when the merging
at v finished we move the output to a global array of size N which holds
the final merged lists of several nodes simultaneously. If the k input streams
have size N1, . . . , Nk, and node v spans streams i..j, the merged output of
v is stored at positions 1 +

∑i−1
ℓ=1 Ni and onward. When the merging of v is

finished, we set rA and rB of all descendants of v to zero.
For the analysis, we follow the proof of Lemma 1. We first note that by

construction, we use space Θ(N) and in each iteration (except the last) gen-
erate Ω(N) reporting. If N ≤ M/2c, all computation will be done in internal
memory, when the input streams first have been loaded into memory, i.e. the
number of I/Os used is O(N

B + T
B). For the case N > M/2c, i.e. k < N

B ,
we observe that each base tree invoked only needs to store O(1) blocks from
the head of each L list in the nodes of the base tree. Writing a point to an
L list can then be charged to the later reporting of the point. Reading the
first blocks of the L lists in a base tree has the same cost as reading the first
blocks of each of the input streams to the base tree. We conclude that the
I/Os needed to handle the L lists can either be charged to the reporting or
to the reading of the input streams of a base tree. The total number of I/Os
used in an iteration is O(k + N

B + T ′

B), where T ′ is the amount of reporting,
plus the number of I/Os used to move points from a base tree to the base
next. Over all iterations, the latter number of I/Os is at most O(N

B logM N).
We conclude that the k-merger in total uses O(N

B logM N + T
B) I/Os and uses

O(N
B) blocks of space. Analogous to the proof of Theorem 2 it follows that

the entire algorithm uses O(dN
B logM N + T

B) I/Os.

3.5 Orthogonal Line Segment Intersection Reporting

Problem Given N axis-parallel line segments in the plane, report all in-
tersection points between horizontal and vertical line segments.

The algorithm is the same as for the batched range query problem, except
for the following modifications. The analysis remains the same. The points
at the leaves are the 2N endpoints of the N line segments. While merging
the points in two strips A and B, the list LA (LB) contains the horizontal
line segments that completely span the strip A (B) and have an endpoint in
B (A). If the next point is the topmost endpoint of a vertical line segments
in A (B), then all horizontal segments in LA (LB) are reported, until a
horizontal line segment below the vertical line segment is reached.

15

3.6 Pairwise Rectangle Intersections

Problem Given N axis-parallel rectangles in the plane, report all pairwise
intersections between the rectangles.

Since the pairwise rectangle intersection problem can be reduced to solv-
ing one orthogonal segment intersection reporting problem (reporting inter-
sections of sides of rectangles) and one batched range searching problem
(reporting rectangle corners within rectangles), as noted in [2, 10], the I/O
bound in Theorem 1 follows immediately.

3.7 All Nearest Neighbors

Problem Given N points in the plane, compute for each point which other
point is the closest.

We solve the problem in two phases. After the first phase, each point p
will be annotated by another point p1 which is at least as close to p as the
closest among all points lying below p. The point p1 itself does not need to
lie below p. If no points exist below p, the annotation may be empty. The
second phase is symmetric, with above substituted for below, and will not
be described further. The final result for a point p is the closest of p1 and
the corresponding annotation from the second phase.

In the first phase, we sort the points on the first dimension and apply a
divide-and-conquer approach from [21] on this dimension. For each vertical
strip S, we will produce a stream containing the points in S in decreasing
order w.r.t. the second dimension, with each point annotated by some other
point p1 from S (or having empty annotation). The divide-and-conquer
approach will be patterned after Lazy Funnelsort, and for streams analogous
to output streams of k-mergers, the annotation will fulfill an invariant as
above, namely that p1 is at least as close as the closest among the points
from S lying below p (for streams internal to k-mergers, this invariant will
not hold).

The base case is a strip containing a single point with empty annotation.
For a strip being the union of two strips A and B, we merge the streams for
A and B by a downward plane sweep, during which we maintain two active
sets SA and SB of copies of points from A and B, respectively. For clarity,
we in the discussion below refer to such a copy as an element x, and reserve
the term point p for the original points in the streams being merged.

