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ABSTRACT
It is now widely recognized that increased levels of paral-
lelism is a necessary condition for improved application per-
formance on multicore computers. However, as the number
of cores increases, the memory-per-core ratio is expected
to further decrease, making per-core memory e!ciency of
parallel programs an even more important concern in fu-
ture systems. For many parallel applications, the memory
requirements can be signiÞcantly larger than for their se-
quential counterparts and, more importantly, their memory
utilization depends critically on the schedule used when run-
ning them.

To address this problem we proposebounded memory sche-
duling (BMS) for parallel programs expressed as dynamic
task graphs, in which an upper bound is imposed on the pro-
gramÕs peak memory. Using the inspector/executor model,
BMS tailors the set of allowable schedules to either guar-
antee that the program can be executed within the given
memory bound, or throw an error during the inspector phase
without running the computation if no feasible schedule can
be found.

Since solving BMS is NP-hard, we propose an approach in
which we Þrst use our heuristic algorithm, and if it fails we
fall back on a more expensive optimal approach which is
sped up by the best-e"ort result of the heuristic.

Through evaluation on seven benchmarks, we show that
BMS gracefully spans the spectrum between fully parallel
and serial execution with decreasing memory bounds. Com-
parison with OpenMP shows that BMS-CnC can execute in
53% of the memory required by OpenMP while running at
90% (or more) of OpenMPÕs performance.
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1. INTRODUCTION
Multicore, with its increasing levels of parallelism, has ar-
rived at a time when memory capacity has already stopped
scaling [34]. Currently, memory per core is decreasing by
30% every two years [35] and projections state that it will
soon drop to megabytes in extreme scale systems [37]. As ex-
pressed by IBM, this is an important challenge to overcome
for exascale computing, since Òour ability to sense, collect,
generate and calculate on data is growing faster than our
ability to to access, manage and even store that data.Ó [51].
But this problem is not only an obstacle for future super-
computers; for the embedded multicore processors, memory
is already at a premium today.

Unfortunately, parallel execution is known to increase mem-
ory requirements compared to a serial baseline [9]. The
community has been aware of this problem since the 1990s:
ÒThe amount of memory required by a parallel program
may be spectacularly larger than the memory required by
an equivalent sequential program .... parallel memory re-
quirements may vary from run to run, even with the same
dataÓ [13]. Without mitigation techniques, the increased
memory consumption can lead to an increased occurrence
of out-of-memory errors [20].

Modern programming systems for parallel applications are
not aware of and do not control the peak memory footprint,
making it di!cult for programmers to ensure their program
will not run out of memory 1. We believe this lack of con-
trol over peak memory usage stems from a more in-depth
challenge: programming systems do not have access to the
dependence structure (task communication and creation re-
lationships) of a program.

In light of these problems, we propose a programming sys-
tem that targets the bounded memory scheduling (BMS)
problem: Given a parallel program P with input I and a
memory bound M , can P complete execution in the memory
bound M ?

We propose an inspector/executor [44] based model that en-
ables dynamic program analysis, transformation and opti-
mization based on the computation task graph at runtime,
but before running the application. To the best of our knowl-

1In contrast, embedded applications tend to be memory-
aware but usually o"er little ßexibility in scheduling and
mapping of individual components.



edge, this work is the Þrst to consider the BMS problem in
the context of dynamic task scheduling. This problem is a
more general case of the register su!ciency problem [28],
which has been well studied due to its importance in com-
piler code generation. In the context of task scheduling,
additional di!culty arises from the fact that, in most pro-
gramming systems, there is insu!cient information at the
point when a task is created to decide if it should be de-
ferred or handed to the scheduler directly in order to main-
tain the memory usage within the desired bound. Without
an oracle to answer this question, the BMS problem be-
comes intractable. We propose a scheduling approach in
which the role of the oracle is performed by the inspector
phase of an inspector/executor [44] system. Our parallel
programming model (see Section 3) enables the inspector
to build the computation graph of compliant applications
without running the internals of computation steps in the
application, thereby revealing both the parent-child rela-
tionships for tasks and the reader-writer relationships for
data. With this knowledge, the inspector can identify sche-
duling restrictions that lead to bounded-memory execution.
These restrictions are then enforced by the executor stage,
when the application runs on a load-balancing work-stealing
scheduler. The result is a hybrid scheduling approach which
obeys a memory bound but retains the advantages of dy-
namic scheduling.

The main contributions of this paper are:

¥ a heuristic algorithm for BMS based on the inspec-
tor/executor model for identifying a set of schedules
that Þt a desired memory bound. The BMS algorithm
is run in the inspector phase and works by imposing
restrictions on the executor phase.

¥ an optimal algorithm for bounded memory scheduling
based on integer linear programming; as opposed to
the heuristic algorithm, it is optimal in that it ensures
Þnding a schedule that Þts the memory bound if one
such schedule exists. By proposing an e!cient ILP
formulation and by using the result of the heuristic
BMS to hot-start the optimal algorithm, our formula-
tion works on graphs that are an order of magnitude
larger than those reported in previous work on ILP-
based register scheduling.

¥ a schedule reuse techniqueto amortize the cost of the
BMS inspector across multiple executions by match-
ing new runs to previously computed schedules. This
technique works whenever the runs have the same dy-
namic computation graph, even if their inputs di"er
and, to the best of our knowledge, is the Þrst to reuse
inspector-executor results across application runs.

¥ experimental evaluation on several benchmarksshow-
ing that the range of memory bounds and parallel per-
formance delivered by BMS gracefully spans the spec-
trum from serial to fully parallel execution.

2. BACKGROUND:
THE CONCURRENT COLLECTIONS
PROGRAMMING MODEL

The programming model used in this work is an extension
of the Concurrent Collections (CnC) [ 12] model. CnC appli-
cations consist of tasks (called steps), uniquely identiÞed by
a step collection specifying the code that the task will run,
and a tuple called the step tag identifying a speciÞc instance
of a step. Tasks communicate through dynamic single as-
signment variables called items. Items are grouped together
into item collections which contain logically related items
and are uniquely identiÞed by tuples called keys.

Once a step is spawned, it can read items by calling the
item_collection.get(key) function which returns the item
value. Get calls block until some other step produces the
item with that key, which is performed through item_collec-
tion.put(key, value) . As long as the dynamic single as-
signment rule is respected and sinceget s are blocking 2,
there are no data-races on items. Once steps read their
input items, they perform computation and then may pro-
duce items (through put operations) and/or start new steps
through step_collection.spawn .

CnC has been shown to o"er especially good performance for
applications with asynchronous medium-grained tasks [17],
an attractive target for our BMS system.

Since items are accessed using tuples as keys (rather than
pointer-based references), it is generally not possible to au-
tomatically identify which items are dead and should be
collected. Instead, the number of expected read operations
(called the get-count of the item) is speciÞed as an additional
parameter to item put calls [45].

3. BMS-CNC: AN INSPECTOR/EXECUTOR
PARALLEL PROGRAMMING MODEL

Many analyses of task-parallel programs (such as data race
detection) require understanding the task-parallel structure
of the computation, which is usually unknown at compile
time. As a result, many of these analyses build the task
graph dynamically, while the application is running. Unfor-
tunately, this is too late for certain optimizations, such as
bounding the memory consumption of the program.

We propose the use of an inspector/executor programming
model in which an analysis (inspector) phase is performed
before any tasks start executing. The inspector uncovers
the task creation and data communication patterns of the
application without running the internals of computation
steps; the information it uncovers can be used for program
transformations. As soon as the transformation completes,
the executor starts running the transformed program.

SpeciÞcally, we introduce BMS-CnC, a CnC variant that
adds programmer-written graph expansion functions, asso-
ciated with each step collection. These functions enable the
inspector to query the input and output items and spawned

2With the BMS variant of CnC in Section 3, the logic behind
gets remains the same, but since the task does not start until
all input items are available, blocking is not needed anymore.



steps of each step, without performing a complete step ex-
ecution. The set of keys corresponding to items read by
the step with tag t is returned by the programmer-written
get_inputs(t) function. Similarly, get_outputs(t) and
get_spawns(t) return the keys of items produced by the
step and the tags of steps spawned by it. 3

An additional expansion function deals with those items
that are the output of the whole CnC computation. Be-
fore spawning the Þrst step, programmer needs to identify
items k that are read by the environment after all CnC steps
have Þnished, through calls to declare_get(k) .

BMS-CnC uses a CnC runtime in which tasks do not start
executing until all input items are available (known as strict
preconditions [46]), which means that tasks have only two
states before termination: prescribed (expressed to the run-
time by a spawn call) and running . In the prescribed state,
tasks consume memory consisting of a function pointer and
the tag tuple; during execution, they also use the stack. Be-
cause they never block, there are only as many task stacks
as there are workers. Since task stacks are Þxed-size4, the
stack memory consumption is constant during execution.

3.1 Programming model characteristics
useful for BMS

Several features make CnC an ideal candidate for BMS:

¥ CnC makes it easy to separate data and computa-
tion, simplifying the implementation of the inspector-
executor approach and reducing the inspector over-
head.

¥ Assuming there are no data-races, CnC programs are
deterministic [ 12], enabling BMS schedule reuse across
multiple runs (Section 7).

