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Abstract

Technology trends will cause data movement to account for the
majority of energy expenditure and execution time on emerging
computers. Therefore, computational complexity will no longer
be a sufficient metric for comparing algorithms, and a fundamen-
tal characterization of data access complexity will be increasingly
important. The problem of developing lower bounds for data ac-
cess complexity has been modeled using the formalism of Hong &
Kung’s red/blue pebble game for computational directed acyclic
graphs (CDAGs). However, previously developed approaches to
lower bounds analysis for the red/blue pebble game are very lim-
ited in effectiveness when applied to CDAGs of real programs, with
computations comprised of multiple sub-computations with differ-
ing DAG structure. We address this problem by developing an ap-
proach for effectively composing lower bounds based on graph de-
composition. We also develop a static analysis algorithm to derive
the asymptotic data-access lower bounds of programs, as a function
of the problem size and cache size.

Categories and Subject Descriptors F.2 [Analysis of Algorithms
and Problem Complexity]: General; D.2.8 [Software]: Metrics—
Complexity measures

General Terms Algorithms, Theory

Keywords Data access complexity; I/O lower bounds; Red-blue
pebble game; Static analysis

1. Introduction

Advances in technology over the last few decades have yielded sig-
nificantly different rates of improvement in the computational per-
formance of processors relative to the speed of memory access. Be-
cause of the significant mismatch between computational latency
and throughput when compared to main memory latency and band-
width, the use of hierarchical memory systems and the exploita-
tion of significant data reuse in the faster (i.e., higher) levels of the
memory hierarchy is critical for high performance. With future sys-
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tems, the cost of data movement through the memory hierarchy is
expected to become even more dominant relative to the cost of per-
forming arithmetic operations [6, 17, 32], both in terms of time and
energy. It is therefore of critical importance to limit the volume of
data movement to/from memory by enhancing data reuse in reg-
isters and higher levels of the cache. Thus the characterization of
the inherent data access complexity of computations is extremely
important.

for(i=1;i<N-1;i++)

for(j=1;j<N-1;j++)

A[i,j]=A[i-1,j]+A[i,j-1];

(a) Untiled code

for(it=1;it<N-1;it+=T)

for(jt=1;jt<N-1;jt+=T)

for(i=it;i<min(it+T,N-1);i++)

for(j=jt;j<min(jt+T,N-1);j++)

A[i,j]=A[i-1,j]+A[i,j-1];

(b) Equivalent tiled code

(c) CDAG

Figure 1: Single-sweep two-point Gauss-Seidel code

Let us consider the code shown in Fig. 1(a). Its computational
complexity can be simply stated as (N −2)2 arithmetic operations.
Fig. 1(b) shows a functionally equivalent form of the same compu-
tation, after a tiling transformation. The tiled form too has exactly
the same computational complexity of (N − 2)2 arithmetic opera-
tions. Next, let us consider the data access cost for execution of
these two code forms on a processor with a single level of cache.
If the problem size N is larger than cache capacity, the number of
cache misses would be higher for the untiled version (Fig. 1(a))
than the tiled version (Fig. 1(b)). But if the cache size were suffi-
ciently large, the tiled version would not offer any benefits in re-
ducing cache misses.

Thus, unlike the computational complexity of an algorithm,
which stays unchanged for different valid orders of execution of its
operations and also independent of machine parameters like cache
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size, the data access cost depends both on the cache capacity and
the order of execution of the operations of the algorithm.

A fundamental question therefore is: Given a computation and
the amount of storage at different levels of the cache/memory hi-
erarchy, what is the minimum possible number of data transfers
at the different levels, among all valid schedules that perform the
operations?

In order to model the range of valid scheduling orders for the
operations of an algorithm, it is common to use the abstraction
of the computational directed acyclic graph (CDAG), with a ver-
tex for each instance of each computational operation, and edges
from producer instances to consumer instances. Fig. 1(c) shows the
CDAG for the codes in Fig. 1(a) and Fig. 1(b), for N=6; although
the relative order of operations is different between the tiled and
untiled versions, the set of computation instances and the producer-
consumer relationships for the flow of data are exactly the same
(special “input” vertices in the CDAG represent values of elements
of A that are read before they are written in the nested loop).

While in general it is intractable to precisely answer the above
fundamental question on the absolute minimum number of data
transfers between main memory and caches/registers among all
valid execution schedules of a CDAG, it is feasible to develop lower
bounds on the optimal number of data transfers.

An approach to developing a lower bound on the minimal data
movement for a computation in a two-level memory hierarchy was
addressed in the seminal work of Hong & Kung by using the model
of the red/blue pebble game on a computational directed acyclic
graph (CDAG) [20]. While the approach has been used to develop
I/O lower bounds for a small number of homogeneous computa-
tional kernels, as elaborated later, it poses challenges for effective
analysis of full applications that are comprised of a number of parts
with differing CDAG structure.

In this paper, we address the problem of analysis of affine
loop programs to develop lower bounds on their data movement
complexity. The work presented in this paper makes the following
contributions:
• Enabling composition in analysis of data access lower

bounds: It adapts the Hong & Kung pebble game model on
CDAGs and the associated model of S-partitioning under a
restriction that disallows recomputation, thereby enabling ef-
fective composition of I/O lower bounds for composite CDAGs
from lower bounds for component CDAGs.

• Static analysis of programs for lower bounds characteriza-
tion: It develops an approach for asymptotic parametric anal-
ysis of data-access lower bounds for arbitrary affine loop pro-
grams, as a function of cache size and problem size. This is done
by analyzing linearly independent families of non-intersecting
dependence chains.

2. Background

2.1 Computational Model

We are interested in modeling the inherent data access complexity
of a computation, defined as the minimum number of data elements
to be moved between local memory (with limited capacity but fast
access by the processor) and main memory (much slower access but
unlimited capacity) among all valid execution orders for the oper-
ations making up the computation. While the key developments in
this paper can be naturally extended to address multi-level mem-
ory hierarchies and parallel execution, using an approach like the
MMHG (Multiprocessor Memory Hierarchy Game) model of Sav-
age & Zubair [29], we restrict the treatment in this paper to the case
of only two levels of memory hierarchy and sequential execution.

The model of computation we use is a computational directed
acyclic graph (CDAG), where computational operations are repre-
sented as graph vertices and the flow of values between operations
is captured by graph edges. Fig. 2 shows an example of a CDAG

corresponding to a simple loop program. Two important character-
istics of this abstract form of representing a computation are that
(1) there is no specification of a particular order of execution of
the operations: although the program executes the operations in a
specific sequential order, the CDAG abstracts the schedule of op-
erations by only specifying partial ordering constraints as edges in
the graph; (2) there is no association of memory locations with the
source operands or result of any operation. (labels in Fig. 2 are
only shown for aiding explanation; they are not part of the formal
description of a CDAG).

for (i = 1; i < 4; ++i)

S += A[i-1] + A[i];

A[0] A[1] A[2] A[3]S

Figure 2: Example of a CDAG. Input vertices are represented in
black, output vertices in grey.

We use the notation of Bilardi & Peserico [7] to formally describe
the CDAG model used by Hong & Kung:

DEFINITION 1 (CDAG-HK). A computational directed acyclic
graph (CDAG) is a 4-tuple C = (I,V,E,O) of finite sets such that:
(1) I ⊂ V is the input set and all its vertices have no incoming
edges; (2) E ⊆ V ×V is the set of edges; (3) G = (V,E) is a di-
rected acyclic graph; (4) V \ I is called the operation set and all its
vertices have one or more incoming edges; (5) O ⊆V is called the
output set.

2.2 The Red-Blue Pebble Game

Hong & Kung used this computational model in their seminal work
[20]. The inherent I/O complexity of a CDAG is the minimal num-
ber of I/O operations needed while optimally playing the Red-Blue
pebble game. This game uses two kinds of pebbles: a fixed num-
ber of red pebbles that represent the small fast local memory (could
represent cache, registers, etc.), and an arbitrarily large number of
blue pebbles that represent the large slow main memory.

DEFINITION 2 (Red-Blue pebble game [20]). Let C = (I,V,E,O)
be a CDAG such that any vertex with no incoming (resp. outgoing)
edge is an element of I (resp. O). Given S red pebbles and an
arbitrary number of blue pebbles, with an initial blue pebble on
each input vertex, a complete calculation is any sequence of steps
using the following rules that results in a final configuration with
blue pebbles on all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has a
blue pebble (load from slow to fast memory),

R2 (Output) A blue pebble may be placed on any vertex that has
a red pebble (store from fast to slow memory),

R3 (Compute) If all immediate predecessors of a vertex v ∈ V \ I

have red pebbles, a red pebble may be placed on (or moved to) 1

v (execution or “firing” of operation),

1 The original red-blue pebble game in [20] does not allow moving/sliding
a red pebble from a predecessor vertex to a successor; we chose to allow
it since it reflects real instruction set architectures. Others [27] have also
considered a similar modification. But all our proofs hold for both the
variants.
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Figure 3: Example of schedule for a complete calculation on
CDAG in Fig. 2. The vertex numbers represent the order of exe-
cution.

R4 (Delete) A red pebble may be removed from any vertex (reuse
storage).

The number of I/O operations for any complete calculation is the
total number of moves using rules R1 or R2, i.e., the total number of
data movements between the fast and slow memories. The inherent
I/O complexity of a CDAG is the smallest number of such I/O
operations that can be achieved, among all complete calculations
for that CDAG. An optimal calculation is a complete calculation
achieving the minimum number of I/O operations.

Fig. 3 shows an example schedule for the CDAG in Fig. 2. Given
S red pebbles and unlimited blue pebbles, goal of the game is to
begin with blue pebbles on all input vertices, and finish with blue
pebbles on all output vertices by following the rules in Definition 2
without using more than S red pebbles. Considering the case with
three red pebbles (S = 3), one possible complete calculation for the
CDAG in Fig. 3 is: {R12, R13, R36, R42, R11, R39, R41, R46, R14,
R37, R43, R310, R49, R47, R15, R38, R44, R45, R311, R211}. The
I/O cost of this complete calculation is 6 (which corresponds to
the number of moves using rules R1 and R2). A different complete
calculation for the same CDAG with I/O cost of 12 is given by:
{R12, R13, R36, R42, R14, R26, R37, R43, R15, R27, R38, R28, R11,
R16, R39, R41, R46, R17, R310, R47, R49, R18, R311, R211}. The
I/O complexity of the CDAG is the minimum I/O cost of all such
complete calculations.