These active sets are updated each time the sweepline passes a point p.
The maintenance of the sets are based on the following definition: Let c

16

denote the intersection of the horizontal sweepline and the vertical line sep-
arating A and B, let p be a point from S, let p1 be the point with which p
is annotated, and let d denote Euclidean distance. By U(p) we denote the
condition d(p, p1) ≤ d(p, c), where d(p, p1) is taken as infinity if p has empty
annotation. If U(p) holds and p is in A (B), then no point in B (A) lying
below the sweepline can be closer to p than p1.

We now describe how the active sets are updated when the sweepline
passes a point p ∈ A. The case p ∈ B is symmetric. We first calculate
the distance d(p, x) for all elements x in SA ∪ SB . If this is smaller than
the distance of the current annotation of x (or p, or both), we update the
annotation of x (or p, or both). A copy of the point p is now added to SA if
condition U(p) does not hold. In all cases, p is inserted in the output stream
of the merge process. Finally, if for any x in SA ∪SB condition U(x) is now
true, we remove x from its active set. When the sweepline passes the last
point of S, we remove any remaining elements in SA and SB .

By induction on the number of points passed by the sweepline, all ele-
ments of SA are annotated by a point at least as close as any other element
currently in SA. Also, U(x) is false for all x ∈ SA. As observed in [21], this
implies that for any two elements x1 and x2 from SA, the longest side of the
triangle △x1cx2 is the side x1x2, so by the law of cosines, the angle 6 x1cx2

is at least π/3. Therefore SA can contain at most two elements, since the
existence of three elements x1, x2, and x3 would imply an angle 6 xicxj of
at least 2π/3 between two of these. By the same argument we also have
|SB | ≤ 2 at all times.

Let I(p,X) denote the condition that the annotation of p is a point at
least as close as the closest point among the points lying below p in the strip
X. Clearly, if a point p ∈ A is passed by the sweepline without having a copy
inserted into SA, we know that I(p,B) holds. If a copy x of p is inserted into
SA, it follows by induction on the number of points passed by the sweepline
that I(x,B) holds when x is removed from SA. Similar statements with A
and B interchanged also hold.

As said, our divide-and-conquer algorithm for phase one is analogous
to Lazy Funnelsort, except that the merge process in a binary node of a
k-merger will be the sweep line process described above. We allocate O(1)
extra space at each node to store the at most four copies contained in the two
active sets of the merge process. We will maintain the following invariant:
when a k-merger spanning a strip S finishes its merge process, condition
I(p, S) holds for all points p in output stream of the k-merger. Correctness of
the algorithm follows immediately from this invariant. From the statements
in the previous paragraph we see that the invariant is maintained if we

17

ensure that when a k-merger finishes, the annotations of points p in its
output stream have been updated to be at least as close as the annotations
of all copies of p removed from active sets during the invocation of the
k-merger.

To ensure this, we keep the copies of a point p in a doubly linked list
along the path toward the root of the k-merger. The list contains all copies
currently contained in active sets, and has p itself as the last element. Note
that in a k-merger, the merge processes at nodes are interleaved—part of
the output of one process is used as input for another before the first process
has finished—so the length of this list can in the worst case be the height of
the k-merger.

Consider a merge step in a node v in a k-merger which moves a point p
from an input buffer of v to its output buffer. During the step, several types
of updates of the linked list may be needed:

1. If p is currently contained in a list, the forward pointer of the next-to-
last element needs to be updated to p’s new position.

2. A copy x of p may be inserted in an active set of v. If p is currently
not in a list, a new list containing x and p is made. Otherwise, x is
inserted before p in p’s list.

3. Elements of active sets of v may be removed from the sets. Each such
element x should be deleted from its linked list.

This updating is part of the algorithm. Additionally, in the third case the
annotation of x is propagated to the next element y in the list, i.e. the
annotation of y is set to the closest of the annotations of x and y. This
ensures the invariant discussed above.