¥ The fact that CnC uses the item abstraction for all
inter-task communication makes it easy to evaluate
how much memory is used for data in the parallel pro-
gram.

¥ CnC tasks only wait on items, before running [ 46].
This minimizes the number of task states, making the
memory accounting easier than in other models.

¥ CnC steps Þnish without waiting for their spawned
children to Þnish and do not use stack variables to
communicate with other tasks. This behavior is di"er-
ent from spawn-sync models where parent stack cannot
be reclaimed until all children have Þnished. In BMS-
CnC, there will only be as many task stacks as there
are worker threads (a constant amount of memory).

3Note that tasks can make conditional put s and get s in
BMS-CnC, the only requirement is that these must also be
expressed in the corresponding graph expansion function, so
any such condition has to be a pure function of the step tag.
See subsection3.2 for a discussion.
4We allocate Þxed-size stacks for each task. If more stack
space is needed for activation frames, the task can create
additional child tasks; if it needs more space for stack data,
it can create CnC items instead.

¥ The dynamic single assignment property implies that
there are no anti and output dependences between
steps, which increases parallelism and gives BMS the
maximum ßexibility in reordering tasks.

¥ CnC items are usually tiles, and steps are medium-
grained (Òmacro-dataßowÓ) keeping the graph of the
computation at a manageable size and decreasing the
overhead of the inspector phase.

3.2 Independent control and data
as a requirement for BMS

Since BMS-CnC relies on the programmer to separate the
computation graph from the internals of the computation
through expansion functions, an important question arises:
Is it always possible to separate the computation structure
from the computation itself? In general, the answer is no.

The problem can be illustrated with the step_collection.
get_inputs(t) call in the case when the step reads two
items. If the key of the second item depends on the value
of the Þrst item (not only on the tag of the step) then it
is impossible to obtain the key of this second item with-
out actually executing the step that produces the Þrst item.
This example is an instance of an application pattern called
Òdata-dependentget sÓ. A related pattern is that of Òcon-
ditional get sÕ,Õ in which the read operation on an item is
conditional on the value of a previously read item and leads
to the same issue. Similar issues happen forput s and can
be worked-around by putting empty items instead of doing
conditional put s.

If the keys of items read and written and tags of steps
spawned are only a function of the current step tag, then
the application has independent control and data, which is
needed to accurately model an application using BMS. If the
keys and tags depend on the values of items, we say that the
application has coupled control and data.

When faced with an application with coupled control and
data, one possible solution is to include more of the com-
putation itself in the graph expansion functions. In the
extreme case, by including all the computation in the ex-
pansion functions, we would be able to obtain an accurate
dynamic task graph. Unfortunately, in the worst case, the
computation would be performed twice, once for the expan-
sion and once for the actual execution. However, our expe-
rience is that many application contain independent control
and data, thereby supporting the BMS approach. For case
studies and a discussion on the problems and beneÞts of
independent control and data, see Sböõrlea et al. [46].

4. BOUNDED MEMORY SCHEDULING
This section describes the computation graph used by the
algorithm; Section 5 describes our heuristic BMS algorithm
and Section 6 presents the optimal approach. Section 7 de-
scribes the technique for reusing the schedules, while

Section 8 describes improvements to memory management
and bug Þnding that are enabled by the inspector/executor
approach.



4.1 Building the computation graph
The inspector builds a dynamic computation graph: items
and tasks are nodes and the producer-consumer relation-
ships are edges. Because of the dynamic single assignment
nature of items, item nodes can only have a single producer,
but may have multiple consumer tasks. Tasks can also
spawn (prescribe) other tasks and each task has a unique
parent.

The graph construction process starts from the node that
models interactions with the parts of the program that are
outside of CnC. The environment-in node produces initial
items and spawns initial steps. After the computation com-
pletes, the environment-out node reads the outputs.

The tasks spawned by the environment-in node are added
to a worklist of tasks that are expanded serially, by calling
the graph expansion functions. For a single task, the process
consists of the following steps:

¥ Call get_inputs(t) and add edges from the node of
each consumed item to the task node.

¥ Call get_outputs(t) and add edges from the task node
to each output item node.

¥ Call get_spawns(t) and add edges from the current
task to the child tasks. Add children to the worklist.

The process Þnishes when all tasks have been expanded5.
The environment-out node is added and connected to the
output items of the computation (declared by using the
function item_collection.declare_get(k) ) As an exam-
ple, the computation graph obtained for Cholesky factoriza-
tion, is shown in Figure 1.

5. THE HEURISTIC BMS ALGORITHM
After generating the computation graph, the inspector at-
tempts to Þnd bounded memory schedules using the heuris-
tic BMS algorithm, which takes as input the computation
graph and a memory bound M . BMS outputs an augmented
partial order of tasks such that if a schedule respects the
partial order, it will use at most M memory.

Even with substantial simpliÞcation, the BMS problem is
NP-hard, since the register su!ciency problem [ 28] which
is well-known to be NP-Complete can be reduced to BMS6.
Furthermore, the size of the computation graph is an order
of magnitude larger than the basic block length (which de-
termines the graph size in local register su!ciency). Thus,
trying to Þnd a heuristic solution before attempting a more
expensive solution is essential. We propose a best e"ort ap-
proach in which, if a set of schedules that execute in less
than M memory is found, the program is executed follow-
ing a dynamically chosen schedule from the set. This leads

5During the expansion process, nodes are created when they
are referenced for the Þrst time.
6The BMS problem has additional constraints not found in
the register su!ciency problem that increase its complexity,
such as items of di"erent sizes, tasks that produce multiple
items, the fact that inputs and outputs of a task (instruction
in the register su!ciency case) are live at the same time.

to the following approximation of the BMS problem: Given
a parallel program P with input I and a computing system
with memory size M , Þnd an additional partial task order-
ing T O such that any schedule ofP that also respects T O
uses at mostM peak memory. If no schedule is found, BMS
returns false (even though such a schedule may still exist).

In this initial description items are assumed to be of a Þxed
size and task memory is ignored. Section 9 extends the
algorithm to address these simpliÞcations.

Intuitively, given a serial schedule S (i.e., a total order) of
the task graph, the BMS algorithm can test if it respects
the memory bound by dividing the memory into item-sized
slots (called colors) and checking that the number of avail-
able colors is larger than the maximum number of items
live in the sequential schedule. The task graph can then be
run in parallel if items assigned to the same color have non-
overlapping lifetimes (to ensure that the memory bound is
respected). This is enforced by adding ordering edges be-
tween the consumers of the item previously assigned to a
color and the producer of the next item assigned to that
color. To ensure adding ordering edges does not introduce
deadlocks, we only add ordering edges that follow the same
sequence of creation and collection as in the serial schedule
S (since S is a valid topological sort of the graph, this cannot
cause cycles).

Algorithm 1 The BMS Algorithm.
1: function BMS (G, M, ! )
2: " G is the computation graph
3: " M is the desired memory bound
4: " ! a!ects the task priority queue (see Section 5.1)
5: noColors ! M/G.itemsize
6: f reeColors ! InitializeSet (noColors )
7: f reeT asks ! PriorityQueue (! )
8: push(f reeT asks, G.env )
9: while f reeT asks "= # do

10: crtT ask ! Pop (f reeT asks )
11: for all crtItem $ ProducedItems (crtT ask ) do
12: MarkAsProduced (crtItem )
13: color ! Pop (f reeColors, crtItem )
14: if color = null then
15: return false " Failed to Þnd BMS schedule
16: else
17: prevItem ! GetStoredItem (color )
18: for prev $ ConsumersOf (prevItem ) do
19: AddEdge (prev, crtT ask )
20: for all cT ask $ ConsumersOf (prevItem ) do
21: MarkInputAvailable (cT ask, crtItem )
22: if ReadyToRun (cT ask) then
23: Push (f reeT asks, cT ask )
24: SetStoredItem (color, crtItem )
25: for all crtItem $ ConsumedItems (crtT ask ) do
26: if UnexecutedConsumers (crtItem) == 0 then
27: availableColor ! ColorOf (crtItem )
28: f reeColors ! f reeColors %availableColor
29: for all spawn $ SpawnedTasks (crtT ask ) do
30: MarkPrescribed (spawn)
31: return true " Found BMS schedule
32: end function

5.0.1 The algorithm
The pseudocode, shown in Algorithm 1, follows the general
list scheduling pattern. It picks a serial ordering of tasks in
the main loop, lines 9 - 30 (by default we use a breadth-



Figure 1: The BMS-CnC computation graph for Cholesky factorization tiled 2! 2. Data items are represented
as rectangles and Circles represent steps. Nodes are labeled with the collection name followed by the key or
tag. Item colors are assigned by the BMS algorithm (Section 5).

Þrst schedule). In each iteration, it extracts one task from
the priority queue of Òready to runÓ tasks (line 10), which is
initialized with the only task ready to run at the start: the
input environment node (line 8).

We propose two techniques that help the algorithm cope
with the di"erent requirements of the bounded memory sche-
duling problem. These techniques are: successive relaxation
of schedules and color assignment for minimum serialization.
They are discussed in the next sections.

