
CR05: Data Aware Algorithms – Year 2020

Part 1: Introduction to data movement and pebble-game

models

Loris Marchal

September 9, 2020

1 Algorithm Design and Data Movement

Let us consider here a very simple problem, the matrix product, to show how the design of the
algorithm can influence the memory usage and the amount of data movement1. We consider two
square n× n matrices A and B, and we compute their product C = AB.

Algorithm 1: Simple-Matrix-Multiply(n,C,A,B)

for i = 0→ n− 1 do
for j = 0→ n− 1 do

Ci,j = 0
for k = 0→ n− 1 do

Ci,j = Ci,j +Ai,kBk,j

We consider that this algorithm is executed on a simple computer, consisting of a processing
unit with a fast memory of size M . In addition to this limited memory, a large but slow storage
space is available. In the following, we assume that this space is the disk and has unlimited
available storage space.2 Our objective is to minimize the data movement between memory and
disk, also known as the volume of I/O (input/output), that is the number of A, B and C elements
that are loaded from the disk to the memory, or written back from the memory to the disk. We
assume that the memory is limited, and cannot store more than half a matrix, i.e., M < n2/2.

In Algorithm 1, all B elements are accessed during one iteration of the outer loop. Thus, as
the memory cannot hold more than one half of B, at least n2/2 elements must be read. For the
n iterations, this leads to n3/2 read operations. This is huge as it is the same order of magnitude
of the number of computations (n3).

Fortunately, it is possible to improve the I/O behavior of the matrix product by changing the
algorithm. We set b =

√
M/3 and assume that n is a multiple of b. We consider the blocked

version of the matrix product, with block size b, as detailed in Algorithm 2. In this algorithm Cb
i,j

denotes the block of size b at position (i, j) (all elements Ck,l such that ib ≤ k ≤ (i+ 1)b− 1 and
jb ≤ l ≤ (j + 1)b− 1).

Each iteration of the inner loop of the blocked algorithm must access 3 blocks of size b2. Thanks
to the choice of b, this fits in the memory, and thus, each of these 3b2 elements are read and written
at most once. This leads to at most 2M data movements. Since there are (n/b)3 iteration of the
inner loop, the volume of I/O of the blocked algorithm is O((n/b)3 × 2M) = O(n3/

√
M).

1A large part of this section is adapted from [9].
2Note that this study detailed for the case “main memory vs. disk” may well apply to other pairs of storage

such as “fast small cache vs. large slower memory”.

1

Algorithm 2: Blocked-Matrix-Multiply(n,C,A,B)

b←
√
M/3

for i = 0,→ n/b− 1 do
for j = 0,→ n/b− 1 do

for k = 0,→ n/b− 1 do
Simple-Matrix-Multiply(n,Cb

i,j , A
b
i,k, B

b
k,j)

2 (Black) pebble game for memory minimization

2.1 Definition

We present here the first theoretical model that was proposed to study the space complexity of
programs. This model, based on a pebble game, was originally used to study register allocation.
Registers are the first level of storage, the fastest one, but also a scarce resource. When allocating
registers to instructions, it is thus crucial to use them with caution and not to waste them.
The objective is thus to find the minimum amount of registers that is necessary for the correct
execution of the program. Minimizing the number of registers is similar to minimizing the amount
of memory. For the sake of consistency, we present the pebble game as a problem of memory
size rather than register number minimization. This does not change the proposed model nor the
results, but allows us to present all results of this document with the same model and formalism.

The pebble-game was introduced by Sethi [6] to study the space complexity of “straight-line”
programs, that is, programs whose control flow does not depend on the input data. A straight-line
program is modeled as a directed acyclic graph (DAG): a vertex represents an instruction, and an
arc between two vertices i→ j means that the results of the vertex i is used for the computation
of j.

t

+

7

+

v

−
2 z

5 1z x

×

/

+

+

−

−

Figure 1: Graph corresponding to the computation of the expression 7 + (5− z)× (1 + x)− (1 +
x− t)/(2 + z) + v

When processing a vertex, all its inputs (as well as the result) must be loaded in memory,
and the goal is to execute the program using the smallest amount of memory. Memory slots are
modeled as pebbles, and executing the program is equivalent to playing a game on the graph with
the following rules:

• (PG1) A pebble may be removed from a vertex at any time.

• (PG2) A pebble may be placed on a source node at any time.