2.3 Lower Bounds on I/O Complexity via S-Partitioning

While the red-blue pebble game provides an operational definition
for the I/O complexity problem, it is generally not feasible to deter-
mine an optimal calculation on a CDAG. Hong & Kung developed
a novel approach for deriving I/O lower bounds for CDAGs by re-
lating the red-blue pebble game to a graph partitioning problem
defined as follows.

DEFINITION 3 (Hong & Kung S-partitioning of a CDAG [20]).
Let C = (I,V,E,O) be a CDAG. An S-partitioning of C is a col-
lection of h subsets of V such that:

P1 ∀i 6= j, Vi ∩V j = /0, and
⋃h

i=1 Vi =V

P2 there is no cyclic dependence between subsets

P3 ∀i, ∃D ∈ Dom(Vi) such that |D| ≤ S

P4 ∀i, |Min(Vi)| ≤ S

where a dominator set of Vi, D ∈ Dom(Vi) is a set of vertices such
that any path from I to a vertex in Vi contains some vertex in D; the
minimum set of Vi, Min(Vi) is the set of vertices in Vi that have all
its successors outside of Vi; and for a set A, |A| is the cardinality of
the set A.

Hong & Kung showed a construction for a 2S-partition of a
CDAG, corresponding to any complete calculation on that CDAG
using S red pebbles, with a tight relationship between the number
of vertex sets h in the 2S-partition and the number of I/O moves
q in the complete calculation, as shown in Theorem 1. The tight

association between any complete calculation and a corresponding
2S-partition provides the key Lemma 1 that serves as the basis
for Hong & Kung’s approach for deriving lower bounds on the
I/O complexity of CDAGs typically by reasoning on the maximal
number of vertices that could belong to any vertex-set in a valid
2S-partition.

THEOREM 1 (Pebble game, I/O and 2S-partition [20]). Any com-
plete calculation of the red-blue pebble game on a CDAG using at
most S red pebbles is associated with a 2S-partition of the CDAG
such that S h ≥ q ≥ S (h−1), where q is the number of I/O moves
in the complete calculation and h is the number of subsets in the
2S-partition.

LEMMA 1 (Lower bound on I/O [20]). Let H be the minimal num-
ber of vertex sets for any valid 2S-partition of a given CDAG (such
that any vertex with no incoming – resp. outgoing – edge is an
element of I – resp. O). Then the minimal number Q of I/O oper-
ations for any complete calculation on the CDAG is bounded by:
Q ≥ S× (H−1)

This key lemma has been useful in proving I/O lower bounds for
several CDAGs [20] by reasoning about the maximal number of
vertices that could belong to any vertex-set in a valid 2S-partition.

3. Challenges in Composing I/O Lower Bounds

from Partitioned CDAGs

Application codes are typically constructed from a number of sub-
computations using the fundamental composition mechanisms of
sequencing, iteration and recursion. As explained in Sec. 1, in
contrast to analysis of computational complexity of such compos-
ite application codes, I/O complexity analysis poses challenges.
With computational complexity, the operation counts of sub-
computations can simply be added. However, using the red/blue
pebble game model of Hong & Kung, as elaborated below, it is
problematic to analyze the I/O complexity of sub-computations
and simply combine them by addition. In the next section, we de-
velop an approach to overcome the problem.

3.1 The Decomposition Problem

The Hong & Kung red/blue pebble game model places blue pebbles
on all CDAG vertices without predecessors, since such vertices
are considered to hold inputs to the computation, and therefore
assumed to start off in slow memory. Similarly, all vertices without
successors are considered to be outputs of the computation, and
must have blue pebbles at the end of a complete calculation. If the
vertices of a CDAG corresponding to a composite application are
disjointly partitioned into sub-DAGs, the analysis of each sub-DAG
will require the initial placement of blue pebbles on all vertices
without predecessors in the sub-DAG, and final placement of blue
pebbles on all vertices without successors in the sub-DAG. So an
optimal calculation for each sub-DAG will require at least one load
(R1) operation for each input and a store (R2) operation for each
output. But in a complete calculation on the full composite CDAG,
clearly it may be possible to pass values in a red pebble between
vertices in different sub-DAGs, so that the I/O complexity could be
less than the sum of the I/O costs for optimal calculations on each
sub-DAG. This is illustrated by the following example.

Fig. 4(b) shows the CDAG for the computation in Fig. 4(a).
Fig. 4(c) shows the CDAG partitioned into two sub-DAGs, where
the first sub-DAG contains vertices of S1 and S2 (and the input
vertices corresponding to a[i] and b[i]), and the second sub-
DAG contains vertices of S3 and S4. Considering the full CDAG,
with just two red pebbles, it can be computed at an I/O cost of 12,
incurring I/O just for the initial loads of inputs a[i] and b[i], and
the final stores for outputs f[i]. In contrast, with the partitioned
sub-DAGs, the first sub-DAG will incur additional output stores
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for(i = 0; i < 4; i++)

c[i] = a[i] + b[i]; // S1

for(i = 0; i < 4; i++)

d[i] = c[i] * c[i]; // S2

for(i = 0; i < 4; i++)

e[i] = c[i] + d[i]; // S3

for(i = 0; i < 4; i++)

f[i] = d[i] * e[i]; // S4

(a) Original code

a[0] b[0] a[1] b[1] a[2] b[2] a[3] b[3]

c[i]

d[i]

e[i]

f[i]

(b) Full CDAG

a[0] b[0] a[1] b[1] a[2] b[2] a[3] b[3]

c[i]

d[i]

e[i]

f[i]

sub-CDAG #1 
with S1 and S2 only

sub-CDAG #2 
with S3 and S4 only

(c) CDAG partitioning

Figure 4: Example illustrating limitation of Hong & Kung model regarding composition of lower bounds from sub-components of CDAG

for the successor-free vertices S2[i], and the second sub-DAG will
incur input loads for predecessor-free vertices S3[i]. Thus the sum
of optimal red/blue pebble game I/O costs for the two sub-DAGs
amounts to 20 moves, i.e., it exceeds the optimal I/O cost for the
full CDAG.

The above example illustrates a fundamental problem with the
Hong & Kung red/blue pebble game model: a simple combining
of I/O lower bounds for sub-DAGs of a CDAG cannot be used
to generate an I/O lower bound for the composite CDAG. But
the ability to perform complexity analysis by combining analyses
of component sub-computations is important for the analysis of
real applications. Such decomposition of data-access complexity
analysis can be enabled by making a change to the Hong & Kung
pebble game model, as discussed next.

3.2 Flexible Input/Output Vertex Labeling to Enable
Composition of Lower Bounds

With the Hong & Kung model, all vertices without predecessors
must be input vertices, and all vertices without successors must be
output vertices. By relaxing this constraint, we show that composi-
tion of lower bounds from sub-CDAGs is valid. With such a mod-
ification, vertices without predecessors will not be required to be
input vertices, and such predecessor-free non-input vertices do not
have an initial blue pebble placed on them. However, such vertices
are allowed to fire using rule R3 at any time, since they do not have
any predecessor nodes without red pebbles. Vertices without suc-
cessors are similarly not required to be output vertices, and those
not designated as outputs do not need a blue pebble on them at the
end of the game. However, all compute vertices (i.e., vertices in
V \ I) in CDAG are required to have fired for any complete calcu-
lation.
Using the modified model of the red/blue pebble game with flex-
ible input/output vertex labeling, it is feasible to compose I/O
lower bounds by adding lower bounds for disjointly partitioned
sub-CDAGs of a CDAG. The following theorem formalizes it.

THEOREM 2 (Decomposition). Let C = (I,V,E,O) be a CDAG.
Let {V1,V2, . . . ,Vp} be an arbitrary (not necessarily acyclic)

disjoint partitioning of V (
⋂p

i=1 Vi = /0 and
⋃p

i=1 Vi = V ) and
C1,C2, . . . ,Cp be the induced partitioning of C (Ii = I ∩Vi, Ei =
E ∩Vi ×Vi, Oi = O∩Vi). If Q is the I/O complexity for C and Qi is

the I/O complexity for Ci, then ∑
p
i=1 Qi ≤ Q. In particular, if Li is

the I/O lower bound for Ci, then ∑
p
i=1 Li is an I/O lower bound for

C.

Proof. Consider an optimal calculation P for C, with cost Q. We
define the cost of P restricted to Vi, denoted as Q|Vi

, as the number

of R1 or R2 transitions in P that involve a vertex of Vi. Clearly
Q = ∑

p
i=1 Q|Vi

. We will show that we can build from P , a valid
complete calculation P|Vi

for Ci, of cost Q|Vi
. This will prove that

Qi ≤ Q|Vi
, and thus ∑

p
i=1 Qi ≤ ∑

p
i=1 Q|Vi

= Q. P|Vi
is built from P

as follows: (1) for any transition in P that involves a vertex v ∈Vi,

apply this transition in P|Vi
; (2) delete all other transitions in P .

Conditions for transitions R1, R2, and R4 are trivially satisfied.
Whenever a transition R3 on a vertex v is performed in P , all
the predecessors of v must have a red pebble on them. Since all
transitions of P on the vertices of Vi are maintained in P|Vi

, when

v is executed in P|Vi
, all its predecessor vertices must have red

pebbles, enabling transition R3. �

With this modified model of the red/blue pebble game that
permits predecessor-free vertices to be non-input vertices, complex
CDAGs can be decomposed and lower bounds for the composite
CDAG can be obtained by composition of the bounds from the sub-
CDAGs. However, sub-CDAGs that have no “true” input and output
vertices in them will have trivial I/O lower bounds of zero – the
entire set of vertices in the sub-CDAG can fit in a single vertex set
for a valid 2S-partition, for any value of S, since conditions P1-P4
are trivially satisfied.