Tasks become ready to run when all their input items are
available and the task has been prescribed. The output
items of the current task are marked as produced (line 12)
and assigned a color. Then, the consumer tasks of each out-
put item are tested to see if they just became ready to run
and any ready tasks are added to the priority queue (line 23).
This process Þnishes when all tasks have been scheduled.

To maintain an upper bound on the memory consumption of
the schedule, we use a list scheduling algorithm and apply a
register allocation pass on the schedule as we are building it.
We try to color items with C registers (colors), where C !
ITEM SIZE = M (line 6). Instead of the widely used graph
coloring allocator [ 16, 11] with a worst-case space complexity
of O(n2), we opted for the more memory-e!cient linear scan
register allocator [43].

When the algorithm visits a task, it assigns each of its output
items a color from a free color pool (line 13), which is only
returned to the pool when all consumer tasks for that item
have been scheduled (line28). Since input and output items
are simultaneously live during task execution, it is important
to assign colors to output items before collecting input items.
If an item is produced and the color pool is empty, then we
consider that the schedule cannot be executed in the memory
bound available (line 15).

After Þnding a serial task order that Þts the memory bound,
we add ordering edgesbetween tasks, such that the lifetime
of items with the same color cannot overlap. To do this, we
need to record, for each color, the item currently stored in it,
using the SetStoredItem and GetStoredItem functions. For
each color, these edges restrict parallel schedules to follow
the sequence of item allocations and de-allocations as in the
serial order chosen above; to do this ordering edges are added
(line 19) starting from each of the consumers of the item
previously allocated to color C to the producer of the current
item assigned to the same colorC.

One challenging problem when restricting schedules with se-
rialization edges is ensuring the absence of cycles in the re-
sulting task graph, because such cycles would mean dead-
lock. The edges we insert are directed only towards tasks
scheduled later in the serial schedule, so even with these ad-
ditional edges, the serial schedule we build remains a topo-
logical sort of the application graph. The existence of this
topological sort mean there are no cycles.

5.1 Successive relaxation of schedules
If the desired memory bound is small, it is possible that
the serial schedule chosen by BMS will not Þt the memory
bound. It is essential to Þnd a heuristic that enables us to
identify a schedule which Þts the memory bound and the ap-
proach must also be fast, since the executor cannot start be-
fore the inspector Þnishes. Our approach, calledsuccessive
relaxation of schedules, is to sample schedules in a way that
trades parallelism for lower memory requirements. We do
this by varying the ranking function used to prioritize ready
to run tasks in the BMS algorithm. The ranking function
varies from the breadth-Þrst (default) to depth Þrst, since
we found that breadth-Þrst schedules usually lead to more
parallelism/more memory, while depth-Þrst leads to less par-
allelism/less memory. 7 Because the default parallel sched-

7 Depth-Þrst and breath-Þrst ordering of tasks are done on
a graph where items are treated as direct edges from pro-



ule is based on a breadth-Þrst task ordering, one possible
concern is the loss of cache locality this implies. To address
this concern, recall that this ordering only a"ects the par-
tial order output by the BMS algorithm and and does not
enforce a total order in which the dynamic scheduler of the
executor handles tasks. This choice of di"erent schedules is
done by varying ! (line 7) from 1 (breath-Þrst) to 0 (depth-
Þrst) which is then used by the priority queue comparison
function (lines 12-16) in which the available tasks are stored.
If the depth Þrst schedule (! = 0) does not Þt the bound,
we abort the scheduling operation (line 8).

Algorithm 2 Successive relaxation of schedules.
1: function Schedule (G, M)
2: ! ! 1
3: while ! "= 0 do
4: success ! BMS (G, M, ! )
5: if successthen
6: return true
7: ! ! ! & " !
8: return false
9: end function

10:
11: // Used for the task priority queue:
12: function PriorityQueue.Compare ( task 1, task 2)
13: rank 1 ! ! ' RankBF (task 1) + (1 & ! ) ' RankDF (task 1)
14: rank 2 ! ! ' RankBF (task 2) + (1 & ! ) ' RankDF (task 2)
15: return rank 1 & rank 2
16: end function

5.2 Color assignment
The color assignment is important because it drives the in-
sertion of serialization edges, which in turn can a"ect per-
formance: inserting too many edges increases overhead and
bad placement can decrease parallelism. Moreover, a slow
coloring heuristic delays the start of the executor stage slow-
ing down the completion of the execution.

Since many steps are already ordered by producer-consumer
and step spawning relationships, not all edges inserted by
BMS in line 19 of Algorithm 1 actually restrict parallelism.
We call these edgestransitive edges, whereas those that re-
strict the parallelism are serialization edges and need to be
enforced during execution. As described below, this distinc-
tion is also important for color assignment.

How can one quantify the parallelism decrease caused by
coloring? Remember that the resulting schedule runs on
a dynamic work stealing scheduler with provable perfor-
mance guarantees [48] as long as the parallel slack assump-
tion holds. This assumption holds as long as the critical
path is not increased too much, so we attempt to insert se-
rialization edges in such a way as to not increase the critical
path.

Theorem 5.1. Assuming unit-length tasks and a breadth-
Þrst schedule, BMS will increase the critical path length with
at most the number of serialization edges it inserts.

ducer to consumer. The breadth-Þrst ranking of a node is
one larger than its lowest ranking predecessor node. For
depth-Þrst, a queue of ready tasks is maintained and nodes
are numbered in the order in which they are removed from
this queue. Nodes are added to the queue when their pre-
decessors have been numbered.

Proof. Since tasks are processed in breadth-Þrst order
and the tail of serialization edges is a task that has already
been allocated, a serialization edge whose head task is at
level k, must start at level k " i , with i # 0 thereby the edge
can increase the critical path with at most one.

Algorithm 3 shows our greedy minimum-serialization heuris-
tic: for each item, we pick the color that leads to the inser-
tion of the fewest serialization edges from steps with breadth
Þrst level smaller than the current task. Only if no such
edges exist we consider serialization edges that start from
the current breadth-Þrst level, since that increases the crit-
ical path. If the source of an edge that would be added
by BMS is already a predecessor of the destination, then
the edge is transitive and is not counted as a serialization.
Storing the predecessors set of a task can take up toO(n)
memory; we need to record this information for all con-
sumers of items whose color has not been reassigned to
another item ( O(M )), leading to a total of O(n ! M !
consumers per task ).

Our experiments show that his approach greatly reduces the
number of serialization edges to insert compared to a round-
robin approach, but has an associated memory cost. In our
experiments, the inspector overhead is not large enough to
justify replacing the coloring heuristic, but, if needed, it can
be replaced by a simple round robin approach of allocating
colors.Ô

Algorithm 3 Assigns item colors.
1: function POP (freeColors, crtItem)
2: producer ! GetProducer (crtItem )
3: minColor ! null
4: minEdges ! MAX INT
5: for color $ f reeColors do
6: prevItem ! GetStoredItem (color )
7: edges! 0
8: for consum $ ConsumersOf (prevItem ) do
9: if !IsPredecessor (consum, producer ) then

10: if BFRank (prod) ( BFRank (consum ) then
11: edges! edges+ ConsumersCount (prevItem )
12: edges! edges+ 1
13: if edges < minEdges then
14: minEdges ! edges
15: minColor ! color
16: return minColor
17: end function

6. OPTIMAL BMS THROUGH
INTEGER LINEAR PROGRAMMING

Heuristic BMS is fast, but o"ers no guarantees regarding
how much memory reduction it can achieve. If it fails to
Þnd a schedule that Þts the desired memory bound, we ap-
ply an integer linear programming formulation that guar-
antees Þnding a schedule for any input memory bound if
such a schedule exists. The challenge in using integer lin-
ear programming is to formulate the problem in a time and
memory-e!cient way, so that it can be used for large com-
putation graphs. The formulation and optimizations are de-
scribed in Section 6.1. Section 6.2 proposes speciÞc lower
bounds used to speed up optimal BMS. An additional per-
formance beneÞt is obtained by using the results of heuristic
BMS to speed-up the optimal BMS, as shown in Section 6.3.



Variable Name Meaning
issue[task id ] In which cycle is task task issued?
death[item ] In which cycle can item item be

collected?
color[item ] To which color is item item as-

signed?

indicators
Auxiliary binary variables for dis-
junction support.
At most 5 ! NO ITEMS 2 variables.

Table 1: Variables used in the ILP formulation.

Constraint name Maximum number
of constraints

1. DeÞne time of item death NO GETS
2. Data dependence NO GETS
3. Color assignment 5 ! NO ITEMS 2

4. Max bandwidth NO ITEMS
5. Earliest start time NO TASKS
6. Latest start time NO TASKS

Table 2: Constraints used in the ILP formulation.

We propose a disjunctive formulation with variables and
constraints shown in Tables 1 and 2. Constraints 1 to 4 are
necessary for correctness, and constraints 5 and 6 are mem-
ory/performance optimizations and may be omitted depend-
ing on the size of the linear system. For example, constraint
5 ensures that only serial schedules are considered, but this
restriction is not needed. Adding these constraint will only
consider serial schedules, decreasing the search space, but
at the cost of an increased footprint of the linear system, so
they are disabled for large input graphs.

