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1. Introduction

This paper addresses the problem of finding an evaluation order of the nodes in a given expression tree that minimizes
memory usage. The expression tree must be evaluated in some bottom-up order, i.e., the evaluation of a node cannot
precede the evaluation of any of its children. The nodes of the expression tree are large data objects whose sizes are given.
If the total size of the data objects is so large that they cannot all fit into memory at the same time, space for the data
objects has to be allocated and deallocated dynamically. Due to the parent-child dependence relation, a data object cannot
be deallocated until its parent node data object has been evaluated. The objective is to minimize the maximum memory
usage during the evaluation of the entire expression tree.

This problem arises, for example, in the accurate modeling of the electronic structure of atoms and molecules in
quantum chemistry [1,2] as well as in some computational physics codes modeling the electronic properties of
semiconductors and metals [3-5]. Computational approaches to modeling the structure and interactions of molecules, the
electronic and optical properties of molecules, the heat and rate of chemical reactions, etc., are crucial to the understanding
of chemical processes in real-world systems. Examples of applications include combustion and atmospheric chemistry,
chemical vapor deposition, protein structure and enzymatic chemistry, and industrial chemical processing. The
computational domain that we consider is also extremely compute-intensive and consumes significant computer
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resources at national supercomputer centers. Many of these codes are limited in the size of the problem that they can
currently solve because of memory and performance limitations.

In this class of computations, the final result to be computed can be expressed in terms of tensor contractions,
essentially a collection of multi-dimensional summations of the product of several input arrays. Due to commutativity,
associativity, and distributivity, there are many different ways to compute the final result, and they could differ widely in
the number of floating point operations required. Consider the following expression:

Sabij = ZAacik X Bpet X Cygic X Degel
cdefkl

where typical index ranges are on the order of tens to a few thousands. If this expression is directly translated into code
(with ten nested loops, for indices a—1I), the total number of arithmetic operations required will be 4 x N0 if the range of
each index a—I is N. Instead, the same expression can be rewritten by use of associative and distributive laws [6-8]:

Sawi=Y_| D <ZBbeﬂ X Dcdel) x Cygk | % Aqcik

ck df el

This corresponds to the formula sequence shown in Fig. 1(a) and can be directly translated into code as shown in Fig. 1(b).
This form only requires 6 x N® operations. However, additional space is required to store temporary arrays T 1 and T 2.
Often, the space requirements for the temporary arrays poses a serious problem. For this example, abstracted from a
quantum chemistry model, the array extents along indices a-d are the largest, while the extents along indices i-I are the
smallest. Therefore, the size of temporary array T 1 would dominate the total memory requirement.

Thus, although the latter form is far more economical in terms of the number of operations, its implementation will
require the use of temporary intermediate arrays to hold the partial results of the parenthesized array subexpressions.

One approach to reducing the memory requirements for the computation is through loop fusion. By merging the
common outer loops of the producer and consumer loop nests for an intermediate array, the dimensions corresponding to
the fused loops can be eliminated from the intermediate array. In our example, loop fusion allows T 1 to be reduced to a
scalar and T 2 to a 2-dimensional array without changing the number of operations, as illustrated in Fig. 1(c). Since
different fusion choices are often not mutually compatible, it is necessary to enumerate all fusion choices to find the loop
structure that minimizes the memory requirements [9-11].

If even after loop fusion, some intermediates do not fit in memory, it is necessary to tile these intermediates and move
tiles in and out of disk [12,13].