In the next section, we present a solution to the problem. The
main idea is to impose restrictions on the red/blue pebble game
to disallow re-pebbling or multiple firings of any vertex using rule
R3. We show that by imposing such a restriction, we can develop an
input/output tagging strategy for sub-CDAGs that enables stronger
lower bounds to be generated by CDAG decomposition.

4. S-Partitioning when Re-Pebbling is Prohibited

With the pebble game model of Hong & Kung, the compute rule
R3 could be applied multiple times in a complete calculation. This
is useful in modeling algorithms that perform re-computation of
multiply used values rather than incur the overhead of storing and
loading it. However, the majority of practically used algorithms do
not perform any redundant recomputation. Hence several efforts
[1, 3, 7, 10, 12, 21, 24–28, 30, 31] have modeled I/O complexity
under a more restrictive model that disallows recomputation, pri-
marily because it eases or enables analysis with some lower bound-
ing techniques. In this section, we consider the issue of compos-
ing bounds via CDAG decomposition under a model that disallows
recomputation, i.e., prohibits re-pebbling. We develop a modified
definition of S-partition that is adapted to enable I/O lower bounds
to be developed for the restricted red/blue pebble game. This pro-
vides two significant benefits:
1. It enables non-trivial I/O lower bound contributions to be ac-

cumulated from sub-CDAGs of a CDAG, even when the sub-
CDAGs do not have any true inputs. This is achieved via in-
put/output tagging/untagging strategies we develop in this sec-
tion.

2. It enables static analysis of programs to develop parametric
expressions for asymptotic lower bounds as a function of cache
and problem size parameters. This is described in the following
sections.
A pebble game model that does not allow recomputation can

be formalized by changing rule R3 of the red/blue pebble game
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to R3-NR (NR denotes No-Recomputation or No-Repebbling) and
the definition of a complete calculation as follows:

DEFINITION 4 (Recompute-restricted Red-Blue pebble game). Let
C = (I,V,E,O) be a CDAG. Given S red pebbles and arbitrary
number of blue pebbles, with an initial blue pebble on each input
vertex, a complete calculation is any sequence of steps using the
following rules that causes each vertex in V \ I to be fired once
using Rule R3-NR, and results in a final configuration with blue
pebbles on all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has a
blue pebble (load from slow to fast memory),

R2 (Output) A blue pebble may be placed on any vertex that has
a red pebble (store from fast to slow memory),

R3-NR (Compute) If all immediate predecessors of a vertex v
∈ V \ I have red pebbles on them, and a red pebble has not
previously been placed on v, a red pebble may be placed on v.

R4 (Delete) A red pebble may be removed from any vertex (reuse
storage).

We next present an adaptation of Hong and Kung’s S-partition
that will enable us to develop larger lower bounds for the restricted
pebble game model that prohibits repebbling.

DEFINITION 5 (SNR-partitioning of CDAG). Given a CDAG C, an

SNR-partitioning of C is a collection of h subsets of V \ I such that:

P1 ∀i 6= j, Vi ∩V j = /0, and
⋃h

i=1 Vi =V \ I

P2 there is no cyclic dependence between subsets

P3 ∀i, |In(Vi)| ≤ S

P4 ∀i, |Out(Vi)| ≤ S

where the input set of Vi, In(Vi) is the set of vertices of V \Vi that
have at least one successor in Vi; the output set of Vi, Out(Vi) is the
set of vertices of Vi that are also part of the output set O or that
have at least one successor outside of Vi.

THEOREM 3 (Restricted pebble game, I/O and 2SNR-partition).
Any complete calculation of the red-blue pebble game, without
repebbling, on a CDAG using at most S red pebbles is associ-

ated with a 2SNR-partition of the CDAG such that S × h ≥ q ≥
S× (h−1), where q is the number of I/O moves in the game and h

is the number of subsets in the 2SNR-partition.

Proof. Consider a complete calculation P that corresponds to some
scheduling (i.e., execution) of the vertices of the graph G = (V,E)
that follows the rules R1–R4 of the restricted pebble game. We view
this calculation as a string that has recorded all the transitions (ap-
plications of pebble game rules). Suppose that P contains exactly
q transitions of type R1 or R2. Let (P1,P2, . . . ,Ph) correspond to
a partitioning of the transitions of P into h = ⌈q/S⌉ consecutive
sub-sequences such that each Pi ∈ (P1, . . . ,Ph−1) contains exactly
S transitions of type R1 or R2.

The CDAG contains no node isolated from the output nodes,
and any vertex of V \ I is computed exactly once in P . Let Vi be the
set of vertices computed (transition R3-NR) in the sub-calculation
Pi. Property P1 is trivially fulfilled.

As transition R3-NR on a vertex v is possible only if its prede-
cessor vertices have red pebbles on them, those predecessors are
necessarily executed in some P j, j ≤ i and are thus part of a V j,
j ≤ i. This proves property P2.

To prove P3, for a given Vi we consider two sets: VR is the set
of vertices that had a red pebble on them just before the execution
of Pi; VBR is the set of vertices on which a red pebble is placed
according to rule R1 (input) during Pi. We have, In(Vi)⊆VR ∪VBR.
Thus |In(Vi)| ≤ |VR|+ |VBR|. As there only S red pebbles, |VR| ≤ S.
Also by construction of Pi, |VRB| ≤ S. This proves that |In(Vi)| ≤ 2S
(property P3).

Property P4 is proved in a similar way: V ′
R is the set of vertices

that have a red pebble on them just after the execution of Pi;
V ′

RB is the set of vertices of Vi on which a blue pebble is placed
during Pi according to rule R2. We have that Out(Vi) ⊆ V ′

R ∪V ′
RB.

Thus |Out(Vi)| ≤ |V ′
R|+ |V ′

RB|. As there are only S red pebbles,
|V ′

R| ≤ S. Also by construction of Pi, |V ′
RB| ≤ S. This proves that

|Out(Vi)| ≤ 2S (property P4). �

LEMMA 2 (I/O lower bound for restricted pebble game). Let HNR

be the minimal number of vertex sets for any valid 2SNR-partition
of a given CDAG. Then the minimal number Q of I/O operations for
any complete calculation on the CDAG, without any repebbling, is

bounded by: Q ≥ S× (HNR −1)

The above theorem and lemma establish the relationship be-
tween complete calculations of the restricted pebble game and
2S-NR partitions. The critical difference between the standard S-
partition of Hong & Kung and the S-NR partition is the validity
condition pertaining to incoming edges into a vertex set in the par-
tition: for the former the size of dominator sets is constrained to
be no more than S, while for the latter the number of external ver-
tices with edges into the vertex set is constrained by S. When a
CDAG is decomposed into sub-CDAGs, very often some of the
sub-CDAGs get isolated from the CDAG’s input and output ver-
tices. This will lead to trivial (i.e., zero) lower bounds for such
component sub-CDAGs. For the restricted pebble game, below we
develop an approach to obtain tighter lower bounds for component
sub-CDAGs that have become isolated from inputs and outputs of
the full CDAG. The key idea is to allow any vertex without prede-
cessors (resp. successors) to simulate an input (resp. output) vertex
by specially tagging it so, and then adjusting the obtained lower
bound to account for a one-time access cost for loading (resp. stor-
ing) such a tagged input (resp. output). The vertices of a CDAG
remain unchanged, but the labeling (tag) of some vertices as input-
s/outputs in the CDAG is changed.

THEOREM 4 (Input/Output (Un)Tagging – Restricted pebble game).
Let C and C′ be two CDAGs of the same DAG G = (V,E):
C = (I,V,E,O), C′ = (I ∪ dI,V,E,O ∪ dO), where, dI ⊆ V and
dO ⊆V . If Q is the I/O complexity for C and Q′ is the I/O complex-
ity for C′ then, Q can be bounded by Q′ as follows (tagging):

Q′−|dI|− |dO| ≤ Q (1)

Reciprocally, Q′ can be bounded by Q as follows (untagging):

Q ≤ Q′ (2)

Proof. Consider an optimal calculation P for C, of cost Q. We will
build a valid complete calculation P

′ for C′, of cost no more than
Q+ |dI|+ |dO|. This will prove that Q′ ≤ Q+ |dI|+ |dO|. We build
P
′ from P as follows: (1) for any input vertex v ∈ dI, the (only)

transition R3 involving v in P is replaced in P
′ by a transition R1;

(2) for any output vertex v ∈ dO, the (only) transition R3 involving
v in P is complemented by an R2 transition; (3) any other transition
in P is reported as is in P

′.
Consider now an optimal calculation P

′ for C′, of cost Q′. We
will build a valid complete calculation P for C, of cost no more than
Q′. This will prove that Q ≤ Q′. We build P from P

′ as follows: (1)
for any input vertex v ∈ dI, the first transition R1 involving v in P

′
is replaced in P by a transition R3 followed by a transition R2; (2)
any other transition in P

′ is reported as is in P . �

We note that such a construction is only possible for the re-
stricted pebble game where repebbling is disallowed. It enables
tighter lower bounds to be developed via CDAG decomposition.
In the next section, we use S-NR partitioning and the untagging
theorem in developing a static analysis approach to characterizing
data-access lower bounds of loop programs.
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5. Parametric Lower Bounds via Static Analysis

of Programs

In this section, we develop a static analysis approach to derive
asymptotic parametric I/O lower bounds as a function of cache
size and problem size, for affine computations. Affine computations
can be modeled using (union of) convex sets of integer points, and
(union of) relations between these sets. The motivation is twofold.
First, there exists an important class of affine computations whose
control and data flow can be modeled exactly at compile-time using
only affine forms of the loop iterators surrounding the computation
statements, and program parameters (constants whose values are
unknown at compile-time). Many dense linear algebra computa-
tions, image processing algorithms, finite difference methods, etc.,
belong to this class of programs [18]. Second, there exist readily
available tools to perform complex geometric operations on such
sets and relations. We use the Integer Set Library (ISL) [36] for our
analysis.

In Subsection 5.1, we provide a description of the program
representation for affine programs. In Subsection 5.2, we detail the
geometric reasoning that is the basis for the developed I/O lower
bounds approach. Subsection 5.3 describes the I/O lower bound
computation using examples.