• (PG3) If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

2

t

+

7

+

v

−
2 z

5 1z x

×

/

+

+

−

−

Figure 2: Playing the (black) pebble game on the graph of Figure 1. Dark nodes are the ones
currently pebbled, meaning that four values are now in memory: (5 − z) × (1 + x), 1 + x, t and
2 + z.

The goal of the game is to put a pebble on each output vertex at some point of the computation,
and to minimize the total number of pebbles needed to reach this goal. In this game, pebbling
a node corresponds to loading an input in memory (rule PG2) or computing a particular vertex
(rule PG3). From a winning strategy of this game, it is thus straightforward to build a solution
to the original memory allocation problem.

2.2 Variants and hardness

Note that the game does not ensure that each vertex will be pebbled only once. Actually, in
some specific graphs, it may be beneficial to pebble several times a vertex, that is, to compute
several times the same values, to save a pebble needed to store its value. A variation of the game,
named the Progressive Pebble Game, forbids any recomputation, and thus models the objective
of minimizing the amount of memory without any increase in the computational complexity. In
this latter model, the problem of determining whether a directed acyclic graph can be processed
with a given number of pebbles has been shown NP-hard by Sethi [6]. The more general problem
allowing recomputation is even more difficult, as it has later been proved Pspace-complete by
Gilbert, Lengaeur and Tarjan [2]. Another variant of the game slightly changes rule PG3 and
allows to shift a pebble to an unpebbled vertex if all its predecessors are pebbled. Van Emde
Boas [10] shows that it can at most decrease the number of pebbles required to pebble the graph
by one, but in the worst case the saving is obtained at the price of squaring the number of moves
needed in the game.

Another variant, called the black-white pebble game has been proposed to model non deter-
ministic execution [3, 4], where putting a white pebble on a node corresponds to guessing its value;
a guessed vertex has to be actually computed later to check the value of the guess.

2.3 Special case: tree-shaped graphs

A simpler class of programs consists in trees rather than general graphs: for example, arithmetic
expressions are usually described by in-trees (rooted directed trees with all edges oriented towards
the root), unlike the one of Figure 1 which uses a common sub-expression twice.

3

2.3.1 Complete binary trees

We first consider Complete binary trees and establish the following result for the variant when
shifting pebbles is not allowed:464 Chapter 10 Space–Time Tradeoffs Models of Computation

31

15 30

7 14 29 25

3 6 13 18 28 21 24

1 2 4 5 8

10

17 26 27 19 20 22 23169 11 12

Figure 10.2 A complete balanced binary tree T (4) of depth 4 on 16 inputs. At least five
pebbles are needed to pebble it.

The binary tree of Fig. 10.2 can be pebbled with five pebbles by pebbling the vertices in
the order shown. Five pebbles are needed at the time when vertex 27 is pebbled. After one
pebble is moved to vertex 30, the two outputs of the FFT of Fig. 10.1 to which vertices 15 and
30 are attached can be pebbled. This tree-pebbling strategy can be repeated on all remaining
outputs. It is a general strategy for pebbling complete balanced binary trees.

This pebbling strategy, explained in detail in the next section, demonstrates that an FFT
graph on n = 2k inputs can be pebbled with no more pebbles than are needed to pebble the
trees with n leaves contained within it, namely, k + 1. In the next section we show that this
is the minimum number of pebbles needed to pebble a complete balanced binary tree on 2k

leaves. This FFT pebbling strategy for the graph in Fig. 10.1 pebbles each vertex on the third
and fourth levels once, each vertex on the second level twice, and each vertex on the first level
four times. It is clear that inputs must be repebbled if the minimum number of pebbles is used.
This is an example of space–time tradeoff. We shall derive a lower bound on the exchange of
space for time for this problem.

In the next section we also examine the minimum space required to pebble graphs. In the
subsequent section we describe a graph that exhibits an extreme tradeoff. This graph requires
a pebbling time exponential in the size of the graph when the minimum number of pebbles is
used but can be pebbled with one move per vertex if one more pebble is available.

After studying extreme tradeoffs we define a flow property of functions that, if satisfied,
implies a lower bound on the product (S +1)T (or a related expression) involving the space S
and time T needed to compute such functions. This test is used to show that many standard
algorithms are optimal with respect to their use of space and time.

10.2 Space Lower Bounds
In this section we derive lower bounds on the minimum space Smin(G) needed to pebble a
graph G for balanced binary trees, pyramids, and FFT graphs, a representative set of graphs.

