
CR05: Data Aware Algorithms – Year 2020

Part 1, Section 2: Red-Blue Pebble Game

Loris Marchal

September 10, 2020

1 Red-Blue pebble game for data transfer minimization

In some cases, the amount of fast storage (i.e., memory) is too limited for the complete execution of
a program. In that case, communication are needed to move data from/to a second level of storage
(i.e., disk), which is usually larger but slower. Because of the limited bandwidth of the secondary
storage, the amount of data transfers, sometimes called Input/Output (or simply I/O) volume,
is a crucial parameter for performance, as seen in the introduction. Once again, we present this
problem for the pair (main memory,disk), but this may well apply to any pair of storages in the
usually deep memory hierarchy going from the registers and fastest caches to the slowest storage
systems.

1.1 Definition and examples

While the first pebble game allows to model algorithms under a limited memory, Hong and Kung
have proposed another pebble game to tackle the I/O volume minimization in their seminal arti-
cle [1]. This game uses two types of pebbles (of different colors) and thus is also called the red/blue
pebble game to distinguish with the original (black) pebble game. The goal is to distinguish be-
tween the main memory storage (represented by red pebbles), which is fast but limited, and the
disk storage (represented by blue pebbles), which is unlimited but slow. As in the previous model,
a computation is represented by a directed acyclic graph. The red and blue pebbles can be placed
on vertices according to the following rules:

• (RB1) A red pebble may be placed on any vertex that has a blue pebble.

• (RB2) A blue pebble may be placed on any vertex that has a red pebble.

• (RB3) If all predecessors of a vertex v have a red pebble, a red pebble may be placed on v.

• (RB4) A pebble (red or blue) may be removed at any time.

• (RB5) A blue pebble can be placed on an input vertex at any time.

• (RB6) No more than S red pebbles may be used at any time.

The goal of the game is to put a red pebble on each output vertex at some point of the computation,
and to use the minimum number of RB1/RB2 rules to reach this goal. Red vertices represents
values that currently lies in the main memory, after a computation, while blue pebbles represents
values that are on disk. A value on disk may be read from disk (rule RB1) and similarly a value
in memory can be stored on disk (rule RB2). Finally, we may compute a value if all its inputs are
already in memory (rule RB3). The volume of I/O is the total number of moves using rules RB1
or RB2, that is the total number of data movements between memory and disk.

Consider now the FFT graph presented above. With S = 3 red pebbles, the graph can be
computed by putting each intermediate vertex in slow memory, so the number of I/Os is (k−1)2k+1

(inputs only read, outputs only written, intermediate vertices both written and read).

1

t

+

7

+

v

−
2 z

5 1z x

×

/

+

+

−

−

Figure 1: Playing the red/blue pebble game. The two red nodes represent values that are currently
in memory, whereas the two blue nodes represent values that have been computed but then been
evicted to disk. Before pebbling node (1 + x)− t, a red pebble has to be put again on node 1 + x,
corresponding to reading this value from the disk.

1.2 The Hong-Kung Lower-Bound method

We present here the method proposed by Hong and Kung in their seminal paper [1] to derive
lower-bounds on the volume of I/O needed for some computations with limited storage, that is,
limited number of red pebbles. We present a slightly simpler version of their result as revisited by
Savage [2]. We first define the S-span of a DAG.

Definition 1. Given a DAG G, its S-span, ρ(S,G), is the maximum number of vertices of G
that can be pebbled with S pebbles in the black pebble game where the initialization rule (PG2) is
disallowed, maximized over all initial placements of the S pebbles.

Then we express the lower bound on the number of I/O steps TI/O(S,G), defined as the number
of steps using rules RB1 or RB2 in a pebbling scheme S of the graph G.

Theorem 1. For every pebbling scheme S of a DAG G = (V,E) in the red-blue pebble-game using
at most S red pebbles, the number of I/O steps satisfies the following lower bound:

dTI/O(S,G)/Seρ(2S,G) ≥ |V | − |Inputs(G)|

Proof. We first divide the pebbling scheme S into phases where each phase has exactly S I/O
operations (except the last one which may have less). There are h = dTI/O/Se such phases.