ILP formulation attempts to Þnd a schedule with the min-
imum memory bound by minimizing the number of colors
used, but interrupts the search as soon as it Þnds a solu-
tion that Þts the user-speciÞed memory bound. As shown
in Section 10, we are able to solve graphs that are an order of
magnitude larger than those in previously published results
for the problem of minimum register scheduling.

6.1 Optimization of color
assignment constraints

We focused our optimization e"ort on color assignment con-
straints because they represent a large majority of the total
number of constraints. Color assignment constraints enforce
that two items assigned to the same color cannot be live at
the same time and could be expressed naively, as the follow-
ing if-statement:

if color[item1] == color[item2] then
issue[producer[item1]]>death[item2] or
issue[producer[item2]]>death[item1]

The integer linear programming encoding of this if-statement
is done by replacing the if-condition with two disjuncts:

color[item1] < color[item2] or
color[item1] > color[item2]

We then transform the if statement if A then B into a dis-
junction øA or B .

Then, we apply the technique of using boolean indicator
variables (named a,b.c,d) and an additional constraint to
represent disjunctions [54], obtaining the following equa-
tions, in which M and N are big constants:

!
"""""#

"""""$

color [item1 ] " color [item2 ] + M ! a $ M " 1
color [item2 ] " color [item1 ] + M ! b $ M " 1
death[item1 ] " issue[producer[item2 ]] + N ! c $ N " 1
death[item2 ] " issue[producer[item1 ]] + N ! d $ N " 1
a + b+ c + d # 1

This set of constraints is correct, but ine!cient, adding 4
variables and 5 constraints for each pair of items. Decreas-
ing the number of constraints and variables added is essen-
tial for e!cient execution. To do this, we analyze the pos-
sible relations of the lifetime of items as shown in Figure
2. For items that must-overlap, we can elide the third and
fourth constraints and corresponding variables. For items
that may-overlap we elide either the third or fourth con-
straints if there is a path as in Figure 2c. For items that
cannot overlap, we elide all constraints and associated indi-
cator variables. Another constraint that can be optimized
is the one that deÞnes the time of death (constraint num-
ber 2). These constraints restrict the time of death of each
item to happen after all the consumers of that item have
been issued. In some cases, consumers of the item are or-
dered by other data dependence edges, so we can omit the
time of death constraints corresponding to all but the last
consumer.

6.2 Tight lower bounds to speed up ILP BMS
Often, the tightest possible schedule is found by heuristic
BMS, but the ILP solver takes a long time to prove its opti-
mality since it needs to search through many schedules for a
possibly better solution. Adding tight lower bounds on the
minimum memory possible is important, since the search
stops if the heuristic BMS solution equals the lower bound.
We propose using two lower bounds, each of which works
best for a di"erent type of graphs.

The Þrst lower bound is the memory requirement of the step
with the largest number of inputs and outputs. In some
cases, this step is the environment-out node and we can im-
prove the bound further by using the following observation:
after all but one of the output items are produced, in or-
der to produce the last item, the inputs from which this
last item is computed must also be live, and included in the
lower bound. For Cholesky factorization, for example, this
bound is equal to the minimum memory footprint of the
application.

The second bound we propose is useful for applications where,
even though each step requires a modest amount of memory,
the total footprint is large. This pattern occurs, for example,
in divide-and-conquer applications where the memory pres-
sure is proportional to the height of the graph. To handle
these cases, we build a tree that is subsumed by the compu-
tation graph (the tree identiÞcation is done by ignoring all
but one of the edges that connect an item to its consumers),



(a) Item lifetimes must overlap. (b) Item lifetimes cannot overlap. (c) Item lifetimes may overlap, but
one item must be created Þrst.

Figure 2: Several item patterns enable more e!cient encoding of the color assignment constraint. The dotted
edges are paths in the graph that enforce the must-overlap, cannot-overlap and may-overlap relations.

and use the Strahler number8 of the tree as a lower bound.
For applications such as merge sort, this happens to be the
minimum memory footprint of the application.

6.3 Hot start ILP: Using heuristic BMS
to speed up ILP BMS

To decrease the time and memory costs associated with ILP,
we combine linear programming with the heuristic approach
presented in Section 5. Since the optimal approach is only
used when the heuristic algorithm does not Þnd a schedule
that Þts the desired memory bound, this means that the
minimum footprint schedule found by the heuristic can be
used as initial solution for the the ILP solver. If the heuris-
tic already found the minimum footprint possible, but the
desired footprint is smaller, the ILP will need to conÞrm the
lack of better solutions by solving the linear programming
relaxation and checking that the objective value matches the
one provided by the heuristic. In this case, using the initial
solution, the solver will Þnish early with the optimal solu-
tion being the heuristic one. If the heuristic does not Þnd
the minimum footprint possible, its resulting schedule is still
used by the ILP solver in the branch and cut stage, since
the existence of a close-to-optimal solution helps to avoid
the exploration of areas of the search space that can only
o"er solutions with worse memory bounds.

7. SCHEDULE REUSE
Traditional inspector/executor systems amortize the inspec-
tion cost by reusing the inspector results, for example by ex-
ecuting multiple times a loop that has been inspected once.
Since the BMS executor runs only once, we amortize the
inspector cost across multiple executions of the application
by caching the inspector results. To the best of our knowl-
edge, our approach is the Þrst to reuse inspector-executor
results across di"erent runs of an application. The proposed
approach can be applied for even if the input parameters dif-
fer between runs with the same desired memory bound, as
long as the computation graph structure remains unchanged.
This requirement is mitigated our modelÕs ability to express
applications as serial sequences of parallel kernels that are
modeled independently as separate BMS problems. Because
schedule reuse is performed at the kernel granularity instead
of the application granularity, as long as any kernel has the

8The Strahler number [ 23] is the minimum number of reg-
isters required to evaluate an expression tree and can be
computed in linear time.

same computation graph, then that kernelÕs schedule can be
reused.

Note that having a compact representation of the compu-
tation graph and of the inspector output is critical for e!-
ciency of schedule reuse. A fast matching operation of the
current computation graph to the graph of past executions is
also key to making the schedule reuse e!cient, so we focused
our e"orts on improving these three aspects.

To determine if the BMS schedule of a previous run Þts the
current one, one option is to generate the computation graph
and compare it with the graph of the previous executions;
this can be costly in both time and memory. Instead, we
use only a small root set of graph edges and vertices that
uniquely identiÞes the graph9. This root set contains two
types of edges. First, it contains the edges whose tail ver-
tex is the environment-in node. These edges lead to item
keys produced by the environment and the tags of the tasks
spawned by the environment which uniquely characterize all
the items and tasks that will be spawned during the com-
putation. Second, the root set also includes edges whose
tail is the environment-out node. The tail of these edges
are the keys of items read after the computation completes
(i.e. the application result); they a"ect the minimum foot-
print of the execution because, for the same computation
graph, more output items lead to larger minimum memory
requirements.

The schedule reuse works as follows. First, we identify the
root set. If it does not match with the root set of a previous
execution, we expand the whole computation graph, run the
BMS algorithm and save the resulting ( serialization edges,
root set) pair on disk, in a schedule library, along with a
MD5 hash of the root set. For subsequent runs of the ap-
plication, the inspector will compare the MD5 hashes of the
current root set with the root sets from the schedule library.
If it Þnds a matching root set, the inspector loads the se-
rialization edges, avoiding the graph expansion and BMS
computation. If there is no match, the only additional work
performed is the hashing, since the root set expansion is
done anyway during the graph expansion.

9This assumes the determinacy of the control ßow (step
tags) in the program, since BMS-CnC can only express this
kind of programs.



Because the root set consists of keys and tags only (no data),
matching the root set to the root set of a previous program
is fast. The schedule loading consists of reading the set of
serialization edges from the schedule library.

As an example, take Cholesky factorization, whose 2 ! 2
tiling is shown in Figure 1. The root set consists of seven
edges (four starting from the env-in node and three ending
in the env-out node). In general, for Cholesky factorization
tiled k ! k, the root set will have an order of k2/ 2 edges.
Since each vertex is identiÞed by 3 integers, the whole root
set will have 3 ! k2 integers. This is much smaller than
the input matrix which is also read from disk. Since the
computation graph depends on the matrix size and tile size
only and the tile size is usually tuned for the machine the
serialization edges can be reused for any input matrix of the
same size. Similarly, for image processing applications, the
input is usually the same size and the schedules should be
reusable all the time.

In applications with irregular graphs, such as the sparse
Cholesky factorization as implemented in HSL [ 32], the root
set consists of the keys of non-zero tiles, which is still smaller
than the sparse input matrix. The schedule cache consists
of the corresponding serialization edges, whose number is
inversely proportional to the memory bound.

To conclude, the schedule reuse approach relies on the com-
bination of root sets, hashing and the intrinsic compact-
ness of serialization edges to amortize the inspector overhead
across multiple runs of an application.

8. OTHER FEATURES
8.1 Automatic garbage collection
Our graph exploration enables automatic memory collection
for items that would otherwise need manual collection tech-
niques. Such items are also challenging to collect in tradi-
tional programming models because they are pointed to by
other objects10 , so a classic garbage collector would not be
able to collect them. The mechanism regularly used to col-
lect items is get-counts [45], a parameter provided by the
programmer that speciÞes the number times the item will
be read. Identifying the get-count requires global knowl-
edge about the application, which inhibits modularity, is
error-prone and di!cult.