We now analyze the I/O complexity of the algorithm. As the space usage
of a node in a k-merger is still O(1), the analysis of Lazy Funnelsort is still
valid, except that we need to account for the I/Os incurred during updates
of the linked lists.

Whenever a base tree not residing in memory is touched by the algo-
rithm, we in the proof of Lemma 1 charged the cost of loading the entire
base tree into memory. This implies that the cost of updating pointers
starting and ending in the same base tree has already been accounted for.

We also charged the cost of loading O(k̄) blocks memory, where k̄ is the
number of leaves in the base tree, and proved that these blocks can reside
in memory concurrently with the base tree. Hence, we may assume that the
memory always contains the blocks for the memory locations pointed to by

18

the O(k̄) forward pointers of elements in active sets of the nodes of the base
tree. This is because the initial set of such blocks for a newly loaded base
tree has already been accounted for, and new such blocks only appear when
a new element x is inserted into the active sets of a node. When x, being
a copy of point p, is inserted into an active set, the forward pointer of x
should point to p, which at the same time is inserted into the output buffer
of the node. Hence, loading the block pointed to by the forward pointer of
x has already been done by the output process of the node. We conclude
that the cost of updating the reverse of these pointers, i.e. the backwards
pointers pointing to elements in active sets of the current node, already has
been accounted for in the proof of Lemma 1.

What remains is to bound the I/O cost of updating forward pointers
originating outside the base tree of the current node and ending at the cur-
rent input element or at an active set of the current node. We will prove that
amortized over the entire invocation of the k-merger, there are sufficiently
few such pointers to be updated for us to afford the O(1) I/Os incurred
during an update. Our amortization argument uses potential functions on
these pointers to pay for the I/Os incurred during updates.

For a forward pointer ℓ, let its maximal buffer m(ℓ) be the largest buffer
on the path in the k-merger from its starting point to its endpoint (including
the buffer containing the endpoint if ℓ is the last pointer of the list), and
denote ℓ a large pointer if m(ℓ) is a large buffer according to the definition
in the proof of Lemma 1. The buffer m(ℓ) resides on the middle level of
the smallest tree T (ℓ) in the recursive definition of buffer sizes that contains
both starting point and endpoint of ℓ. Let k(ℓ) be the size of the top tree
of T (ℓ). We view the log k(ℓ) levels of the top tree of T (ℓ) as composed
of 2 log k(ℓ) − 1 semi-levels, each containing all nodes or all edges at the
same depth in T (ℓ). The crucial observation is that each time a forward
pointer is updated, its new endpoint is at least one semi-level higher than
the old. Therefore we to each large forward pointer ℓ assign a potential of
2 log k(ℓ) − i, where i is the number of semi-levels between m(ℓ) and the
endpoint of ℓ.

During the lifetime of a forward pointer ℓ, the size of m(ℓ) can only
increase, since the starting point of ℓ is fixed and the endpoint can only
move upward in the k-merger. For all updates of large forward pointers
where m(ℓ) and hence k(ℓ) do not change, the decrease in potential will be
at least one, which will cover the O(1) I/Os for the update. We now analyze
the remaining cases.

One case is an update of type 3 above, where m(ℓ′) for the forward
pointer ℓ′ of the removed element x is larger than m(ℓ) for the forward

19

pointer ℓ of the predecessor of x in the list. During the update, ℓ′ vanishes.
The hereby released potential is exactly the required new potential of ℓ, and
the cost of the update is covered by the old potential of ℓ, as this is at least
one.