5.1 Background and Program Representation

In the following, we use ISL terminology [36] and syntax to de-
scribe sets and relations. We now recall some key concepts to rep-
resent program features.

Iteration domain A computation vertex in a CDAG represents
a dynamic instance of some operation in the input program. For
example, given a statement S1 : A[i] += B[i+1] surrounded by
one loop for(i = 0; i < n; ++i), the operation += will be ex-
ecuted n times, and each such dynamic instance of the statement
corresponds to a vertex in the CDAG. For affine programs, this
set of dynamic instances can be compactly represented as a (union
of) Z-polyhedra, i.e., a set of integer points bounded by affine in-
equalities intersected with an affine integer lattice [19]. Using ISL
notation, the iteration domain of statement S1, DS1, is denoted:
[n]->{S1[i]:0<=i<n}. The left-hand side of ->, [n] in the ex-
ample, is the list of all parameters needed to define the set. S1[i]
models a set with one dimension ([i]) named i, and the set space
is named S1. Presburger formulae are used on the right-hand side
of : to model the points belonging to the set. In ISL, these sets are
disjunctions of conjunctions of Presburger formulae, thereby mod-
eling unions of convex and strided integer sets. The dimension of
a set S is denoted as dim(S). dim(S1) = 1 in the example above.
The cardinality of set S is denoted as |S|. |S1|= n for the example.
Standard operations on sets, such as union, intersection, projection
along certain dimensions, are available. In addition, key operations
for analysis, such as building counting polynomials for the set (i.e.,
polynomials of the program parameters that model how many inte-
ger points are contained in a set; n in our example) [4], and para-
metric (integer) linear programming [16] are possible on such sets.
These operations are available in ISL.

We remark that although our analysis relies on integer sets and
their associated operations, it is not limited to programs that can
be exactly captured using such sets (e.g., purely affine programs).
Since we are interested in computing lower bounds on I/O, an
under-approximation of the statement domain and/or the set of de-
pendences is acceptable, since an I/O lower bound for the approxi-
mated system is a valid lower bound for the actual system. For in-
stance, if the iteration domain DS of a statement S is not described
exactly using Presburger formulae, we can under-approximate this
set by taking the largest convex polyhedron DS ⊆ DS. Such a poly-
hedron can be obtained, for instance, by first computing the convex
hull DS ⊇ DS and then shifting its faces until they are strictly in-
cluded in DS. We also remark that such sets can be extracted from

an arbitrary CDAG (again using approximations) by means of trace
analysis, and especially trace compression techniques for vertices
modeling the same computation [22].

Relations In the graph G = (V,E) of a CDAG C = (I,V,E,O),
vertices are connected by producer-consumer edges capturing the
data flow between operations. Similar to iteration domains, affine
forms are used to model the relations between the points in two
sets. Such relations capture which data is accessed by a dynamic
instance of a statement, as in classical data-flow analysis. In the
example above, elements of array B are read in statement S1,
and the relation R1 describing this access is: [n]->{S1[i] ->

B[i+1] : 0<=i<n}. This relation models a single edge between
each element of set S1 and an element of set B, described by the
relationship i → i + 1. Several operations on relations, such as
domain(R), which computes the domain (e.g., input set) of the re-
lation (domain(R1) = [n] -> {[i] : 0<=i<n}), image(R) com-
puting the image (e.g., range, or output set) of R (image(R1) = [n]

-> {[i] : 1<=i<n+1}), the composition of two relations R1◦R2,
their union ∪, intersection ∩, difference \ and the transitive closure
R+ of a relation, are available. All these operations are supported
by ISL.

Relations can also be used to directly capture the connections
between computation vertices. For instance, given two statements
S1 and S2 with a producer-consumer relationship, the edges con-
necting each dynamic instance of S1 and S2 in a CDAG can
be expressed using relations. For example, [n]->{S1[i,j] ->

S2[i,j-1,k] : ...} models a relation between a 2D statement
and a 3D statement. Each point in S1 is connected to several points
in S2 along the k-dimension.

We note that in a similar manner to iteration domains for ver-
tices, relations can also be extracted from non-affine programs via
convex under-approximation or from the CDAG via trace analysis.
Again, care must be taken to always properly under-approximate
the relations capturing data dependences: it is safe to ignore a de-
pendence (it can only lead to under-approximation of the data flow
and therefore the I/O requirement), and therefore we only consider
must-dependences in our analysis framework.

5.2 Geometric Reasoning for I/O Lower Bounds by
2S-partitioning

Given a CDAG, Lemma 2 establishes a relation between a lower
bound on its data movement complexity for execution with S fast
storage elements and the minimal possible number of vertex sets
among all valid 2SNR-partitions of the CDAG. The minimum pos-
sible number of vertex sets in a 2SNR-partition is inversely related
to the largest possible size of any vertex set for a valid 2SNR-
partition. A geometric reasoning based on the Loomis-Whitney in-
equality [23] and its generalization [5, 34] has been used to estab-
lish I/O lower bounds for a number of linear algebra algorithms
[1, 2, 11, 21]. A novel approach to determining I/O lower bounds
for affine computations in perfectly nested loops has been recently
developed [11] using similar geometric reasoning. The approach
developed in this paper is inspired by that work and also uses a
similar geometric reasoning, but improves on the prior work in two
significant ways:
1. Generality: It can be applied to a broader class of computations,

handling multiple statements and imperfectly nested loops.
2. Tighter Bounds: For computations with loop-carried depen-

dences that are not oriented perfectly along one of the iteration
space dimensions, it provides tighter I/O lower bounds, as illus-
trated by the Jacobi example in the next section.

Before presenting the details of the static analysis for lower bounds
characterization of affine computations, we use a simple example
to illustrate the geometric approach based on the Loomis-Whitney
inequality and its generalizations that have been used to develop
I/O lower bounds for matrix-multiplication and other linear algebra
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computations. Consider the code exemplifying an N-body force
calculation in Fig. 5(a). We have a 2D iteration space with Θ(N2)
points. The net force on each of N particles from the other particles
is computed using the function f(), which uses the mass and
position of a pair of particles to compute the force between them.
The total number of input data elements for the computation is
Θ(N). If S < N, it will be necessary to bring in at least some of
the input data elements more than once from slow to fast memory.
A geometric reasoning for a lower bound on the amount of I/O
to/from fast memory proceeds as follows. Consider an arbitrary
vertex set from any valid 2SNR-partition. Let the set of points P
in the iteration space, illustrated by a cloud in Fig. 5(b), denote
the vertex set. The projections of each of the points onto the two
iteration space axes are shown. Let |Pi| and |P j| respectively denote
the number of distinct points on the i and j axes. |Pi| represents
the number of distinct elements of input arrays pos and mass

that are accessed in the computation, for references pos(i) and
mass(i). Similarly, |P j| corresponds to the number of distinct
elements accessed via the references pos(j) and mass(j). For
any vertex set from a valid 2SNR-partition, the size of the input
set cannot exceed 2S. Hence 2× |Pi| ≤ 2S and 2× |P j| ≤ 2S. For
this 2D example, the Loomis-Whitney inequality asserts that the
number of points in P cannot exceed |Pi| × |P j|. Combining the

two inequalities, we can conclude that S2 is an upper bound on the
size of the vertex set. Thus, the minimum number of vertex sets in
a valid 2S-partition, H = Ω(N2/S2). By Lemma 2, a lower bound

on I/O is (H −1)×S, i.e., Ω(N2/S).

for(i=0;i<N;i++)

for(j=0;j<N;j++)

if (i <> j) force(i)

+= f(mass(i),mass(j),pos(i),pos(j));

(a) Code for N-body force calculation

!"

!"

#" $%%%"

&!"

&#"
$
%%%"

(b) Geometric Projection

Figure 5: Illustration of Geometric Reasoning for I/O Lower
Bounds

More generally, for a d-dimensional iteration space, given some
bounds on the number of elements on some projections of P, a
bound on |P| can be derived using a powerful approach developed
by Christ et al. [11]. Christ et al. [11, Theorem 3.2] extended the
discrete case of the Brascamp-Lieb inequality [5, Theorem 2.4] to
obtain these bounds. Since our goal here is to develop asymptotic
parametric bounds, the extension of the continuous Brascamp-Lieb
inequality, stated below (in the restricted case of orthogonal pro-
jections and using the Lebesgue measure for volumes), is sufficient
for our analysis. We use the notation H ≤ R

d to denote that H is a
linear subspace of Rd .

THEOREM 5. Let φ j : R
d → R

d j be an orthogonal projection

for j ∈ {1,2, . . . ,m} such that φ j(x1, . . . ,xd) = (y1, . . . ,yd j
) where

{y1, . . . ,yd j
} ⊆ {x1, . . . ,xd}.

Then, for (s1, . . . ,sm) ∈ [0,1]m:

∀H ≤ R
d , dim(H)≤

m

∑
j=1

s j dim(φ j(H)) (3)

⇐⇒ ∀E ⊆ R
d , |E| ≤

m

∏
j=1

|φ j(E)|s j (4)

Since the linear transformations φ j are orthogonal projections,
the following Theorem enables us to limit the number of inequali-
ties of Eq. (3) required for Theorem 5 to hold. Only one inequality
per subspace Hi, defined as the linear span of the canonical vector
ei, is required (〈ei〉 represents the subspace spanned by the vector

with a non-zero only in the ith coordinate):

THEOREM 6. Let φ j : R
d → R

d j be an orthogonal projection

for j ∈ {1,2, . . . ,m} such that φ j(x1, . . . ,xd) = (y1, . . . ,yd j
) where

{y1, . . . ,yd j
} ⊆ {x1, . . . ,xd}.

Then, for (s1, . . . ,sm) ∈ [0,1]m :

∀H ≤ R
d , dim(H)≤

m

∑
j=1

s j dim(φ j(H)) (5)

⇐⇒ ∀Hi = 〈ei〉 , 1 = dim(Hi)≤
m

∑
j=1

siδi, j (6)

where, δi, j = dim(φ j(Hi))

The proof of Theorem 6 directly corresponds to the proof of [11,
Theorem 6.6] and is omitted (see also [5, Prop. 7.1]). It shows
that if s = (s1, . . . ,sm) ∈ [0,1]m are such that ∀Hi, 1 ≤ ∑m

j=1 siδi, j ,

then the volume of any measurable set E ⊆ R
d can be bounded

by Us = ∏m
j=1 |φ j(E)|s j . In order to obtain as tight an asymptotic

bound as possible, we seek s such that Us is as small as possible.
Since we have |φ j(H)| ≤ S, this corresponds to finding s j such

that ∏m
j=1 Ss j is minimized, or equivalently, S∑m

j=1 s j is minimized.