The computation graph contains all information required to
automatically compute get-counts for items, making item
collection a completely automatic task. The same technique
can be applied to programs written in traditional program-
ming languages (and follow the restrictions described in Sec-
tion 3) to collect objects which are still referenced, but will
never be used (cleaning up the memory leaks).

8.2 Fast debugging of concurrency bugs
Our inspector/executor system accurately identiÞes all cases
of the following problems that arise because of programmer
error. We include in parenthesis the name used for these
problems in traditional programming models:

10 We want to collect when objects will not be used in the
future, as opposed to when objects are not referenced any-
more.

¥ dynamic single assignment violations (data-race)

¥ cyclic dependence between steps (deadlock)

¥ waiting for an item that is never produced (blocked
thread)

¥ producing an item that is never read (unused variable)

¥ tasks that do not produce items (dead tasks) 11

Finding concurrency bugs traditionally involves being able
to reproduce the parallel control ßow that lead to them hap-
pening, which in itself is a time consuming step. Traditional
tools that identify these problems commonly serialize the
application [ 22] and add space overhead linear in the size
of the application footprint and in the number of parallel
threads [24]. Our approach separates the testing phase from
the execution phase and outputs the results before the appli-
cation reaches the executor stage. Each of the bugs, with the
exception of deadlock freedom, are identiÞed during a lin-
ear pass through the application graph. For deadlocks, we
simply test for any tasks not scheduled after the BMS algo-
rithm that have not been reported as other types of bugs.
A cycle detection algorithm for directed graphs can identify
the complete deadlock cycle.

9. BMS EXTENSIONS
In this section we describe two extensions to the BMS algo-
rithm: the Þrst one adds support for di"erent item sizes and
the second one accounts for memory used by waiting and
executing tasks.

9.1 Supporting multiple item sizes
To support items of di"erent sizes, one can use the approach
of allowing items to be allocated at any memory location.
This results in memory fragmentation that requires a global
compaction phase to reclaim the free space. The compaction
can introduce a barrier during execution of the parallel pro-
gram, thereby increasing the computationÕs critical path.

Instead, we observe that applications often have only a few
classes of items, where all items in a class have the same
size (for example the size of the input matrix, the size of a
tile) 12 . Memory is initially divided into slots the size of the
largest items, each of which can be split into multiple sub-
slots suitable for smaller items. When all sub-slots become
unused, they are merged into a larger slot. We refer to the
colors used for items of the largest size asroot colors.

Algorithm 4 shows how colors are assigned to items of dif-
ferent sizes. The Pop(freeColors) function from the basic
BMS algorithm is replaced by a PopFromClass(freeColors,
crtItem) function which takes the item that needs space as
an additional parameter. The freeColors parameter now
contains only free root colors. The PopFromClassÞrst iden-
tiÞes the class (size) of the item (line 3) and looks for an

11 Out tool helped discover an instance of this bug that had
existed for two years in the Intel CnC implementation of
Cholesky.

12 A similar approach is used by memory allocators of operat-
ing systems which have pools of memory objects of di"erent
sizes.



available color in the list of free colors that is speciÞc to
that item class (line 5). If a color is available, we return it
(line 21); otherwise, we have to split a root color freeColors
into sub-colors of size that matches the current item. The
number of new colors is determined in line 12 and they are
added to the list of free colors for that class (line 12). Note
that, for each new color, we need to Þnd (line 11) and prop-
agate (line 16) the correct consumers for the item which was
last stored in it Ñ this information is needed when inserting
ordering edges.

To prevent fragmentation, BMS reassembles sub-colors into
root colors. This happens when all sub-colors that are splin-
ters of a root color become available again; we use the func-
tion AddFreeColorToClass (line 24), which replaces the
union operation on line 28 in the BMS algorithm. When
allocating a new item to a reclaimed root color, we need to
ensure that the lifetimes of the items previously stored in
the sub-colors do not overlap with the item later assigned to
the root color. This is done by adding ordering edges, but
the previously stored items must be recorded by the Set-
StoredItem and GetStoredItem functions which work
with sets of items instead of single items.

Algorithm 4 BMS Extension for items of di"erent sizes.
1: // This function assigns a (sub)color for item crtItem
2: function PopFromClass (freeColors, crtItem)
3: crtClass ! GetClass (crtItem )
4: f reeSubcolors ! GetFreeColors (crtClass )
5: color ! Pop (f reeSubcolors, crtItem )
6: if color = null then
7: // Call Pop function from the BMS algorithm
8: pageColor ! Pop (f reeColors, crtItem )
9: if pageColor "= null then

10: prevIt ! GetStoredItem (pageColor)
11: prevConsumers ! ConsumersOf (prevItem )
12: noSubcolors ! rootSize/class.itemSize
13: for i = 1 ) noSubcolors do
14: newColor ! newcolor ()
15: PushToClass (f reeSubcolors, newColor )
16: SetStoredItem (newColor, crtItem )
17: color ! Pop (G, f reeColorsInClass, crtItem )
18: if color "= null then
19: rootColor ! GetRootColor (color )
20: rootColor.uses ! rootColor.uses + 1
21: return color
22: end function
23: // This function reclaims a (sub)color
24: function AddFreeColorToClass (

freeColors, itemColor)
25: crtClass ! GetClass (itemColor )
26: rootColor ! GetRootColor (color )
27: rootColor.uses ! rootColor.uses & 1
28: if rootColor.uses = 0 then
29: AddFreeColor (f reeColors, rootColor )
30: itemsSet ! SubColorsOf (rootColor )
31: SetStoredItem (rootColor, itemsSet )
32: end function

9.2 Bounding task memory
In BMS-CnC, tasks have two states: prescribed or executing.
This section looks at the memory taken up by tasks. Exe-
cuting tasks use the stacks of the worker threads executing
them, so they do not consume additional memory beyond
the worker stack space allocated at the start of program ex-
ecution. BMS can consider worker thread memory starting

with a memory bound parameter M 1 that is lower than the
total memory M in the system: M 1 = M " no workers %
worker stack size. Note that since BMS-CnC tasks have
Þxed-size stacks, large levels of recursion can only be per-
formed by spawning new tasks.

Prescribed tasks are the tasks that have been spawnedbut
have not yet started running. In our implementation, these
waiting tasks consist only of the task tag and the task func-
tion pointer, so their size can be computed by the BMS
scheduler. This memory is needed from the moment tasks
are created by a spawn operation to the moment the task
Þnishes so they are similar to items whose lifetime extends
between the moment they are put up to the moment their
last consumer task Þnishes execution. The same mechanism
used to handle items of di"erent sizes (described in Section
9.1) also handles prescribed tasks.

9.3 Bounding the inspector
memory consumption

The BMS algorithm relies on the existence of the applica-
tion graph which it queries through the ProducedItems ,
ConsumedItems and SpawnedTasks functions. Storing
the whole computation graph in memory can be avoided by
using two techniques: on-demand expansion of the graph
and computational epochs. Combined, these two techniques
allow us to only store a slice of the graph. Similarly to the
BMS algorithm, we use a best-e"ort approach to bounding
the inspector footprint: if the memory required to store the
graph slice outweighs the memory bound imposed on the
BMS execution, the algorithm aborts.

On-demand graph expansionis used when apop is performed
from the freeTasks list; at this point any items produced
by the task must be colored. With on-demand expansion,
the complete set of consumers for items may not be known
(since the graph has not been completely expanded), but
their number is (speciÞed by get-count). The expansion
stops when the number of consumers identiÞed for the item
is equal to the get-count of the item 13

The epoch technique summarizes the portion of the graph
that has already been inspected and colored (the portion
between the environment and the items currently stored in
colors), using a representation in which the environment pro-
duces all tasks in the freeTasks list and all currently live
items, as well as all steps marked produced by BMS, but
not executed. All dead items and all steps which have been
symbolically executed are removed.

Creating an epoch after each on-demand expansion reduces
the graph to a sliding window. The memory footprint of the
inspector is computed on the ßy during inspection as the
sum of the color assignment table (which records the con-
sumers of the item stored in each color) and the graph slice
consisting of the stored edges and nodes. If after expan-
sion, the inspector footprint is still larger then the memory
bound, the algorithm aborts for that schedule.

13 Programmer-speciÞed get-counts are needed for on-demand
expansion, but not for the BMS algorithm which instead
automatically computes them.



10. EVALUATION
10.1 Implementation and experimental setup
The BMS-CnC system was implemented on top of Qt-CnC [ 46],
an open-source CnC implementation14 based on the Qthreads
task library [ 52]. The evaluation was performed on an In-
tel Xeon E7330 system with 32GB RAM and 16 cores. We
instrumented the runtime to keep track of the item mem-
ory allocations and item deallocations performed. Because
CnC is implicitly parallel and there is no separate CnC serial
implementation, we obtain serial execution times by using
Qt-CnC (not BMS-CnC) with a single worker thread.

For each application, we present the BMS executor time as
a function of the memory bound (see Figure 3). To eval-
uate the performance of BMS, we note that the minimum
memory bound for which BMS Þnds a schedule should at
least match the serial execution memory. When the bound
is large enough to Þt a normal (CnC) parallel execution,
BMS should not lead to performance degradation.