Figure 3: Complete binary tree of depth k = 4 and pebbles when the last leaf (27) is pebbled.
This figure as well as the followings used to illustrate the pebble games are borrowed from [5].

Theorem 1. Any pebbling strategy (with or without recomputation) for the complete balanced
binary tree T (k) of depth k uses at least k + 2 pebbles and 2k+1 − 1 steps. There is a pebbling
strategy that reaches both bounds.

Proof. For the first lower bound, for a given strategy, consider the last time when it pebbles a
leaf, called v. We assume that no vertex on the path P from v to the root is already pebbled
(otherwise pebbling v at this time is unnecessary and can be avoided). Since v is the last pebbled
leaf, for any other leaf v′, there should be a pebble on the path from v′ to some node on the path
P from v to the root. Minimizing this number is obtained by pebbling all the descendants not in
P of nodes of P , which needs k pebbles. Together with the pebble on v, it makes k + 1 pebbles.
When the parent of v is pebbled, k + 2 pebbles are required

The second lower bound simply derives from the fact that each vertex of the tree should be
pebble once.

Finally, the following postorder pebbling strategy reaches both bounds:

1. Pebble the left subtree, leave a pebble on its root

2. Pebble the right subtree, leave a pebble on its root

3. Shift the pebble of one child of the root to the root, remove the other pebble

A tree of depth 0 (single node) can be pebbled with one pebble. Hence, a tree of depth k can be
pebbled with k+ 2 pebbles using this strategy. Furthermore, it only pebbles once each vertex.

2.3.2 General trees

We now get back to the variant without shifting pebble. Even in this case, the problem gets much
simpler than for general graph: Sethi and Ullman [7] designed an optimal scheme which relies on
the following theorem.3

3When pebble shifting is allowed, the minimum number of pebbles needed to pebble a tree is the Strahler
number (as outlined in [1]), which is a measure of a tree’s branching complexity that appears in natural science,
such as in the analysis of streams in a hydrographical bassin [8] or in biological trees such as animal respiratory
and circulatory systems https://en.wikipedia.org/wiki/Strahler_number.

4

https://en.wikipedia.org/wiki/Strahler_number

Theorem 2. An optimal solution for the problem of pebbling an in-tree with the minimum number
of pebbles using rules PG1 – PG3 is obtained by a depth-first traversal which orders subtrees by
non-increasing values of P (i), where the peak P (v) of the subtree rooted at v is recursively defined
by:

P (v) =

 1 if v is a leaf

max(k + 1,maxi=1...k P (ci) + i− 1)
where c1, . . . ck are the children of v
such that P (c1) ≥ P (c2) ≥ · · · ≥ P (ck)

The first step to prove this result is to show that depth-first traversals are dominant, i.e., that
there exists an optimal pebbling scheme which follows a depth-first traversal. Pebbling a tree using
a depth-first traversal adds a constraint on the way a tree is pebbled: consider a tree T and any
vertex v whose children are c1, . . . ck, and assume w.l.o.g that the first pebble that is put in the
subtree rooted at v is in the subtree rooted at its leftmost child c1. Then, in a depth-first traversal,
the following pebbles must be put in the subtree rooted at c1, until c1 itself holds a pebble (and
all pebbles underneath may be removed). Then we are allowed to start pebbling other subtrees
rooted at c2, . . . , ck. These traversals are also called postorder, as the root of a subtree is pebbled
right after its last child.

To prove that depth-first traversals are dominant, we notice that whenever some pebbles have
been put on a subtree rooted at some vertex v, it is always beneficial to completely pebble this
subtree (until its root v, which uses a single vertex) before starting pebbling other subtrees.

The second step to prove Theorem 2 is to justify the order in which the subtrees of a given vertex
must be processed to give a minimal number of pebbles. This result follows from the observation
that after having pebbles i − 1 subtrees, i − 1 pebbles should be kept on their respective roots
while the ith subtree is being pebbled. When the root is pebbled, k+ 1 pebbles are needed, which
is why it also appear in the maximum.