In other words, ∑m
j=1 s j has to be minimized. For this purpose, if

∀i, ∃ j, s.t., δi, j = 1, we solve:

Minimize
m

∑
j=1

s j, s.t., ∀i, 1 ≤
m

∑
j=1

s jδi, j (7)

We can instead solve the following dual problem, whose solution
gives an indication of the shape of the optimal “cube.”

Maximize
d

∑
i=1

xi, s.t., ∀ j,
d

∑
i=1

xiδi, j ≤ 1 (8)

We use an illustrative example:

for(i=0;i<N;i++)

for(j=0;j<N;j++)

for(k=0;k<N;k++)

C[i][j] = C[i][j] + A[i][k]*B[k]

Consider the following three projections (we explain how the
projection directions are obtained later in this section)

φ1 : (i, j,k)→ (i, j); φ2 : (i, j,k)→ (i,k); φ3 : (i, j,k)→ (k)

Let H1, H2 and H3 denote the three subspaces spanned by the
canonical bases of R

3. Consider, for example, the linear map
φ1. We have δ1,1 = dim(φ1(h1)) = 1 for any h1 ∈ H1, δ2,1 =
dim(φ1(h2)) = 1 for any h2 ∈ H2, and δ3,1 = dim(φ1(h3)) = 0 for
any h3 ∈ H3. Thus, we obtain the constraint x1.1+x2.1+x3.0 ≤ 1,
or x1 + x2 ≤ 1. Similarly, we obtain the remaining two constraints
for the projections φ2 and φ3.

This results in the following linear programming problem:

Maximize x1 + x2 + x3 (9)
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s.t. x1 + x2 ≤ 1; x1 + x3 ≤ 1; x3 ≤ 1

Solving Eq. (9) provides the solution (x1,x2,x3) = (0,1,1), i.e.,
x1 +x2 +x3 = 2. The solution corresponds to considering a cube of

asymptotic dimensions 1× S× S and volume O(S∑3
j=1 x j ) =O(S2)

as the largest vertex-set. This provides an I/O lower bound of
Ω(N3/S), when the problem size N is sufficiently large.

5.3 Automated I/O Lower Bound Computation

We present a static analysis algorithm for automated derivation
of expressions for parametric asymptotic I/O lower bounds for
programs. We use two illustrative examples to explain the various
steps in the algorithm before providing detailed pseudo-code for
the algorithm.

Illustrative example 1: Consider the following example of Jacobi
1D stencil computation.

Parameters: N, T

Inputs: I[N]

Outputs: A[N]

for (i=0; i<N; i++)

S1: A[i] = I[i];

for (t=1; t<T; t++)

{

for (i=1; i<N-1; i++)

S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N-1; i++)

S3: A[i] = B[i];

}

I

S1

 e1 

S2

 e2  e3  e4  e5  e6 

S3

 e7  e8  e9  e10 

Figure 6: Data-flow graph for Jacobi 1D

Fig. 6 shows the static data-flow graph GF =(VF ,EF ) for Jacobi
1D. GF contains a vertex for each statement in the code. The input
array I is also explicitly represented in GF by node I (shaded in
black in Fig. 6). Each vertex has an associated domain as shown
below:
• DI =[N]->{I[i]:0<=i<N}
• DS1 =[N]->{S1[i]:0<=i<N}
• DS2 =[T,N]->{S2[t,i]:1<=t<T and 1<=i<N-1}
• DS3 =[T,N]->{S3[t,i]:1<=t<T and 1<=i<N-1}

The edges represent the true (read-after-write) data dependences
between the statements. Each edge has an associated affine depen-
dence relation as shown below:
• Edge e1: This edge corresponds to the dependence due to copy-

ing the inputs I to array A at statement S1 and has the following
relation.
[N]->{I[i]->S1[i]:0<=i<N}

• Edges e2, e3 and e4: The use of array elements A[i-1], A[i]

and A[i+1] at statement S2 are captured by edges e2, e3 and
e4, respectively.
[T,N]->{S1[i]->S2[1,i+1]:1<=i<N-2}

[T,N]->{S1[i]->S2[1,i]:1<=i<N-1}

[T,N]->{S1[i]->S2[1,i-1]:2<=i<N-1}
• Edges e5 and e6: Multiple uses of the boundary elements
I[0] and I[N-1] by A[t][1] and A[t][N-2], respectively,
for 1<=t<T are represented by the following relations.
[T,N]->{S1[0]->S2[t,1]:1<=t<T}

[T,N]->{S1[N-1]->S2[t,N-2]:1<=t<T}
• Edge e7: The use of array B in statement S3 corresponds to edge

e7 with the following relation.
[T,N]->{S2[t,i]->S3[t,i]:1<=t<T and 1<=i<N-1}

• Edges e8, e9 and e10: The uses of array A in statement S2 from
S3 are represented by these edges with the following relations.
[T,N]->{S3[t,i]->S2[t+1,i+1]:1<=t<T-1 and 1<=i<N-2}

[T,N]->{S3[t,i]->S2[t+1,i]:1<=t<T-1 and 1<=i<N-1}

[T,N]->{S3[t,i]->S2[t+1,i-1]:1<=t<T-1 and 2<=i<N-1}

Given a path p=(e1, . . . ,el) with associated edge relations (R1, . . . ,Rl),
the relation associated with p can be computed by composing
the relations of its edges, i.e., relation(p) = Rl ◦ · · · ◦ R1. For
instance, the relation for the path (e7,e8) in the example, ob-
tained through the composition Re8 ◦Re7, is given by Rp = [T,N]

-> {S2[t,i] -> S2[t+1,i+1]}. Further, the domain and im-
age of a composition are restricted to the points for which the
composition can apply, i.e., domain(R j ◦Ri) = Ri

−1(image(Ri)∩
domain(R j)) and image(R j ◦Ri) = R j(image(Ri)∩domain(R j)).
Hence, domain(Rp) = [T,N] -> {S2[t,i] : 1<=t<T-1 and

1<=i<N-2} and image(Rp) = [T,N] -> {S2[t,i] : 2<=t<T

and 2<=i<N-1}.
Two kinds of paths, namely, injective circuit and broadcast

path, defined below, are of specific importance to the analysis.

DEFINITION 6 (Injective edge and circuit). An injective edge a is
an edge of a data-flow graph whose associated relation Ra is both

affine and injective, i.e., Ra = A.~x +~b, where A is an invertible
matrix. An injective circuit is a circuit E of a data-flow graph such
that every edge e ∈ E is an injective edge.

DEFINITION 7 (Broadcast edge and path). A broadcast edge b is
an edge of a data-flow graph whose associated relation Rb is affine
and dim(domain(Rb)) < dim(image(Rb)). A broadcast path is a
path (e1, . . . ,en) of a data-flow graph such that e1 is a broadcast
edge and ∀n

i=2ei are injective edges.

Injective circuits and broadcast paths in a data-flow graph essen-
tially indicate multiple uses of same data, and therefore are good
candidates for lower bound analysis. Hence only paths of these two
kinds are considered in the analysis. The current example of Jacobi
1D computation illustrates the use of injective circuits to derive I/O
lower bounds, while the use of broadcast paths for lower bound
analysis is explained in another example that follows.
Injective circuits: In the Jacobi example, we have three circuits
to vertex S2 through S3. The relation for each circuit is computed
by composing the relations of its edges as explained earlier. The
relations, and the dependence vectors they represent, are listed
below.
• Circuit c1 = (e7,e8):

Rc1
= [T,N] -> {S2[t,i]->S2[t+1,i+1] : 1<=t<T-1 and
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Figure 7: Original iteration domain space for Jacobi 1D. Blue
circles: Integer points of domain DS2; Black arrows: Relation Rc1

of circuit (e7,e8); Red diamonds: Frontier F1; Gray box: subset
E and corresponding vertex-set υ1; Yellow triangles: In(υ1); Black
squares: Projection of the points inside gray box along the direction
of black arrows onto the frontier.

1<=i<N-2}
~b1 = (1,1)T

• Circuit c2 = (e7,e9):
Rc2

= [T,N] -> {S2[t,i]->S2[t+1,i] : 1<=t<T-1 and

1<=i<N-1}
~b2 = (1,0)T

• Circuit c3 = (e7,e10):
Rc3

= [T,N] -> {S2[t,i]->S2[t+1,i-1] : 1<=t<T-1 and

2<=i<N-1}
~b3 = (1,−1)T

Fig. 7 pictorially shows the domain DS2 and the relation Rc1
as a

Z-polyhedron for T = N = 11.

DEFINITION 8 (Frontier). The frontier, F, of a relation R, with
domain D, is the set of points with no incoming edges in the
corresponding Z-polyhedron.

F can be calculated using the set operation F = D \ R(D). The
frontiers F1, F2 and F3 for the three relations, Rc1

, Rc2
and Rc3

respectively, are listed below.
• F1 = [T,N]->{S2[1,i]:2<=i<N-2; S2[t,1]:1<=t<T-1}
• F2 = [T,N]->{S2[1,i]:1<=i<N-1}
• F3 = [T,N]->{S2[1,i]:2<=i<N-1; S2[t,N-2]:2<=t<T-1}

In Fig. 7, points of frontier F1 are shown as red diamond shaped
points. Due to the correspondence between a Z-polyhedron and a
(sub-)CDAG (refer to Sec. 5.1), each point in a frontier represents
a source vertex (i.e., vertex with no incoming edges) of the (sub-
)CDAG. It could be seen that there are |Fi|,1 ≤ i ≤ 3, disjoint paths
Pi,1 ≤ i ≤ 3 (as a consequence of the injective property of the
relations) in the sub-CDAG C1 = (I1,V1,E1,O1) (corresponding to
the instances of statements S2 and S3), each with a distinct source
vertex that corresponds to a point in Fi. These source vertices are
tagged as inputs for the lower bounds analysis and their count, |Fi|,
is later subtracted from the final I/O lower bound using Theorem 4.