While loop fusion usually results in large memory reductions, in the context of tensor contractions it has a detrimental
effect: it reduces temporal and spatial locality. As a result, the computation can become significantly more expensive.

a b
T1=0; T2=0; S=0;
lealf = ZBbeﬂXDcdel for b, ¢, d, e, £, 1
el [ Tlpcds += Bbefl Decdel
T2pejk = ZlecdeCd_/j/’k for b, ¢, 4, £, j, k
df [ T2pcjk *+= Tlpcar Cafjk
f b b’ k] i b j k] k
Sabij = ZrzbcijAacik or @ € 1]
e [ Sabij += T2bcjk Aacik
C
S = 0;
for b, c
Tif = 0; T2f = O;
for 4, £
for e, 1
[ T1f += Bpefl Dcdel
for j, k

l T2fjx += T1f Carjk
for a, i, j, k
[ Sabij *= T2fjx Aacik

Fig. 1. Example illustrating use of loop fusion for memory reduction: (a) formula sequence; (b) direct implementation (unfused code); and (c) memory-
reduced implementation (fused).
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Fig. 2. An example expression tree.

E.g., while the tensor contractions in Fig. 1(b) can be implemented using index permutations and BLAS matrix
multiplications, which use the cache effectively, this is not possible anymore with the fused code in Fig. 1(c).

Since space allocated for an intermediate array can be deallocated as soon as the operation using the array has been
performed, the evaluation order affects the maximum memory requirements as well [14,11]. Our strategy is, therefore, to
attempt to reduce the memory requirements by improving the evaluation order first in the hope of avoiding loop fusion.
Even if loop fusion and disk /O become necessary, the improved evaluation order can reduce the memory pressure and
lead to less disk I/O.

In this paper, we focus on the problem of finding an evaluation order of the nodes in a given expression tree that
minimizes the dynamic memory usage. A solution to this problem would result in the generation of more efficient code for
evaluating expression trees, e.g., for computing tensor contraction expressions.

As an example of the memory usage optimization problem, consider the expression tree shown in Fig. 2. The size of
each data object is shown alongside the corresponding node label. Before evaluating a data object, space for it must be
allocated. This space can be deallocated only after the evaluation of its parent is complete. The data objects for leaf nodes
are assumed to be generated or read in as needed. Therefore, space for them is allocated and deallocated in the same way.
There are many allowable evaluation orders of the nodes. One of them is the post-order traversal <{A,B,C,D,E,F,G,H,I> of
the expression tree. It has a maximum memory usage of 45 units. This occurs during the evaluation of H, when F, G, and H
are in memory. Other evaluation orders may use more memory or less memory. Finding the optimal order
<(C,D,G,H,A,B,E,F,I'>, which uses 39 units of memory, is not trivial.

A simpler problem related to the memory usage minimization problem is the register allocation problem for binary
expression trees in which the sizes of all nodes are unity. It has been addressed in [15,16] and can be solved in @(n) time,
where n is the number of nodes in the expression tree. But if the expression tree is replaced by a directed acyclic graph
(in which all nodes are still of unit size), the problem becomes NP-complete [17]. The algorithm in [16] for expression trees
of unit-sized nodes does not extend directly to expression trees having nodes of different sizes. Appel and Supowit [18]
generalized the register allocation problem to higher degree expression trees of arbitrarily sized nodes. However, they
restricted their attention to solutions that evaluate subtrees contiguously, which could result in non-optimal solutions
(as we show through an example in Section 2). The generalized register allocation problem for expression trees was
addressed in the context of vector machines in [19,20].

Our approach is different from out-of-core solutions. There the problem is to minimize disk I/O under a given memory
constraint (not to minimize memory) by restructuring the computation or with the help of data structures. We attempt to
avoid an out-of-core computation by minimizing memory. If this is unsuccessful, we need to resort to other techniques,
such as tiling, for producing an out-of-core solution [12,13].

The rest of this paper is organized as follows. In Section 2, we formally define the memory usage optimization problem
and make some observations about it. Section 3 presents an efficient algorithm for finding the optimal evaluation order for
an expression tree. In Section 4, we prove that the algorithm finds a solution in @(nlog? n) time for an n-node expression
tree. The correctness of the algorithm is proved in Section 5. In Section 6, we show experimental results. Section 7 contains
conclusions and discusses possible future work.