One possible concern related to the bounded memory sche-
duling algorithm is if accurately enforced a desired mem-
ory bound, unnecessarily decreasing the memory footprint
may lead to a corresponding decrease in parallelism. To ad-
dress this concern, we present Figure4 which shows the ac-
tual peak memory encountered as a function of the memory
bound. On this graph, the peak memory for single-threaded
CnC and parallel CnC are horizontal lines, since they are
are constant. Because both axes have the same scale and
origin points, the performance of the BMS algorithm can
be assessed visually by checking that the peak BMS mem-
ory varies between the peak memory corresponding to serial
and parallel executions - this ensures the range of bounds
imposed by BMS is good. To estimate how accurate is the
BMS bound, one can check that the peak memory series fol-
lows the graph diagonal (x=y) between the serial and par-
allel execution series. Having a peak memory smaller than
the memory bound is not necessarily a weakness of the algo-
rithm; as long as the execution time for that memory bound
does not su"er. A good BMS algorithm should enable us
to get a reduction in memory footprint and only showing a
slowdown if the memory bound is tight; this criteria can be
analyzed by looking at the execution time graph and at the
memory footprint graph for the same value of the memory
bound.

10.2 Benchmarks
Applications are usually implemented as sequences of par-
allel computation kernels invoked with di"erent parameters.
To maximize the beneÞts of schedule reuse for such appli-
cations, it makes sense to model each parallel kernel inde-
pendently as a BMS problem, since this enables schedule
reuse at the kernel granularity instead of the application
granularity. For this reason the evaluation includes several
computational kernels instead of fewer large applications.
By themselves, the kernels reach footprints which can be
satisÞed without BMS on todayÕs machines; they will re-
quire BMS when used in the context of larger applications
containing multiple kernels as well as on future many-core
systems with smaller amounts of available memory per core.
Table 3 contains a short summary of the benchmarks, their

14 https://code.google.com/p/qthreads/wiki/qtCnC

input parameters, computation graph size and conditions for
schedule reuse.

Smith-Waterman is a dense linear algebra kernel from the
Intel CnC distribution. The results in Figure 3a show that
BMS gracefully spans the range between large memory-high
performance to low memory with lower performance.

The results for Blackscholes (in Figure 3b) show that BMS-
CnC is able to control the peak memory from the largest
values obtained with CnC parallel execution, to the small-
est (serial execution).

The Cholesky factorization (Figure 3c) shows BMS en-
ables a trade-o" similar to the one in Smith-Waterman, be-
tween large memory consumption and high performance.

For Gauss-Jordan elimination (see Figure 3e), BMS-
CnC is able to enforce a footprint 18% lower than the serial
footprint of CnC, with minimal loss of parallelism. This
is the result of the abundant parallelism, as well as good
coloring heuristics.

For MergeSort (Figure 3d) we notice an unusual trend
when the desired memory bound is larger than 15MB - the
execution time of BMS-CnC in these cases becomes smaller
than the CnC parallel execution, even though the actual
program footprint is the same. We believe that the per-
formance beneÞt comes from improved cache locality in the
BMS schedules.

The Standard Task Graph (STG) Set [49] provides a
set of random task graphs from which we picked the largest
(STG 59), shown in Figure 3g. Since STG graphs do not
contain any work, we used a Þxed amount of computation
for each task and a Þxed size for each item. In both cases,
there is su!cient parallelism to hide the BMS constraints up
to the boundary condition where BMS cannot Þnd a valid
schedule. There is no loss of performance from using BMS
with the tightest memory bound, which is lower than serial
execution memory. For these graphs, BMS is able to o"er
the best of both worlds - the footprint of serial execution
with the performance of parallel execution.

In summary, BMS shows the ability to control the trade-
o" between parallelism and memory usage. Furthermore,
this trade-o" is not linear Ñ there is a Ósweet spotÓ in the
memory bound space where BMS enables most of the per-
formance of the unbounded memory parallel execution with
only a small increase in memory relative to the serial execu-
tion. To further illustrate this, Table 4, shows the memory
requirements of BMS-CnC when its speedup is 90%, 50%
and 10% of the parallel CnC speedup. The values are per-
centages of the memory di"erence between parallel and se-
rial executions. For example, 0% means the BMS-CnC pro-
gram does not require more memory than serial execution,
while 100% would mean that the memory use matches the
memory utilization of parallel execution (maximum memory
increase).
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(a) Smith Waterman
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(b) Blackscholes
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(c) Cholesky Factorization
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(d) Merge Sort
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(e) Gauss-Jordan Elimination
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(f) Standard Task Graph (STG) 58
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(g) Standard Task Graph (STG) 59

Figure 3: BMS-CnC executor run-time (the red line) as a function of memory bound for each of the bench-
marks. BMS-CnC is able to enforce memory bounds down to the serial execution footprint and even lower
for Gauss-Jordan and STG 58 and 59. OpenMP results included where available.
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(e) Gauss-Jordan Elimination

!"#$%

!"&$%

!"'$%

!'!$%

!'($%

!'#$%

!"#$% !"&$% !"'$% !'!$% !'($% !'#$%

!"
#$

%
&

'()
&

*#
)+

,-
)

.#*'/0)1'%(2)+.3-)

)*+,+-+%

+-+%./0123%

+-+%420233/3%

(f) Standard Task Graph (STG) 58

!"#$%

!"&$%

!"'$%

!'!$%

!'($%

!'#$%

!"#$% !"&$% !"'$% !'!$% !'($% !'#$%

!"
#$

%
&

"&
'()

%
%

*+
,-

%

+"&'()%.'/01%*+,-%

)*+,-.-%

-.-%/0102232%

-.-%431502%

(g) Standard Task Graph (STG) 59

Figure 4: Actual peak memory as a function of memory bound for each of the benchmarks.



Benchmark Type Graph
vertices

Source Input parameters Schedule reuse conditions

Smith
Waterman

biomedical 5002 in-house
2 sequences of 70000 length
and tile size (2000! 2000)

identical tile sizes
identical sequence sizes

Blackscholes Þnancial 6730
Intel CnC [ 33]

Parsec [6]
number of options (25.6M)

and option data
identical number of options

Cholesky dense algebra 41558
Intel CnC [ 33]

Buttari [ 14]
input matrix (12000 ! 12000)

and tile size (125 ! 125)

identical tile sizes
identical matrix

sizes
Gauss-Jordan dense algebra 8450 Intel CnC [ 33]

input matrix (4096 ! 4096)
and tile size (256 ! 256)

identical tile sizes
identical matrix sizes

Merge Sort recursive 3582 in-house vector data (2 25 integers) identical input array sizes

STG
sparse task graph 198 STG [49] graph shape identical graph shape
fpppp task graph 647 STG [49] graph shape identical graph shape
58, 59 task graph 5402 STG [49] graph shape identical graph shape

Table 3: Benchmarks, their inputs, computation graph sizes and the schedule reuse conditions. The corre-
sponding results are shown in Figure 3.

Benchmark
BMS-CnC memory (%)

when Speedup is
90% 50% 10%

Smith-Waterman 48.8 10.6 0.0
Blackscholes 93.2 10.8 1.4
Cholesky 84.6 46.2 0.0
Gauss-Jordan 0.0 0.0 0.0
Merge Sort 12.0 0.9 0.0
STG 58 12.0 0.0 0.0
STG 59 22.2 0.0 0.0

Table 4: Memory consumption for BMS-CnC when
it has 90%, 50% and 10% of the parallel CnC
speedup. Values are percentages of the additional
memory required by parallel execution - 0% means
no increase in footprint, 100 % means maximum in-
crease (same footprint as parallel execution).

10.3 OpenMP comparison
OpenMP results have been included in Figure 3 where ex-
ternal implementations of the same benchmarks were avail-
able. One interesting pattern is that the OpenMP mem-
ory footprint does not vary between the serial and paral-
lel executions because OpenMP encourages programmers to
parallelize computation loops while the memory allocation
and de-allocation are usually performed outside parallel re-
gions. In BMS-CnC, item lifetime is minimized by allocat-
ing items only when needed and by automatically collecting
them after their last use.For Smith-Waterman and Blacksc-
holes, BMS-CnC o"ers similar performance with OpenMP
while enabling considerable memory savings. For Blacksc-
holes, for example, OpenMP has a performance advantage
of under 10%, but requires twice the memory of CnC, since
it pre-allocates all the memory to reduce overhead.

Because the OpenMP implementation of Cholesky exploits
less parallelism (barrier style versus dataßow) so so it has a
lower memory footprint and lower performance than CnC.