Let υ1 ⊆ V1 be a vertex-set of a valid 2S-partition of C1. There
are a set of points E in the Z-polyhedron (e.g., the set of points
inside the gray colored box in Fig. 7) corresponding to υ1. The set
of points outside E with an edge to a point in E corresponds to
In(υ1) (e.g., points marked with yellow triangles in Fig. 7). Since

there is no cyclic dependence between the vertex-sets of the 2S-
partition and the paths are disjoint, by starting from the vertices of
In(υ1) and tracing backwards along the paths in any Pi, 1 ≤ i ≤ 3,
we should reach |In(υ1)| ≤ 2S distinct source vertices. This process
corresponds to projecting the set E along each of the directions
~bi, 1 ≤ i ≤ 3 onto the frontier Fi, 1 ≤ i ≤ 3. Hence we have
|E↓~bi

| ≤ 2S (here, E↓~bi
denotes projecting E along the direction

~bi). The points of the frontier obtained by projection are shown
as black squares (over red diamonds) in Fig. 7. We ensure that E ⊆
DR

S2 = domain(Rc1
)∩ image(Rc1

)∩ domain(Rc2
)∩ image(Rc2

)∩
domain(Rc3

)∩ image(Rc3
). This allows us to apply the geometric

reasoning discussed in Sec. 5.2 to restrict the size of the set E as
shown below. Since dim(DS2) = 2, it is sufficient to consider any
two linearly independent directions.

Theorem 6 applies only for projections along the orthogonal
directions. In case projection vectors are non-orthogonal, a sim-
ple change of basis operation is used to transform the space to a
new space where the projection directions are the canonical bases.

In the example, if we consider vectors ~b1/|~b1| and ~b3/|~b3| as the
projection directions in the original space, then the linear map
(

~b1/|~b1| ~b3/|~b3|
)−1

will transform the Z-polyhedron to a new
space where the projection directions are the canonical bases. In
the example, after such transformation, the projection vectors are
(1,0)T and (0,1)T , and hence we have the following two projec-
tions: φ1 : (i, j) → (i); φ2 : (i, j) → ( j). From Eq. 6, we obtain
the following inequalities for the dual problem (refer (8)): x1 ≤ 1;
x2 ≤ 1.

In addition, we also need to include constraints for the degener-
ate cases where the problem size considered may be small relative
to the cache size, S. Hence, we have the following additional con-
straints for the example: |φ1(E)|x1 ≤ (N + T ); |φ2(E)|x2 ≤ (N +
T ), or (after taking log with base S), x1 logS(|φ1(E)|) ≤ logS(N +
T ); x2 logS(|φ1(E)|)) ≤ logS(N +T ). Since |φ j(E)| ≤ S, we have
logS(|φ j(E)|)≤ 1. Hence, we obtain the constraints x1 ≤ logS(N+
T ) and x2 ≤ logS(N +T ). Thus, we solve the following following
parametric linear programming problem.

Maximize Θ = x1 + x2 (10)

s.t. x1 ≤ 1

x2 ≤ 1

x1 ≤ logS(N +T )

x2 ≤ logS(N +T )

Solving Eq. (10) using PIP [16] provides the following solution:
If logS(N +T )≥ 1 then, x1 = x2 = 1, else, x1 = x2 = logS(N +T ).

This specifies that when N+T =Ω(S), |υ1|=O(S2), and hence

Q = Ω
(

NT
S − (N +T )

)

(here, (N+T ) is subtracted from the lower

bound to account for I/O tagging), otherwise, |υ1|= O
(

(N +T )2
)

and Q = Ω
(

NTS
(N+T )2 − (N +T )

)

.

In the example, since the vectors ~b1/|~b1| and ~b3/|~b3| are al-
ready orthonormal, the change of basis transformation that we per-
formed earlier is unimodular. But, in general this need not be the
case. Since we focus only on asymptotic parametric bounds, any
constant multiplicative factors that arise due to the non-unimodular
transformation are ignored.

Illustrative example 2: The following example is composed of
a scaled matrix-multiplication and a Gauss-Seidel computation
within an outer iteration loop.

Parameters: W, N, T

Inputs: A[N][N], C[N][N], Temp[N][N]

Outputs: A[N][N], C[N][N]

// Iterative loop with scaled Matmult
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// followed by Stencil

for(it=0;it<W;it++)

{

// Scaled Matmult split out into a sequence of

// mat-vec and vector scaling ops for each row

for(i=0;i<N;i++)

{

for(j=0;j<N;j++)

for(k=0;k<N;k++)

S1: Temp[i][j] += A[i][k]*A[k][j];

for(j=0;j<N;j++)

S2: Temp[i][j] = 2*Temp[i][j];

for(j=0;j<N;j++)

S3: C[i][j] += Temp[i][j];

}

// Seidel stencil

for(t=0;t<T;t++)

for (i=1; i<N-1; i++)

for (j=1; j<N-1; j++)

S4: A[i][j] = 0.5 * (A[i-1][j] + A[i][j-1] \

+ A[i][j] + A[i+1][j] + A[i][j+1]);

}

The decomposition theorem (Theorem 2) allows us to split
this code into individual components, analyze each sub-program
separately and obtain the I/O lower bounds for the whole program
through simple summation of the individual bounds. Hence, given
the CDAG C of the above example, the analysis proceeds with the
following steps:
• The CDAG C and thus the underlying program is decomposed

as follows: (1) Each iteration of the outer loop, with trip-count
W, is split into W sub-programs. (2) Each of this sub-program
is further decomposed by separating the matmult (consisting of
statements S1, S2 and S3) and Seidel operations (consisting of
statement S4) into individual sub-programs.

• The vertices corresponding to the input arrays of the matmult
and Seidel computations are tagged as inputs in their corre-
sponding sub-CDAGs.

• The matmult (with sub-CDAG Cm = (Im,Vm,Em,Om)) and the
Seidel computation (with sub-CDAG Cs = (Is,Vs,Es,Os)) are
separately analyzed for their I/O lower bounds.

• If Lm and Ls are the I/O lower bounds obtained in the previous
step for matmult and Seidel computation, respectively, Theorem
2 and Theorem 4 provides us an I/O lower bound of
Ω(W × ((Lm −|Im|)+(Ls −|Is|))) for the whole program.

The analysis of the Seidel computation is similar to the analysis
of the Jacobi 1D computation detailed in the previous example.
Hence, we skip the analysis and provide the following result: If

N = Ω(
√

S) and T = Ω(
√

S) then, Qs = Ω
(

N2T√
S
−N2 −NT

)

, else

Qs ≥ 0. where, Qs is the I/O complexity for the Seidel computation.
Now, we consider the analysis of the scaled matmult. The data-

flow graph, GF consists of six vertices: vertices A, C and Temp
correspond to the input arrays A, C and Temp, respectively; ver-
tices S1, S2 and S3 correspond to the statements S1, S2 and S3,
respectively. The domain corresponding to each vertex (in the or-
der A, C, Temp, S1, S2 and S3) is listed below:
• DA =[N]->{A[i,j]:0<=i<N and 0<=j<N}
• DC =[N]->{C[i,j]:0<=i<N and 0<=j<N}
• DTemp =[N]->{Temp[i,j]:0<=i<N and 0<=j<N}
• DS1 =[N]->{S1[i,j,k]:0<=i<N and 0<=j<N and 0<=k<N}
• DS2 =[N]->{S2[i,j]:0<=i<N and 0<=j<N}
• DS3 =[N]->{S3[i,j]:0<=i<N and 0<=j<N}

The relations corresponding to various edges are listed below.
• relation(e1 = (A,S1)) = Re1 = [N] -> {A[i, j] ->

S1[i,j’,j] : 0<=i<N and 0<=j<N and 0<=j’<N}

• relation(e2 = (A,S1)) = Re2 = [N] -> {A[i,j] ->

S1[i’,j,i] : 0<=i’<N and 0<=i<N and 0<=j<N}
• relation(e3=(C,S3))=Re3 = [N] -> {C[i,j] -> S3[i,j]

: 0<=i<N and 0<=j<N}
• relation(e4 = (Temp,S1)) = Re4 = [N] -> {Temp[i,j] ->

S1[i,j,0] : 0<=i<N and 0<=j<N}
• relation(e5 = (S1,S1)) = Re5 = [N] -> {S1[i,j,k] ->

S1[i,j,k+1] : 0<=i<N and 0<=j<N and 0<=k<N-1}
• relation(e6 = (S1,S2)) = Re6 = [N] -> {S1[i,j,N-1] ->

S2[i,j] : 0<=i<N and 0<=j<N}
• relation(e7=(S2,S3))=Re7 = [N] -> {S2[i,j] -> S3[i,j]

: 0<=i<N and 0<=j<N}

Broadcast paths: The paths p1 = (e1) and p2 = (e2) are of type
broadcast. As p1 and p2 are composed of a single edge, their
relations, Rp1

and Rp2
respectively, are the same as their edge.

Thus, Rp1
= Re1 and Rp2

= Re2. We are specifically interested

in the broadcast paths whose inverse-relations (e.g., R−1
p1

) can be
expressed as affine maps. In our example, the two inverse-relations
R−1

p1
and R−1

p2
can be expressed as affine maps as shown below:

R−1
p1

≡
(

1 0 0
0 0 1

)

.

(

i
j′
j

)

+

(

0
0
0

)

R−1
p2

≡
(

0 0 1
0 1 0

)

.