2. Problem statement

We address the problem of optimizing the memory usage in the evaluation of a given expression tree whose nodes correspond
to large data objects of various sizes. Each data object depends on all its children (if any), and thus can be evaluated only after all
its children have been evaluated. We assume that the evaluation of each node in the expression tree is atomic. Space for each data
object is dynamically allocated/deallocated in its entirety. Internal node objects must be allocated before their evaluation begins,
and each object must remain in memory until the evaluation of its parent is completed. Similarly, a leaf node object is allocated
before it is created or read from disk and deallocated after the evaluation of its parent is completed. The goal is to find an
evaluation order of the nodes that uses the least amount of memory. Since an evaluation order is also a traversal of the nodes, we
will use these two terms interchangeably.
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We define the problem formally as follows:

Given a tree T and a size v.size for each node v € T, find a computation of T that uses the least memory, i.e., an
ordering P = {v1,v,...,Uy» of the nodes in T, where n is the number of nodes in T, such that

1. for all v;,v}, if v; is the parent of v;, then i > j; and
2. maxy,cp{himem(v;,P)} is minimized, where
himem(v;,P) = lomem(v;_;,P)+ v;.size
himem(v;,P)=3" chiia v, of v, Vj-size if i>0

lomem(v;,P) =
wel) {o ifi=0

Here, himem(v;,P) is the memory usage during the evaluation of v; in the traversal P, and lomem(v;,P) is the memory usage
upon completion of the same evaluation. These definitions reflect that we need to allocate space for v; before its evaluation, and
that after evaluation of v;, the space allocated to all its children may be released. For instance, consider the post-order traversal
P= (A,B,C,D,E,F,G,H,I) of the expression tree shown in Fig. 2. During and after the evaluation of A, A is in memory. So,
himem(A,P) = lomem(A,P) = A.size = 20. For evaluating B, we need to allocate space for B, thus himem(B,P)=
lomem(A,P) + B.size = 23. After B is obtained, A can be deallocated, giving lomem(B,P) = himem(B,P)—A.size = 3. The memory
usage for the rest of the nodes is determined similarly and shown in Fig. 3.

The post-order traversal of the given expression tree, however, is not optimal in memory usage. In this example, none of
the traversals that visit all nodes in one subtree before visiting another subtree is optimal. There are four such traversals:
(A,B,C,D,EF,GH,>, <CD,EABF,GH,I>, <GHABC,D,EF,I> and <G,H,C,D,E,AB,F,I>.1f we follow the traditional wisdom
of visiting the subtree with the higher memory usage first, as in the Sethi-Ullman algorithm [16], we obtain the best of
these four traversals, which is {(G,H,C,D,E,A,B,F,I'>. Its overall memory usage is 44 units, as shown in Fig. 4, and is not
optimal. The optimal traversal, which uses only 39 units of memory, is <C,D,G,H,A,B,E,F,I> (see Fig. 5). Notice that it
‘jumps’ back and forth between the subtrees. Therefore, any algorithm that only considers traversals that visit subtrees
contiguously may not produce an optimal solution.

The memory usage optimization problem has an interesting property: an expression tree or a subtree may have more
than one optimal traversal. For example, for the subtree rooted at F, the traversals < C,D,E,A,B,F» and <{C,D,A,B,E,F) both

I Node } himem | deallocate ] lomem |
A 0+20=20 - 20-0=20
B 20+3=23 A 23-20=3
C 3+30=33 - 33-0=33
D 33+49=42 C 42-30=12
E 12+ 16 =28 D 28—9=19
F 19+15=34 B,E 34-3-16=15
G 15+25=40 - 40-0= 40
H 40+ 5=45 G 45-25=20
1 20+ 16 = 36 F.H 36-15-5=16

| max j 45

Fig. 3. Memory usage of a post-order traversal of the expression tree in Fig. 2.