10.4 Minimum memory evaluation
To identify how close the BMS heuristic approach can be to
the absolute minimum memory footprint possible, we fed the
ILP formulation of the problem to the commercial Gurobi

Bench Input Graph
Nodes

Min. mem. Bounds
(MB) (MB)

B
M

S

IL
P

S
tr

ah
le

r

Lo
ca

l

Smith
Water-
man

small 52 26.6 26.6 15.2 15.2
med 100 34.2 *34.2 19.0 15.2

large 2452 141.0 *141.0 22.8 15.2

Cholesky
small 315 0.6 0.6 0.1 0.6
med 1907 8.2 8.2 0.2 8.2

large 4555 403.8 NA 1.4 403.8

Black
scholes

small 402 63.2 63.2 1.1 63.2
med 802 125.6 125.6 1.2 125.6

large 1602 250.4 250.4 1.2 250.4

Gauss
Jordan

small 22 62.5 62.5 25.0 62.5
med 65 150.0 125.0 37.5 125.0

large 146 250.0 *225.0 50.0 212.5

Merge
Sort

small 222 0.9 0.9 0.9 0.4
med 7166 1.5 1.5 1.5 0.4

large 14334 1.6 1.6 1.6 0.4

STG
sparse 198 17.6 14.9 1.2 14.9
fpppp 647 57.4 *57.4 1.2 24.9

59 5406 468.0 NA 1.8 83.8

Table 5: The minimum memory with heuristic BMS
and with ILP and the lower bounds fed to ILP. Cells
are marked with * when ILP timeouts.

solver which Þnds Þnd the minimum possible footprint. The
results are shown in Table 5. For small and medium problem
sizes, both the ILP and BMS approaches can enforce the
minimum memory footprint possible, but there are some
examples, such as Gauss Jordan, where ILP can obtain a
better bound that heuristic BMS.

On larger graphs, the ILP solver may run out of memory or
not Þnish before the 5 hour cuto". This happens in cases
where the two lower bounds are much smaller than the ac-
tual feasible minimum memory. We analytically discovered
that in 3 out of 4 cases when this happened, the ILP had
already found the minimum memory schedule, but had not
proved its optimality before running out of time. BMS is
capable of Þnding a schedule with minimum bound in all
but 4 out of the 18 cases.



Bench Input
Graph Time (s)
nodes BMS ILP hot ILP

Smith
Waterman

small 52 0.2 1.0 3.6
med 100 0.7 148 189.51

large 2452 3.59 NA NA

Cholesky
small 315 0.0 0.7 0.4
med 1907 0.1 7920 281

large 4555 3.6 NA NA

Blackscholes
small 402 0.1 5403 5
med 802 0.1 NA 16

large 1602 250.4 NA 1189

Gauss
Jordan

small 22 0.0 0.0 0.0
med 65 0.1 155 44

large 146 0.1 NA NA

Merge Sort
small 222 0.1 40 10
med 7166 4.1 336 18.61

large 14334 8.7 NA 28.22

STG
sparse 198 1.1 200 37

fppp 647 2.5 NA NA
59 5406 69.4 NA NA

Table 6: Performance evaluation of heuristic BMS
and ILP with and without hot start. Even with hot
start, the ILP approach cannot handle large graphs.

10.5 Runtime comparison of
ILP and heuristic BMS

Table 6 shows the run time of the BMS inspector. The ILP
approach can handle graphs of up to tens of thousands of
vertices, but there are some examples where it either runs
out of memory or reaches the 5 hour timeout. However,
the hot start optimization in which we provide the heuristic
BMS schedule as initial solution for the ILP solver along
with the ILP formulation, leads to a considerable speedup
and in some cases, such as Blackscholes for medium and large
inputs, this avoids a timeout. Heuristic BMS is fast for all
graph sizes, but for tight bounds may need to be followed by
the hot ILP execution if it cannot Þnd a suitable schedule.

The most closely related previously published results are for
Þnding the minimum numbers of registers needed to execute
instruction graphs whose size is in general much smaller than
the computation graph sizes. The only public graph and
ILP solving time we could Þnd is from the work of Chang
et al. [18] and has only 12 vertices. On this graph, their
ILP formulation takes one minute (on their 1997 machine),
while both the heuristic BMS and ILP BMS Þnish in under
a second (on our system).

10.6 Inspector phase time evaluation
The inspector phase consists of building the computation
graph and running the BMS algorithm. Schedule caching
removes the overhead associated with both these stages and
adds some overhead of its own (for hashing the schedules
and loading them from disk). Table 7 shows the execution
time of the inspector relative to the serial execution. For
the BMS runtime we include the smallest and largest time
encountered. The reason for this variation is that BMS may
take more time for tighter bounds, since the Þrst schedules
attempted will fail to observe the memory bound. From the
table, we see that graph construction can take up to 20%
of execution time and the maximum time needed to run the

Benchmark
Graph
creation(%)

BMS Algorithm
Min(%) Max(%)

Smith-
Waterman

0.5 17.8 98.1

Blackscholes 3.3 2.1 29.0
Cholesky 2.9 3.8 99.4
Gauss Jordan 20.3 6.6 94.0
Merge Sort 19.8 20.0 310.2
STG 58 0.5 1.0 109.2
STG 59 0.1 0.7 42.5

Table 7: Timing results for the inspector (graph cre-
ation and BMS scheduling), as percentages of the
serial execution time.

BMS algorithm can be 3! larger than the serial execution
time. Schedule caching is therefore valuable in amortizing
the potentially large overhead of the inspector.

10.7 Large memory experiment
For systems without support for paging to disk, BMS en-
ables the execution of programs that would otherwise crash
attempting to use more than the available memory, but how
does the paging mechanism a"ect the BMS results?

We analyze application behavior on workloads that require
disk paging by using a larger input size for the Smith Wa-
terman application. The results in Figure 5 include the
BMS performance for 270, 280 and 310 tiles of the same
size, and the graphs show interesting changes relative to
Figure 3a. For very tight memory bounds, the BMS-CnC
performance is close to serial, because sequential execution is
needed to reach the desired memory bounds. As the bound
gets larger, performance increases due to more parallelism,
until it reaches a performance sweet-spot. This sweet-spot
is generally close to the physical memory size (32GB), but
its exact location depends on how close the enforced max-
imum memory bound matches the actual memory used at
run-time.

Increasing the memory bound even more leads to a perfor-
mance degradation because disk swapping starts being used.
The last part of the graph shows constant time because the
program has already reached its parallel footprint and giving
a larger bound does not a"ect the schedule any more. The
sweet-spot enabled by BMS leads to 39% faster execution
compared to parallel CnC, showing that BMS can increase
performance and lower the memory footprint of applications
with large memory requirements.

Comparing the results for the three runs which use inputs
of increasingly large sizes (270, 280 and 310 input tiles),
we notice that all three have similar curves. Interestingly,
the fraction of memory saved by using the BMS sweet-spot
instead of parallel execution increases with the input size.
The memory savings reach 34% for 310 tiles.

11. RELATED WORK
To the best of our knowledge, this work is the Þrst to tackle
the problem of scheduling with a Þxed memory bound in
the context of dynamic task scheduling, but there is re-
lated work on amortized analysis of memory consumption
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Figure 5: Smith-Waterman results on large inputs (270, 280 and 310 tiles). BMS enables the use of a sweet-
spot with good performance and low footprint at the same time. The physical memory size is 32 GB and the
computation graph for 310 input tiles has 192,202 nodes.

for parallel programs. Burton [ 13] was the Þrst to propose
bounds on the memory complexity of dynamically scheduled
parallel computations. The asymptotic memory complexity
obtained was O(s ! p), where s is the serial memory foot-
print and p is the number of processors. Simpson and War-
ren [47] present a survey of work in this area. Blelloch et
al. [8], Narlikar and Blelloch [ 40], Blelloch et al. [ 7] and Fa-
tourou [ 21] identiÞed increasingly better bounds. The best
memory bounds obtained are directly proportional to the
memory consumption of a particular serial schedule and in-
clude at least an additive factor proportional to the critical
path of the computation. In contrast to these approaches in
which bounds are dependent on the memory consumption of
the particular serial order of tasks and on the number of pro-
cessors available, BMS-CnC considers the maximum foot-
print a hard upper bound for execution. Compared to on-
the-ßy schedulers with asymptotic memory bounds, we can
impose Þxed memory bounds and work around the on-the-
ßy restriction by using the inspector-executor model. This
enables us to use the whole computation graph in schedu-
ling, e"ectively turning the scheduling Òo#ineÓ. Because of
this, BMS can handle even the worst case (adversary picks
worst task spawn ordering in the input program), that could
lead these schedulers to unnecessarily large footprints. Also,
the performance of BMS is independent of the order of task
spawning in the programmer-written schedule. On the other
hand, they can o"er performance guarantees and have wider
applicability because of their less restrictive programming
model, on-the-ßy approach and no inspector overhead. In
its view of performance, BMS-CnC relates to work-stealing
schedulers such as in Cilk [25] through its philosophy of
starting with an application-deÞned parallel slack and de-
creasing it to levels that guarantee bounded-memory exe-
cution. Even with this restriction, on systems with good
processor-memory balance, the assumption of parallel slack
should not be a"ected by BMS. Once the BMS transfor-

mation is done, the application is sent to a work stealing
scheduler which ensures provable performance bounds for
the modiÞed computation graph.

In traditional work-stealing, once one a task has been exe-
cuted, it cannot be undone. This may lead to cases where,
once a partial schedule has been executed, no remaining
scheduling option can Þt the memory bound. Fixing this
issue while still using work stealing would require backtrack-
ing, but BMS achieves the same result, more e!ciently, by
exploiting the computation graph. Other projects [ 30, 10]
analyze the memory consumption of serial programs. Other
projects [30, 10, 31, 15] analyze the memory consumption
of serial programs, but this is a di!cult problem to solve
accurately with only static information. The techniques are
expensive, based on linear programming, but only need to
be computed once per application, compared to the inspec-
tor/executor based approach where the valid schedules to be
computed once for each computation graph encountered.