(

i′
j
i

)

+

(

0
0
0

)

Further, we have an injective circuit p3 = (e5) with Rp3
= Re5,

whose direction vector ~b3 = (0,0,1)T .
We next calculate the frontiers F1, F2 and F3 of the relations

Rp1
, Rp2

and Rp3
, respectively, by taking the set-difference of

their domain and image (e.g., F1 = Dp1
\Rp1

(Dp1
)), where, Dp1

=
domain(p1)). The three frontiers are shown using the ISL notation
below:
• F1 =[N] -> {A[i,j] : 0<=i<N and 0<=j<N}
• F2 =[N] -> {A[i,j] : 0<=i<N and 0<=j<N}
• F3 =[N] -> {S1[i,j,0] : 0<=i<N and 0<=j<N}

In the case an injective circuit (with associated relation, say, Ra),
we chose the direction of projection to be the vector representing
Ra. Here, in case of a broadcast path (with associated relation,

say, Rb = A.~x+~b), we choose the kernel of the matrix A, ker(A),
to be the projection direction. The intuition behind choosing this
direction is that the kernel represents the plane of reuse, and hence,
the set of points obtained by projecting a set E along the kernel
directions represents the In(E). In general, the kernel can be of
dimension higher than one (but has to be at least one due to the

definition of a broadcast path). The kernels (~k1 and ~k2) of the

inverse-relations of the paths p1 and p2 are: ~k1 = (0,1,0)T and
~k2 = (1,0,0)T , respectively.

By choosing ~k1, ~k2 and ~b3 as the projection directions, we obtain
φ1 : (i, j,k)→ (i,k); φ2 : (i, j,k)→ ( j,k); φ3 : (i, j,k)→ (i, j). This
provides us the following inequalities: x1 + x3 ≤ 1; x2 + x3 ≤ 1;
x1 + x2 ≤ 1. Further, to handle the degenerated cases, we have the
additional constraints that specify that the size of the projections

onto the subspaces {~i}, {~j} and {~k} should not exceed N and the

size of the projections onto the subspaces {~i,~j}, {~j,~k} and {~i,~k}
should not exceed N2. Hence, we obtain the following parametric
linear programming problem.

Maximize Θ = x1 + x2 + x3 (11)
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s.t. x1 + x2 ≤ 1

x2 + x3 ≤ 1

x1 + x3 ≤ 1

x1 ≤ logS(N)

x2 ≤ logS(N)

x3 ≤ logS(N)

x1 + x2 ≤ 2logS(N)

x2 + x3 ≤ 2logS(N)

x1 + x3 ≤ 2logS(N)

Solving Eq. (11) using PIP [16] provides the following solution:
If 2 logS(N) ≥ 1 then, x1 = x2 = x3 = 1/2, else, x1 = x2 =

x3 = logS(N). Hence, when N = Ω(
√

S), Qm = Ω
(

N3√
S
−N2

)

,

otherwise, Qm ≥ 0.
Finally, by applying Theorem 2, we obtain the I/O lower bound

for the full program, Q≥Qm+Qs =Ω
(

W ×
(

N3√
S
+ N2T√

S
−N2 −NT

))

when N and T are sufficiently large.

Putting it all together: Algorithm 1 provides a pseudo-code for
our algorithm. Because the number of possible paths in a graph is
highly combinatorial, several choices are made to limit the overall
practical complexity of the algorithm. First, only edges of interest,
i.e., those that correspond to relations whose image is representa-
tive of the iteration domain, are kept. Second, paths are considered
in the order of decreasing expected profitability. One criterion de-
tailed here corresponds to favoring injective circuits over broadcast
paths with one-dimensional kernel (to reduce the potential span),
and then broadcast paths with decreasing kernel dimension (the
higher the kernel, the more the reuse, the lower the constraint).

For a given vertex v, once the directions associated with the
set of paths chosen so far span the complete space of the domain
of v, no more paths are considered. The role of the function try()
(on lines 20, 26 and 32 in Algorithm 1) amounts to finding a
set of paths that are linearly independent, compatible (i.e., a base
can be associated to them), and representative. The funtion try() is
shown in Algorithm 3. The function best(v) (shown in Algorithm 2)
selects a set of paths for a vertex v and computes the associated
complexity. The function solve() (shown in Algorithm 4) writes the
linear program and returns the I/O lower bound (with cases) for a
domain D and a set of compatible subspaces.
Various operations used in the pseudo-code are detailed below.
• Given a relation R, domain(R) and image(R) return the domain

and image of R, respectively.
• For an edge e, the operation relation(e) provides its associated

relation. If Re = relation(e) has acceptable number of disjunc-
tions, then the edge can be split into multiple edges with count
equal to the number of disjunctions, otherwise, a convex under-
approximation can be done.

• For a given path p = (e1,e2, . . . ,el) with associated rela-
tions (Re1

,Re2
, . . . ,Rel

) we can compute the associated re-
lation for p by composing the relations of its edges, i.e.,
relation(p) computes Rel

◦ · · · ◦ Re2
◦ Re1

. Note that the do-
main of the composition of two relations is restricted to the
points for which the composition can apply, i.e. domain(Ri ◦
R j) = R−1

j (image(R j) ∩ domain(Ri)) and image(Ri ◦ R j) =

Ri(image(R j)∩domain(Ri)).
• For a given domain D, dim(D) returns its dimension. If the

cardinality of D (i.e., number of points in D) is represented in
terms of the program parameters, its dimension can be obtained
by setting the values of the parameters to a fixed big value (say
B), and computing logB(|D|), and rounding the result to the
nearest integer. For example, if |D| = C(n,m) = nm + n + 3,

setting B = 103, we get dim(D) = round(logB (C(B ,B))) = 2.

• If a relation R is injective and can be expressed as an affine

map of the form A.~x+~b, then the operation ray(R) computes~b,
otherwise, returns ⊥.

• For a relation R, if its inverse can be expressed as an affine

relation A.~x+~b, rkernel(R) computes the kernel of the matrix
A (and returns ⊥ otherwise).

• For a set of vectors b = {~b1, . . . ,~bl}, subspace(b) provides the
linear subspace spanned by those vectors.

• For a set of linear subspaces K = {k1, . . . ,kl}, base(K) gives

a set of linearly independent vectors b = {~b1, . . . , ~bd} such that
for any ki, there exists bi ⊆ b s.t. ki = subspace(bi). If such a
set could not be computed, it returns ⊥.

• For a path p, vertices(p) returns its set of vertices.
• Given an expression X , the operation simplify(X) simplifies the

expression by eliminating the lower order terms. For example,
simplify(NT +N2 −N +T ) returns NT +N2.

1 GF = (VF ,EF );

2 FI := /0; FB := /0; FBB := /0;

3 foreach e = (u,v) ∈ EF do

4 R := relation(e);

5 if dim(image(R))< dim(v) then next;

6 if R is invertible then FI := F ∪{e};

7 if dim(domain(R)) = dim(image(R))−1 then
8 FB := FB ∪{e}
9 end

10 if dim(domain(R))< dim(image(R))−1 then
11 FBB := FBB ∪{e}
12 end

13 end

14 foreach v ∈VF do
15 d := dim(v);

16 foreach circuit p from v to v in FI do
17 R := relation(p);

18 if (b := ray(R)) =⊥ then next p;

19 if dim(image(R))< d then next p;

20 if try(v,subspace(b), p) then next v;

21 end

22 foreach cycle-free path p to v in FBF∗
I do

23 R := relation(p);

24 if (k := rkernel(R)) =⊥ then next p;

25 if dim(image(R))< d then next p;

26 if try(v,k, p) then next v;

27 end

28 foreach cycle-free path p to v in FBBF∗
I do

29 R := relation(p);

30 if (k := rkernel(R)) =⊥ then next p;

31 if dim(image(R)< d) then next p;

32 if try(v,k, p) then next v;

33 end

34 best(v);

35 end

36 simplify(∑v∈VF
v.complexity);

Algorithm 1: For each vertex v in a data-flow graph GF , finds a
set of paths and computes the corresponding complexity.

1 Function best(vertex v)

2 let (k,K,D,T ) ∈ v.clique with maximum lexicographic value of
(

dim(D),dimension(k),−∑ki∈K dimension(ki),solve(D,K),−|T |
)

;

3 Q := solve(D,K);

4 v.complexity := Q;

Algorithm 2: For a vertex v, selects a set of paths and computes
the associated complexity.
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1 Function try(vertex v, subspace k′, path p)

2 {v.clique is a set of quadruples (k,K,D,T ) where:

- k is a subspace,
- K is a set of subspaces,
- D is a domain,
- T is a set of vertices}

3 {v.complexity is an asymptotic complexity (with cases)}
4 if k′ ∈ v.subspaces then return false;

5 v.subspaces := v.subspaces∪{k′};

6 foreach (k,K,D,T ) ∈ v.clique∪ (⊥,⊥,⊥,⊥) do
7 if dimension(k+ k′)> dimension(k) and

base(K ∪{k′}) 6=⊥ then

8 D′ = image(relation(p))∩D;

9 if D =⊥ or dim(D′) = dim(D) then

10 T ′ := T ∪ vertices(p);

11 K′ := K ∪{k′};

12 v.clique := v.clique
⋃
(k+ k′,K′,D′,T ′);

13 if dimension(k+ k′)≥ dim(domain(v)) then
14 Q := solve(D′,K′);
15 v.complexity := Q;

16 return true;

17 end

18 end

19 end

20 end

21 return false;

Algorithm 3: For a vertex v, try to add path p to some other paths.
Return true if a good bound is found.

1 Function solve(domain D, set of subspaces K)

2 b := base(K);

3 LP := objective(maximizeΘ = ∑bi∈b αi);

4 foreach k ∈ K do LP := LP.constraint(∑bi 6∈k αi ≤ 1);

5 foreach b′ ⊂ b do
6 Db′ := projection(subspace(b′),D);

7 LP := LP.constraint(∑bi∈b′ αi ≤ logS(|Db′ |));
8 end

9 F := ∑k∈K |projection(¬k,D)|;
10 Θ := solution(LP);

11 U := SΘ;

12 Q := Ω
(

|D|S
U

)

−Ω(F);

13 return Q;

Algorithm 4: For a domain D and a set of compatible subspaces,
writes the linear program, and returns the I/O lower bound (with
cases).