The other case is an update of type 1, where p is inserted into a buffer
m larger than the current m(ℓ) for the forward pointer ℓ pointing to p.
In this case we use the last unit of the potential of ℓ to cover the update.
However, we must provide a new potential for ℓ of 2 log k, where k is the new
value of k(ℓ). By the nature of the procedure Fill(), all of buffer m will be
filled before any point is removed from it, so we can postpone providing the
potential for such pointers until Fill() is finished filling buffer m. At that
point in time, there are few such pointers compared to the size of m: they all
have starting points within the bottom tree of the tree of which m is a middle
buffer, and this bottom tree contains O(k) pointers, while m contains Θ(kd)
points. We can therefore provide the total potential required by charging
Θ(k log k/kd) per point inserted into m. If this is O(1/B), we do not charge
more than what in the proof of Lemma 1 is already charged for inserting an
element into a large buffer. Such a statement can be proved under a slightly
stronger tall cache assumption than the one in Lemma 1. For instance,
assuming B(d+1/(d−1−δ)) ≤ M for δ > 0, we can prove k log k/kd ≤ 1/(δB):
For all x > 0 we have log(x) ≤ x, which implies log(k) ≤ kδ/δ. As m is a
large buffer, we know from the proof of Lemma 1 that k ≥ M1/(d+1). All in
all we have k log k/kd ≤ 1/δ · 1/kd−1−δ ≤ 1/δ · 1/M (d−1−δ)/(d+1) ≤ 1/(δB).

Finally, when a pointer becomes large for the first time (during a type 1
or type 2 update), the actual I/O for the update has previously been ac-
counted for, but the amortization argument now requires us to provide new
potential. The argument for the second case above shows that this can be
covered by charging O(1/B) to each element inserted in the buffer currently
being filled. This concludes the analysis of the algorithm.

Acknowledgment

We would like to thank Riko Jacob and Sven Skyum for encouraging dis-
cussions.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
Sept. 1988.

20

[2] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms.
In Proc. 4th Workshop on Algorithms and Data Structures (WADS),
volume 955 of Lecture Notes in Computer Science, pages 334–345.
Springer Verlag, Berlin, 1995.

[3] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I.
Munro. Cache-oblivious priority queue and graph algorithm applica-
tions. In Proc. 34th Ann. ACM Symp. on Theory of Computing. ACM
Press, 2002. To appear.

[4] M. J. Atallah and J.-J. Tsay. On the parallel-decomposability of geo-
metric problems. Algorithmica, 8:209–231, 1992.

[5] R. Bayer and E. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, 1:173–189, 1972.

[6] M. A. Bender, R. Cole, and R. Raman. Exponential structures for
efficient cache-oblivious algorithms. In Proc. 29th International Col-
loquium on Automata, Languages, and Programming (ICALP), 2002.
These proceedings.

[7] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-
trees. In Proc. 41st Ann. Symp. on Foundations of Computer Science,
pages 399–409, 2000.

[8] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving
cache-oblivious dynamic dictionary. In Proc. 13th Ann. ACM-SIAM
Symp. on Discrete Algorithms, pages 29–39, 2002.

[9] J. L. Bentley. Algorithms for Klee’s rectangle problems. Carnegie-
Mellon University, Pittsburgh, Penn., Department of Computer Sci-
ence, unpublished notes, 1977.

[10] J. L. Bentley and D. Wood. An optimal worst case algorithm for re-
porting intersections of rectangles. IEEE Transactions on Computers,
29:571–577, 1980.

[11] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees
via binary trees of small height. In Proc. 13th Ann. ACM-SIAM Symp.
on Discrete Algorithms, pages 39–48, 2002.

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer Verlag,
Berlin, 1997.

21

[13] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of
Computer Science, pages 285–297, 1999.

[14] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry. In Proc. 34th Ann. Symp. on Foun-
dations of Computer Science, pages 714–723, 1993.

[15] R. L. Graham. An efficient algorithm for determining the convex hull
of a finite planar set. Inf. Process. Lett., 1:132–133, 1972.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, second edition, 1996.

[17] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of
a set of vectores. Journal of the ACM, 22(4):469–476, Oct. 1975.

[18] F. P. Preparata and M. I. Shamos. Computational Geometry: An In-
troduction. Springer Verlag, Berlin, 1985.

[19] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts
Institute of Technology, June 1999.

[20] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, 33(2):209–271, June 2001.

[21] D. E. Willard and Y. C. Wee. Quasi-valid range querying and its im-
plications for nearest neighbor problems. In Proceedings of the Fourth
Annual Symposium on Computational Geometry, pages 34–43. ACM
Press, 1988.

22