2.4 Space-Time Tradeoffs

2.4.1 Example with the FFT graph
c⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

Figure 4: FFT graph with 8 input/output vertices (depth k = 3)

The FFT graph (see Figure 4 contains many complete binary trees, hence it inherits some
of the previous results: we need at least k + 1 pebbles to pebble the FFT graph of depth k. A

5

pebbling scheme reaching this number of pebbles is obtained by pebbling each output one after
the other. A simple optimization is possible: when two vertices of the third level are pebbled, two
outputs (on the fourth level) can be pebbled at once. However, this results in a large number of
re-computations: all level-3 and 4 vertices are pebbled once, each level-2 vertex is pebbled twice,
and each input (level-1) vertices are pebbled four times. Using a larger number of pebbles allows
to reduce the number of steps. For example, with 2n = 2k+1 pebbles, each level can be pebble
one after the other, which allows to reach the minimum number of steps.

2.4.2 Grigoriev’s Lower-Bound Method

Definition 1 (w(u, v)-flow). Let f be a function from An to Am. f has a w(u, v)-flow if for all
partition (X0, X1) of the n inputs and all partition (Y0, Y1) of the m outputs, such that |X1| = u
and |Y1| = v, there exists a subfunction h of f obtained by assigning all variables in X0 to fixed

values and discarding output values in Y0, such that h has at least |A|w(u,v)
distinct points in the

image of its domain f .

This definition is illustrated on Figure 5. The idea is to characterize a significant information
flow from X1 to Y1, even if inputs not in X1 are fixed and outputs not in Y1 are discarded.

f

inputs

set X1

set X0
fixed

size u

outputs

set Y1

set Y0

size v

discarded

Figure 5: Definition of a flow

A more general property is defined below.

Definition 2 ((α, n,m, p)-independant function). A function f : An 7→ Am is an (α, n,m, p)-
independant function for α ≥ 1 and p ≤ m if it has a w(u, v)-flow with w(u, v) ≥ v/α − 1 for all
u, v such that n− u+ v ≤ p.

The matrix multiplication will be used as a running example in this section. We consider
any standard algorithm for multiplying two matrices of size N ×N , that is, we exclude Strassen
algorithm as well as its variants and concentrate on algorithms performing N3 multiplications.

Lemma 1. The matrix multiplications of two matrices of size N×N is (1, 2N2, N2, N)-independant.

Proof. Note that n = N2 and p = N so that n − u + v ≤ p with u = |X1| and v = |Y1| and is
indeed |X0|+ |Y1| ≤ N . We consider here the worst case (equality).

We consider the matrix product C = AB, a set of inputs X0 (elements of A and B) and a set of
outputs Y1 (elements of C) such that |X0|+|Y1| = N . The outputs of Y1 lie in at most |Y1| columns
of C (denoted by C1), while the inputs of X0 lies in at most |X0| columns of A (some elements
may even be in B). Thus, at least N − |X0| columns of A contains only elements in X1 (elements
that are allowed to vary), we call these columns A1 (note that |A1| ≥ N − |X0| ≥ |Y1| ≥ |C1|).
We fix the entries in B in {0, 1} so that AB is a permutation of the columns of A: some of these
elements are in X0 and should be fixed anyway, the others are in X1 and are also allowed to be

6

fixed in the subfunction h. We design the permutation matrix B so that (some of) the columns
of A1 are sent to columns of C1. Hence, when varying the inputs of X1 over R, the outputs of
Y1 can take up to R|Y1| values, which corresponds to a |Y1|-flow, larger than the (|Y1| − 1)-flow
requested by the theorem.

The following theorem establishes a lower bound on the number of steps based on the existence
of the flow. The proof uses the fact that during an interval where b outputs are pebbled, the
information coming from the variables corresponding to the initial position of the S pebbles at
the beginning of the interval is limited. Hence, if f has a large flow, a lot of inputs must be read
during such an interval, which gives a lower bound on the total number of steps.

Theorem 3. Let f : An 7→ Am be a function with a w(u, v)-flow. Any pebbling of any DAG
computing f that takes T steps and S space respects:

T ≥ bm/bc(n− d)

for any b ≤ m and d the largest integer such that w(d, b) ≤ S.

Proof. We consider such a function f and a pebbling scheme that computes it with S pebbles and
T steps. Let b ≤ m an integer.

We divide the pebbling schemes into phases, such that exactly b outputs are pebbled in each
phase (except possibly the last phase in which less outputs may be pebbled). We consider such
a regular phase. Let Y1 be the set of outputs pebbled in this phase (|Y1| = b), x0 (resp. x1) the
number of inputs pebbled inside the phase (resp. outside the phase). Since f has a w(u, v)-flow,

there exists an assignment of the x0 inputs such that the outputs in Y1 have at least |A|w(n−x0,b)

different values. If w(n−x0, b) > S, there are more possible outputs in Y1 that the possible values
computed at the beginning of the phase, represented by the (at most) S pebbles located in the
graph in the beginning of the phase. As the other x0 inputs are supposed fixed in the flow, this
contradicts the assumption on f . Hence x1 cannot be larger than d (by definition of d). Thus, the
number of inputs pebbled during the phase satisfies x0 ≥ n− d.