We now establish a bound on the maximal number of vertices computed during each phase. To
do this, we transform the pebbling of a phase to move all read operations to the beginning of the
phase. Let Vread be the set of vertices that are pebbled with rule RB1 (a blue pebble is transform
in a red pebble) during the phase. Note that |Vread | ≤ S by definition of the phases. We consider
a supplementary set of |Vread | red pebbles, that are placed in the beginning of the phase on the
vertices of Vread , and remove the read steps from the pebbling scheme of the phase. Note that the
new pebbling scheme of the phase is still valid. At the start of the new phase, there are at most
2S red pebbles on the graph. Clearly, the number of vertices pebbled with a red pebbled in not
larger that if 2S vertices were available and allowed to move freely. Thus, the number of compute
steps is at most ρ(2S,G).

In total, the number of compute steps of the whole pebbling scheme is at most hρ(2S,G), and
it sould be at least |V | − |Inputs(G)| to cover the whole graph, which gives the results.

2

We now apply this result to our running example: the product of two N × N matrices. In
order to do this, we first estimate the span of any DAG computing this product, corresponding to
any standard algorithm.

We start with a small lemma.

Lemma 1. Let T be a binary (in-)tree representing a computation, with p pebbles on some vertices.
At most p− 1 vertices can be pebbled in the tree.

Proof. We first identify in the tree the s subtrees with all leaves pebbled. All the non-leaf vertices
of these subtrees (and only these vertices) can be pebbled. For such a subtree with l leaves, this
represent l − 1 nodes. Hence, exactly p− s vertices can be pebbled in the whole tree, which is at
most p− 1 in the case of a single subtree.

Theorem 2. For every DAG G to compute the product of two N×N matrices in a regular manner
(performing the N3 products), the span ρ(S,G) is such that ρ(S,G) ≤ 2S

√
S for S ≤ N2.

Proof. We consider any initial placement of the S pebbles, and try to bound the number of vertices
that can be pebbled from this placement. Since we consider a regular matrix product C = AB, all
Ci,j elements are obtained as inner product (or dot product) of the inputs: all products Ai,kBk,j

are performed, and then summed through addition trees (which is a binary tree). Note inputs are
shared for several products, while addition trees are not shared.

We consider that among the vertices already pebbled initially, r are nodes of addition tree
(either product or addition) and S − r are inputs (no output are pebbles to maximize the span).
Let p be the number of products that can be pebbled from the S − r inputs (we will bound it
below). After all products are performed (it can be done in a first step without loss of generality),
we end up in p+r nodes in several addition trees. Thanks to the previous lemma, at most p+r− t
new vertices can be pebbled when t trees are used, which is at most p+ r − 1. Thus, the span is
bounded by ρ(S,G) ≤ 2p+ r − 1 (p products and p+ r − 1 additions).

We now concentrate on bounding p. We consider matrices A′ and B′ whose (i, j) entry is 1
when the corresponding input in A or B is initially pebbled, and 0 otherwise. Then we consider
the product C ′ = A′B′. Ci,j is equal to the number of products that can be performed from the
initial position of the pebbles that will contribute to the Ci,j element. Thus, p =

∑
i,j C

′
i,j .

Let a (resp. b) be the number of 1 in A′ (resp. B′), such that a+ b = S − r and let α be any
integer smaller than N . There are at most a/α rows of A′ with at least α ones (“dense” rows).
The maximum number of non-null products that can be performed using these rows is ab/α, since
each (full) row can contribute to at most b products. We now consider the other rows of matrix
A′ (or A). Given the limited number of pebbles, at most S final elements of C can be produced.
For the “sparse” part of the matrix A, this corresponds to at most αS products. In total, this
gives p ≤ ab/α + αS, which gives p ≤ 2

√
abS for α =

√
ab/S. This upper bound is maximized

when the S− r pebbles are balanced among A and B, that is, when with a = b = (S− r)/2 which
gives p ≤ (S − r)

√
S. The span is then bounded by ρ(S,G) ≤ 2(S − r)

√
S + r − 1 ≤ S

√
S.

Hence, the I/O time for the matrix product is bounded by:

TI/O = Θ

(
N3

√
S

)
Note that these results may be extended to deeper memory hierarchy, using more pebble colors

(see [2]).

Material used for this course and further documentation

Refer to chapter 11 (“Memory-Hierarchy Tradeoffs”) of the book “Models of Computation” by J.
Savage [2] for more information on the red-blue pebble game.

3

References

[1] J.-W. Hong and H.T. Kung. I/O complexity: The red-blue pebble game. In STOC’81: Pro-
ceedings of the 13th ACM symposium on Theory of Computing, pages 326–333. ACM Press,
1981.

[2] John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley,
1998.

4

	Red-Blue pebble game for data transfer minimization
	Definition and examples
	The Hong-Kung Lower-Bound method