a b

| Node | himem [ lomem |
G 25 25 9:16
H 30 5
c | 3 | 3 8 (\2 5
D 44 14 ’
E 30 21 773 5:16 1:25
A 41 41 ‘ ‘
B 44 24 6150 4ty
F 39 20 ' ‘
1 36 16 330

| max | 44 [ ’ '

Fig. 4. Best traversal with contiguous evaluation of subtrees of the expression tree in Fig. 2: (a) memory usage and (b) order of node visits.
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a b

\ Node | himem \ lomem |
C 30 30 9:16
D 39 9
G 34 34 8 {\4 5
H 39 14 /\ ‘
A 34 34 6:3 7:16 3:25
B 37 17
E 33 24 5:20 2:9
F 39 20
1 36 16 0

‘ max | 39 ‘ | ’

Fig. 5. Optimal traversal of the expression tree in Fig. 2: (a) memory usage and (b) order of node visits.

use the least memory space of 39 units. One might attempt to take two optimal subtree traversals, one from each child of a
node X, merge them together optimally, and then append X to form a traversal for X. But, this resulting traversal may not be
optimal for X. Continuing with the above example, if we merge together < C,D,E,A,B,F>» and < G,H) (which are optimal for
the subtrees rooted at F and H, respectively) and then append I, the best we can get is a sub-optimal traversal
{G,H,C,D,E,A,B,F,I> that uses 44 units of memory (see Fig. 4). However, the other optimal traversal < C,D,A,B,E,F> for the
subtree rooted at F can be merged with {GH) to form <C,D,GH,A,B,E,F,I> (with I appended), which is an optimal
traversal of the entire expression tree. Thus, locally optimal traversals may not be globally optimal. In the next section, we
present an efficient algorithm that finds traversals that are not only locally optimal but also globally optimal.

3. An efficient algorithm

We now present an efficient divide-and-conquer algorithm that, given an expression tree whose nodes are large data
objects, finds an evaluation order of the tree that minimizes the memory usage. For each node in the expression tree, it
computes an optimal traversal for the subtree rooted at that node. The optimal subtree traversal that it computes has a
special property: it is not only locally optimal for the subtree, but also globally optimal in the sense that it can be merged
together with globally optimal traversals for other subtrees to form an optimal traversal for a larger tree that is also
globally optimal. As we have seen in Section 2, not all locally optimal traversals for a subtree can be used to form an
optimal traversal for a larger tree.

The algorithm stores a traversal not as an ordered list of nodes, but as an ordered list of indivisible units or elements. Each
indivisible unit contains an ordered list of nodes with the property that there necessarily exists some globally optimal
traversal of the entire tree wherein this sequence appears undivided and in the same order. E.g., if there is an optimal
traversal of the entire expression tree in which B is evaluated immediately following A, the algorithm will construct an
indivisible unit containing the nodes AB. (For clarity, we write node lists in an indivisible unit as strings). Therefore, as we
show later, inserting any node in between the nodes of an indivisible unit does not lower the total memory usage.

An element initially contains a single node. But as the algorithm goes up the tree merging traversals together and
appending new nodes to them, elements may be appended together to form new elements containing a larger number of
nodes. Moreover, the order of indivisible units in a traversal stays invariant, i.e., the indivisible units must appear in the
same order in some optimal traversal of the entire expression tree. This means that indivisible units can be treated as a
whole and we only need to consider the relative order of indivisible units from different subtrees.

Each element (or indivisible unit) in a traversal is a (nodelist, hi, lo) triple, where nodelist is an ordered list of nodes, hi is
the maximum memory usage during the evaluation of the nodes in nodelist, and lo is the memory usage after those nodes
are evaluated. Using the terminology from Section 2, hi is the highest himem among the nodes in nodelist, and lo is the
lomem of the last node in nodelist.

For example, the traversal {(CD,39,9),(E,25,16) ) indicates that the maximum memory usage during the evaluation of C
and D is 39 units of memory and that the result of the evaluation occupies 9 units. Similarly, during the evaluation of E, 25
units are needed and the result occupies 16 units. While C and D can be evaluated consecutively in an optimal traversal of
the entire expression tree, nodes from other subtrees might be evaluated between D and E.