Since there are bm/bc regular phases, the number of times the inputs are pebbled is at least
bm/bc(n− d) and so is the total number of steps in the pebbling scheme.

For independant function, choosing b appropriately gives the following corollary:

Corollary 1. Let f : An 7→ Am be (α, n,m, p)-independant. For every pebbling of every DAG
computing f using S pebbles and T steps, we have

dα(S + 1)eT ≥ mp/4

Proof. By definition f has a w(u, v)-flow satisfying w(u, v) > v/α−1 for all u, v with n−u+v ≤ p.
We choose b = v = dα(S+1)e, and thus have v/α−1 ≥ S. We define d as in the previous theorem
(larger integer with w(d, b) ≤ S).We first assume that (n − d) + b ≤ p. By definition of the flow,
we then have w(d, b) > S, which contradicts the definition of d. Hence, we have (n− d) + b > p,
that is n− d > p− dα(S + 1)e.

We notice that bm/xc ≥ (m − x + 1)/x. The bound of the previous theorem now translates
to: translates to:

T ≥ (m− dα(S + 1)e+ 1)

dα(S + 1)e (p− dα(S + 1)e)

We consider two cases:
• Case 1: dα(S+ 1)e ≤ p/2. Then p−dα(S+ 1)e ≥ p/2 and m−dα(S+ 1)e ≥ m/2 as m ≥ p,

which leads to the desired bound.
• Case 2: dα(S + 1)e > p/2, then dα(S + 1)eT ≥ mp/2 since T > m (all outputs need to be

pebbled).

7

We now get back to the multiplication of two N ×N matrices. We proved earlier that it was
(1, 2N2, N2, N)-independant. This leads to the following bound:

Theorem 4. Every pebbling strategy for any straight-line program computing the multiplication
of two N ×N matrices uses a space S and time T respecting the following inequality:

(S + 1)T ≥ N3/4

Note that the standard algorithm that computes each Ci,j values one after the other by com-
puting the inner (dot) product of two vectors reaches this bound (at least asymptotically): each
dot product can be perform with 4 pebbles in time 4N , and there are N2 of them to compute,
hence ST = 16N3 for this algorithm.

Material used for this course and further documentation

Refer to chapter 10 (“Space-Time Tradeoffs”) of the book “Models of Computation” by J. Sav-
age [5] for more information on the black pebble game.

References

[1] Philippe Flajolet, Jean-Claude Raoult, and Jean Vuillemin. The number of registers required
for evaluating arithmetic expressions. Theoretical Computer Science, 9(1):99–125, 1979.

[2] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem is
complete in polynomial space. SIAM J. Comput., 9(3):513–524, 1980.

[3] Thomas Lengauer. Black-white pebbles and graph separation. Acta Informatica, 16(4):465–
475, 1981.

[4] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on graphs.
Theoretical Computer Science, 13(3):315–322, 1981.

[5] John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley,
1998.

[6] Ravi Sethi. Complete register allocation problems. In Proceedings of the 5th Annual ACM
Symposium on Theory of Computing (STOC’73), pages 182–195, New York, NY, USA, 1973.
ACM Press.

[7] Ravi Sethi and J.D. Ullman. The generation of optimal code for arithmetic expressions. J.
ACM, 17(4):715–728, 1970.

[8] Arthur N Strahler. Hypsometric (area-altitude) analysis of erosional topography. Geological
Society of America Bulletin, 63(11):1117–1142, 1952.

[9] Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. In External
Memory Algorithms and Visualization, pages 161–180. American Mathematical Society Press,
1999.

[10] Peter van Emde Boas and Jan van Leeuwen. Move rules and trade-offs in the pebble game.
In Theoretical Computer Science 4th GI Conference, pages 101–112. Springer, 1979.

8

	Algorithm Design and Data Movement
	(Black) pebble game for memory minimization
	Definition
	Variants and hardness
	Special case: tree-shaped graphs
	Complete binary trees
	General trees

	Space-Time Tradeoffs
	Example with the FFT graph
	Grigoriev's Lower-Bound Method