BMS is a novel application of the inspector/executor system
proposed by Salz [44] who used it to e!ciently parallelize
irregular computations. Salz, along with most other inspec-
tor/executor works amortize the cost of the inspection across
multiple executions of a loop. We use schedule caching in-
stead, as in out case there usually are no iterations. Based
on inspector/executor, Fu and Yang propose the RAPID
system for distributed computation [ 26] which bounds the
memory assigned to copies of memory on each node, but
does not bound the footprint of the program. RAPID is
similar to BMS-CnC in that it enables inspection of task
based programs, but BMS-CnC can take advantage of more
scheduling freedom because it lacks anti and output depen-
dences. In a follow-up work [27] inspector/executor is used
to bound the memory assigned to copies of data in the dis-
tributed environment, but not the total footprint of a paral-



lel program. In their static scheduling approach, each data
object is assigned a home node on which the object is per-
sistent, but objects also may be sent on remote nodes where
they are volatile. The work proposes algorithms to reduce
the footprint of volatile objects on each individual node -
a problem speciÞc to the distributed computation model.
They separates the computation into slices that access the
same data; slices have the characteristic that on each pro-
cessor only volatile data from the currently executing slice is
needed. By scheduling slices to nodes sequentially, they ob-
tain the main result that, for a subset of applications such as
sparse LU factorization, only one volatile variable needs to
be stored per processor, for a total footprint of O(S1/p + 1)
per processor. The S1 factor is considered the serial foot-
print for permanent data that is never collected Ñ the prob-
lem of deallocating objects from their home is not consid-
ered, which simpliÞes matters, as is the order of execution
of tasks inside a slice which also a"ects the total memory
footprint. Because it is meant for use in cases where the
graph size is limited, they do not consider approaches that
limit the memory footprint of the inspector.

The BMS problem is related to the widely-studied problems
of register su!ciency and combined instruction scheduling
and register allocation. Barany and Krall [ 2] propose a type
of code motion to decrease spills by using integer program-
ming to identify the schedules that reduce overlapping life-
times. Pinter [ 42] identiÞed the fact that some variables
in the program must have overlapping lifetimes while some
donÕt need to which is an observation that e used in our ILP
optimizations; he builds a parallelizable interference graph
including Òmay overlapÓ edges to ensure that his register al-
location does not restrict schedules. In the same context
of register allocation and instruction scheduling, Norris and
Polloc [41] use the parallelizable interference graph and add
data-dependence graph edges (similar to our serialization
edges) to remove possible interference. loops. The CRISP
project [39] introduced an analytical cost model for balanc-
ing register pressure and instruction parallelism goals in a
list scheduler which inßuenced the schedule relaxation tech-
nique we propose.

Ambrosch et al. [1] propose starting from the minimal inter-
ference graph which only includes edges between live ranges
that must overlap. dependence edges corresponding to ranges
assigned the same color, which is the same condition we use
when inserting serialization edges. They need to recompute
the interference graph when adding such edges, but BMS-
CnC does not su"er from this disadvantage. Govindarajan
et al. [29] perform scheduling to minimize the number of reg-
isters used by a register DDG, an approach called minimum
register instruction sequence (MRIS). BMS and MRIS have
considerable di"erences:

¥ di!erent scalability requirements: MRIS has been tar-
geted to basic block DDGs consisting of tens of nodes,
whereas BMS must support tens of thousands of nodes,
so the BMS heuristics trade accuracy for performance.

¥ di!erent reuse models: Because BMS works on mem-
ory instead of registers, the input and output data of
a task cannot share the same memory slot, so lineages

cannot be formed. Without lineages, coloring the in-
terference graph of the computation graph of common
applications would take more memory than the origi-
nal footprint of the program.

¥ di!erent objectives: While MRIS simply minimizes the
number of registers, BMS the best schedule for a given
memory bound. The MRIS minimization objective
leads to sacriÞces of parallelism that are unnecessary
for BMS. For example, value chains are created by in-
serting sequencing edges that force a particular con-
sumer to execute last; BMS avoids this restriction of
parallelism by using multiple serialization edges.

The URSA project [ 5] compares various approaches for com-
bined register allocation. Touati [ 50] proposes the use of
serialization arcs to decrease the number of required regis-
ters.There are multiple related projects that apply optimal
techniques [53, 3, 36, 4, 38]) for scheduling or register allo-
cation, but a direct comparison is di!cult since the objective
and constraints di"er.

BMS-CnC is the Þrst system that enables the reuse of in-
spector/executor results across application runs, but there is
related work in the idea of schedule memoization [19]. When
ensuring program correctness through symbolic execution,
the principle of schedule memoization is the following: be-
cause the schedule space is very large, it may be intractable
to test all schedules for correctness. Instead, a few schedules
can be sampled, checked for correctness, memoized and then
subsequent executions can be forced to follow one of them.

Schedule memoization relies on symbolic execution to Þnd
the set of constraints that, applied to the input, are su!-
cient to match it to a schedule and follow that exact schedule
for all subsequent runs in order to make the schedule deter-
ministic. On the other hand, schedule reuse does not limit
execution to a single schedule, because our schedules are
sets of constraints and not total ordering of synchronization
operations. Schedule memoization can enforce either a to-
tal ordering of synchronization events or a total ordering of
both synchronization and data accesses, but enforcing mem-
ory access order is expensive; BMS-CnC can cheaply enforce
both, since data and synchronization are coupled, but at a
coarser granularity which ensures overhead is low.

12. CONCLUSIONS
This paper proposes a new scheduling technique to Þnd
memory-e!cient parallel schedules for programs expressed
as dynamic task graphs. Our technique, called bounded
memory scheduling, enforces user-speciÞed memory bounds
by restricting schedules and trading o" parallelism when nec-
essary. The evaluation on several benchmarks illustrates its
ability to accurately control the memory footprint while ex-
ploiting the parallelism allowed by the memory bound.

To make use of an inspector/executor approach in the con-
text of dynamic task scheduling, we presented an e!cient
schedule reuse mechanism. This technique amortizes the in-
spector overhead by reusing schedules across executions of
the application that exhibit the same computation graph Ñ
even when the input parameters change.
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APPENDIX
A. UNOPTIMIZED ILP FORMULATION FOR THE MEMORY MINIMIZATION PROBLEM
Table 8 shows all the variables used in the unoptimized formulation of the problem and Table 9 shows the constraints.

A.1 Sequential schedule
For a sequential schedule, we need the contraint that no two tasks execute in the same cycle. This constraint will be dropped
for the Þnal ILP, but is very helpful in debugging, and may rarely lead to faster solve time.

&task1 and &task2 we want issuetask1 '= issuetask2

To express this in ILP, let indicator1 , and indicator2 be new binary variables. Then:

!
"#

"$

issuetask1 " issuetask2 " MAX ! indicator1 $ " 1;
issuetask2 " issuetask1 " MAX ! indicator2 $ " 1;
indicator1 + indicator2 $ 1;

A.2 DeÞnition of item birth
Each item has a corresponding variable whose value is the time when the item is created. When item is produced by task
producer, then:

¥ birth item = issueproducer

A.3 DeÞnition of item death
Each item has a variable that records its time of death - the time after all its consumers have executed and the memory can
safely be reclaimed. Thus, &consumer task that reads item it , then:

¥ deathit # issueconsumer

A.4 Data dependence
The schedule constraints are data dependences only (CnC does not use synchronization edges other than data dependence).
Thus, &producer and &consumer with ( producer ( consumer) then:

¥ issueproducer < issue consumer

A.5 Color assignment
What this constraint expresses is that if two items are assigned to the same color, then one must die before the other one is
created or the other way around.

¥ if ( register it 1 == register it 2) then
deathit 1 < birth it 2 ||deathit 2 < birth it 1

A.6 DeÞne max_bandwidth
The maximum bandwidth used by the schedule should be larger than the largest value of any color used. Thus, &it ) items:

¥ max bandwidth # register it

Variable Possible values Number Meaning

issuetask integer,
1..NO CYCLES

One per task In which cycle does task task issue?

birth item integer,
1..NO CYCLES

One per item In which cycle does item item get pro-
duced?

deathitem integer,
1..NO CYCLES

One per item In which cycle can item item be collected?

indicators group 1 binary 2 ! NO TASKS 2/ 2 Auxiliary variables.

registeritem integer,
1..NO ITEMS

One per item To which register is item item assigned?

indicators group 2 binary 4 ! NO ITEMS 2/ 2 Auxiliary variables.

Table 8: Types of variables used in the ILP formulation, along with their description.



Constraint name Number of constraints
No two tasks execute in the same cycle NO TASKS 2/ 2
DeÞnition of birth NO ITEMS
DeÞnition of death NO GETS
Data dependence NO GETS
Color assignment 5 ! NO ITEMS 2/ 2
Max bandwidth NO ITEMS

Table 9: Types of constraints used in the ILP formulation, along with their description.