The algorithm always maintains the elements of a traversal in decreasing hi and increasing lo order, which implies in
order of decreasing hi—lo. In Section 5, we prove that arranging the indivisible units in this order minimizes memory
usage.

Before formally describing the algorithm, we illustrate how it works with an example. Consider the expression tree
shown in Fig. 2. We visit the nodes in a bottom-up order and compute the optimal traversals for the subtrees rooted at each
node as shown in Fig. 6. Since A has no children, the optimal traversal for the subtree rooted at A, denoted by A.seq, is
{(A,20,20) >, meaning that 20 units of memory are needed during the evaluation of A and immediately afterwards. To form
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Node v | Subtree traversals merged in | Optimal traversal v.seq
decreasing hi — lo order

A {(A, 20, 20)) {(A,20,20))

B {(A,20,20),(B,23,3)) ((AB,23,3))

C {(C,30,30)) {(C, 30, 30))

D {(C,30,30),(D,39,9)) {(CD,39,9))

E ((CD,39,9),(E, 25, 16)) {(CD,39,9),(E,25,16))

F {((CD,39,9),(AB,32,12), {(CD,39,9),(ABEF, 34,15))
(E,28,19), (F,34,15))

G (G, 25,25)) (G, 25,25))

H ((G,25,25),(H, 30,5)) {(GH, 30, 5))

1 {((CD,39,9),(GH, 39, 14), ((CDGHABEFI,39, 16))
(ABEF, 39,20), (1,36, 16))

Fig. 6. Optimal traversals for the subtrees in the expression tree in Fig. 2.

B.seq, we take A.seq, append a new element (B,3+20,3) (the hi of which is adjusted by the lo of the preceding element), and
get ((A,20,20),(B,23,3)>. Whenever two adjacent elements are not in decreasing hi and increasing lo order, we combine
them into one element by concatenating the nodelists and taking the highest hi and the second lo. Thus, B.seq becomes
{(AB,23,3) ). Similarly, we get E.seq = <{(CD,39,9),(E,25,16) >. Note that these two adjacent elements cannot be combined
because they are already in decreasing hi and increasing lo order. For node F, which has two children B and E, we merge
B.seq and E.seq in the order of decreasing hi—lo. The merged elements are in the order (CD,39,9), (AB,23+9,3+9), and
finally (E,25+ 3,16+ 3) with the hi and lo values adjusted by the lo value of the last merged element from the other subtree.
They are the three elements in F.seq after the merge as no elements have been combined so far. Then, we append to F.seq
the new element (F,15+19,15) for the root of the subtree. The new element is combined with the last two elements in
F.seq to ensure that the elements are in decreasing hi—lo order. Hence, F.seq becomes <(CD,39,9),(ABEF,34,15)>, a
sequence of only two indivisible units. The optimal traversals for the other nodes are computed in the same way and are
shown in Fig. 6. At the end, the algorithm returns the optimal traversal <{C,D,G,H,A,B,E,F,I> for the entire expression tree
(see Fig. 5).

We can visualize the elements in a traversal as follows. The first indivisible unit in a traversal contains the nodes from
the beginning of the traversal up to the last node with the highest himem and continues from there to contain the nodes up
to and including the last node with the lowest lomen. The highest himem and the lowest lomem become the hi and the lo
of the first indivisible unit, respectively. The same rules are recursively applied to the remainder of the traversal to form the
second element, and so on. This ensures that the indivisible units in the traversal are in decreasing hi and increasing lo
order.

Fig. 7 shows the algorithm. The input to the algorithm (the MinMemTraversal procedure) is an expression tree T, in
which each node v has a field v.size denoting the size of its data object. The procedure performs a bottom-up traversal of
the tree and, for each node v, computes an optimal traversal v.seq for the subtree rooted at v. For simplicity, we present the
algorithm using sequences of (nodelist, hi, lo) triples as the data structure for traversals. We will present a more efficient
data structure in the next section.