6. Related Work

Hong & Kung provided the first formalization of the I/O complex-
ity problem for a two-level memory hierarchy using the red/blue
pebble game on a CDAG and the equivalence to 2S-partitions of the
CDAG. We perform an adaptation of Hong & Kung 2S-partitioning
to constrain the size of the input set of each vertex set rather than
a dominator set, which is suitable for bounding the minimum I/O
for a CDAG with the restricted red/blue pebble game where repeb-
bling is disallowed. This adaptation enables effective composition
of lower bounds of sub-CDAGs to form I/O lower bounds for com-
posite CDAGs. A similar adaptation has previously been used by
modifying the red/blue pebble game through addition of a third
kind of pebble [14, 15]. The composition of lower bounds for se-
quences of linear algebra operations has previously been addressed
by the work of Ballard et al. [1] by use of “imposed” reads and
writes in between segments of operations, adding the lower bounds
on data access for each of the segments, and subtracting the number

of imposed reads and writes. Our use of tagged inputs and outputs
in conjunction with application of the decomposition theorem bears
similarities to the use of imposed reads and writes by Ballard et al.,
but is applicable to the more general model of CDAGs that model
data dependences among operations.

Bilardi et al. [8] proposed an approach to obtain lower bounds
on the access complexity of a DAG in terms of space lower bounds
that apply to disjoint components of the DAG, when recomputation
is not allowed. The approach was later extended to the case when
recomputation is allowed, by means of the notion of free-input
space complexity [9].

Irony et al. [21] used a geometric reasoning with the Loomis-
Whitney inequality [23] to present an alternate proof to Hong and
Kung’s [20] for I/O lower bounds on standard matrix multiplica-
tion. More recently, Demmel’s group at UC Berkeley has devel-
oped lower bounds as well as optimal algorithms for several linear
algebra computations including QR and LU decomposition and the
all-pairs shortest paths problem [1, 3, 13, 33].

Extending the scope of the Hong & Kung model to more com-
plex memory hierarchies has also been the subject of research. Sav-
age provided an extension together with results for some classes of
computations that were considered by Hong & Kung, providing op-
timal lower bounds for I/O with memory hierarchies [27]. Valiant
proposed a hierarchical computational model [35] that offers the
possibility to reason in an arbitrarily complex parametrized mem-
ory hierarchy model. While we use a single-level memory model in
this paper, the work can be extended in a straight forward manner
to model multi-level memory hierarchies.

Unlike Hong & Kung’s original model, several models have
been proposed that do not allow recomputation of values (also re-
ferred to as “no repebbling”) [1, 3, 7, 10, 12, 21, 24–28, 30, 31].
Savage [27] developed results for FFT using no repebbling. Bilardi
and Peserico [7] explore the possibility of coding a given algorithm
so that it is efficiently portable across machines with different hier-
archical memory systems, without the use of recomputation. Bal-
lard et al. [1, 3] assume no recomputation in deriving lower bounds
for linear algebra computations. Ranjan et al. [25] develop better
bounds than Hong & Kung for FFT using a specialized technique
adapted for FFT-style computations on memory hierarchies. Ran-
jan et al. [26] derive lower bounds for pebbling r-pyramids under
the assumption that there is no recomputation. As discussed ear-
lier, we also use a model that disallows recomputation of values.
But our focus in this regard is different from previous efforts – we
formalize an adaptation of the the 2S-partitioning model of Hong
& Kung that facilitates effective composition of lower bounds from
sub-CDAGs of a composite CDAG.

for(i=0;i<N;i++)

for(j=0;j<N;j++)

for(k=0;k<N;k++)

C[i][j]+=A[i][k]+B[k][j];

(a) Matrix Multiplication Code

for(i=0;i<N;i++)

for(j=0;j<N;j++)

for(k=0;k<N;k++)

{

C[i][j] += 1;

A[i][k] += 1;

B[k][j] += 1;

}

(b) Code with same array
accesses as Mat-Mult

Figure 8: Example illustrating difference between CDAG model
and computational model used by Christ et al. [11]

The previously described efforts on I/O lower bounds have
involved manual analysis of algorithms to derive the bounds. In
contrast, in this paper we develop an approach to automate the
analysis of I/O lower bounds for programs. The only other such
effort to our knowledge is the recent work of Christ et al. [11].
Indeed, the approach we have develop in this paper was inspired by
their work, but differs in a number of significant ways:
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1. The models of computation are different. Our work is based
on the CDAG and pebbling formalism of Hong & Kung, while
the lower bound results of Christ et al. [11] are based on a dif-
ferent abstraction of an indivisible loop body of affine state-
ments within a perfectly nested loop. For example, under that
model, the lower bounds for codes in Fig. 8(a) (standard ma-
trix multiplication) and Fig. 8(b) would be exactly the same –

O(N3/
√

S) – since the analysis is based only on the array ac-
cesses in the computation. In contrast, with the red/blue pebble-
game model, the CDAGs for the two codes are very different,
with the matrix-multiplication code in Fig. 8(a) representing a
connected CDAG, while the code in Fig. 8(b) represents has a
CDAG with three disconnected parts corresponding to the three
statements, and computation has a much lower I/O complexity
of O(N2).

2. The work of Christ et al. [11] does not model data dependencies
between statement instances, and can therefore produce weak
lower bounds. In contrast, the approach developed in this paper
is based on using precise data dependence information as the
basis for geometric reasoning in the iteration space to derive the
I/O lower bounds. For example, with the 2D-Jacobi example
discussed earlier, the lower bound obtained by the approach
of Christ et al. would be O(N2) instead of the tight bound of

O(N2T/
√

S) that is obtained with the algorithm developed in
this paper.

3. This work addresses a more general model of programs. While
the work of Christ et al. [11] only models perfectly nested loop
computations, the algorithms presented in this paper handle
sequences of imperfectly nested loop computations.

7. Discussion

We conclude by raising some issues and open questions, some of
which are being addressed in ongoing work.
Tightness of lower bounds: A very important question is whether
a lower bound is tight – clearly, zero is a valid but weak and useless
I/O lower bound for any CDAG. The primary means of assessing
tightness of lower bounds is by comparison with upper bounds
from algorithm implementations that have been optimized for data
locality. For example, tiling (or blocking) is a commonly used
approach to enhance data locality of nested loop computations.
An open question is whether any automatic tool can be designed
to systematically explore the space of valid schedules to generate
good parametric upper bounds based on models and/or heuristics
that minimize data movement cost.
Lower bounds when recomputation is allowed: The vast major-
ity of existing application codes do not perform any redundant re-
computation of any operations. But with data movement costs be-
coming increasingly dominant over operation execution costs, both
in terms of energy and performance, there is significant interest in
devising implementations of algorithms where redundant recom-
putation of values may be used to trade off additional inexpensive
operations for a reduction in expensive data movements to/from
off-chip memory. It is therefore of interest to develop automated
techniques for I/O lower bounds under the original model of Hong
& Kung that permits re-computation of CDAG vertices. Having
lower bounds under both models can offer a mechanism to iden-
tify which algorithms have a potential for a trade-off between extra
computations for reduced data movement and which do not.

If the CDAG representing a computation has matching and tight
I/O lower bounds under both the general model and the restricted
model, the algorithm does not have potential for such a trade-off.
On the other hand, if a lower bound under the restricted model (that
prohibits re-pebbling) is higher than a tight lower bound under the
general model, the computation has potential for trading off extra
computations for a reduction in volume of data movement. This
raises an interesting question: Is it possible to develop necessary

and/or sufficient conditions on properties of the computation, for
example on the nature of the data dependencies, which will guar-
antee matching (or differing) lower bounds under the models al-
lowing/prohibiting re-computation?
Relating I/O lower bounds to machine parameters: I/O lower
bounds can be used to determine whether an algorithm will be in-
herently limited to performance far below a processor’s peak be-
cause of data movement bottlenecks. The collective bandwidth be-
tween main memory and the last level cache in multicore proces-
sors in words/second on current systems is over an order of mag-
nitude lower than the aggregate computational performance of the
processor cores in floating-point operations per second; this ratio is
a critical machine balance parameter. By comparing this machine
balance parameter to the ratio of the I/O lower bound (calculated
for S set to the capacity of the last level on-chip cache) to the total
number of arithmetic operations in the computation, we can deter-
mine if the algorithm will be inherently limited by data movement
overheads. However, such an analysis will also require tight as-
sessment of the constants for the leading terms in the asymptotic
expressions of the order complexity for I/O lower bounds. This is
not addressed by the approach presented in this paper.
Modeling associative operators: Reductions using associative op-
erators like addition occur frequently in computations. With the
CDAG model, some fixed order of execution is enforced for such
computations, resulting in an over-constrained linear chain of de-
pendencies between the vertices corresponding to instances of an
associative operator. Some previously developed geometric ap-
proaches to modeling I/O lower bounds [1, 11, 21] have developed
I/O lower bounds for a family of algorithms that differ in the order
of execution of associative operations. It would be of interest to ex-
tend the automated lower bounding approach of this paper to also
model lower bounds among a family of CDAGs corresponding to
associative reordering of the operations.
Finding good decompositions: The second illustrative example
in Sec. 5 demonstrated the benefit of judiciously decomposing
CDAGs to obtain good lower bounds by combining bounds for
sub-CDAGs via the decomposition theorem. However, if the de-
composition is performed poorly, the result will be a very weak
lower bound. In the same example, if the computation within the
second level i loop had also been used to further decompose the
CDAG, we would have a sequence of matrix-vector multiplications
with order complexity O(N2) from which the tagged I/O nodes of
the same order of complexity must be subtrated out, resulting in a
weak lower bound of zero. Conversely, if the computation within
the outer it loop were not decomposed into sub-CDAGs, it would
again have resulted in weak lower bounds. The question of au-
tomatically finding effective decompositions of CDAGs to enable
tight lower bounds is an open problem.

8. Conclusion

Characterizing the I/O complexity of a program is a cornerstone
problem, that is particularly important with current and emerging
power-constrained architectures where data movement costs are
the dominant energy bottleneck. Previous approaches to modeling
the I/O complexity of computations have several limitations that
this paper has addressed. First, by suitably modifying the pebble
game model used for characterizing I/O complexity, analysis of
large composite computational DAGs is enabled by decomposition
into smaller sub-DAGs, a key requirement to allow the analysis
of complex programs. Second, a static analysis approach has been
developed to compute I/O lower bounds, by generating asymptotic
parametric data-access lower bounds for programs as a function of
cache size and problem size.
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