The optimal traversal v.seq for a node v is obtained by optimally merging together the optimal traversals u.seq for all
children u of v, and then appending v. At the end, the procedure returns a concatenation of all the nodelists in T.root.seq as
the optimal traversal for the given expression tree. The memory usage of the optimal traversal is T.root.seq[1].hi.

The MergeSeq procedure optimally merges two given traversals S1 and S2 and returns the merged result S. S1 and S2
are subtree traversals of two children nodes of the same parent. The optimal merge of sequences is performed in a fashion
similar to merge-sort. Elements from S1 and S2 are scanned sequentially and appended into S in the order of decreasing
hi—lo. This order guarantees that the indivisible units are arranged to minimize memory usage. Since S1 and S2 are formed
independently, the hi and lo values in the elements from S1 and S2 must be adjusted before they can be appended to S. The
amount of adjustment for an element from S1 (52) equals the lo value of the last merged element from S2 (S1), which is
kept in variable basel (base2).

The AppendSeq procedure appends the new element specified by the triple (nodelist, hi, lo) to the given traversal S.
Before the new element E is appended to S, it is combined with elements at the end of S whose hi is not higher than E.hi or
whose lo is not lower than E.lo. The combined element has the concatenated nodelist and the highest hi but the original E.lo.

This algorithm has the property that the traversal it finds for a subtree T’ is not only optimal for T" but must also appear
as a subsequence in some optimal traversal for any larger tree that contains T’ as a subtree. For example, E.seq is a
subsequence in F.seq, which is in turn a subsequence in I.seq (see Fig. 6).

4. Complexity of the algorithm

In the previous section, our algorithm has been presented using an abstract sequence notation so that the properties of
sequences of indivisible units are easy to see. If sequences were implemented as doubly linked lists and merged
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MinMemTraversal (7):
foreach node v in some bottom-up traversal of 7'
v.seq = ()
foreach child u of v // merge traversals from all children
v.seq = MergeSeq(v.seq, u.seq)
if lv.seql > O then /I'lxl is the length of x
base = v.seq[lv.seql].lo
else
base = 0
AppendSeq (v.seq, (v), v.size + base, v.size) /Il append parent node v
nodelist = ()
for i = 1 to IT.root.seql // flatten sequence of nodelists
nodelist = nodelist + T.root.seqli].nodelist /I + is concatenation
return nodelist /I memory usage is T.root.seq[1].hi

MergeSeq (S 1,52):
S = /IS will hold the merge result
i=j=1
basel = base2 = 0
while i ? 1S 1lor j?152l
if j>1S2lor (i ? 1S 1l and S 1[i].hi — S 1[i]l.lo > S2[ j].hi = S2[j].lo) then
/I § 2 is exhausted or S 1[i] has a larger hi — lo than S 2[]
// append indivisible unit from S'1 to §
AppendSeq (S, S 1[i].nodelist, S 1[i].hi + basel, S 1[i].lo + basel)
base2 = S 1[i].lo
i++
else
/I S 1 is exhausted or S 2[j] has a larger or equal /i — lo than S 1[i]
/I append indivisible unit from S2 to §
AppendSeq (S, S2[jl.nodelist, S 2[ jl.hi + base2, S 2[ j].lo + base2)
basel = §2[jl.lo
J++
end while
return S

AppendSeq (S, nodelist, hi, lo):

E = (nodelist, hi, lo) // new element to append to S

i=IS1

while i ? 1 and (E.hi ? S[i]l.hior E.lo ? S[i].lo)
// combine S [i] with E to keep S in decreasing hi and increasing lo order
E = (S[il.nodelist + E.nodelist, max(S [i].hi, E.hi), E.lo)
remove S [i] from S
i——

end while

S=S+E /1S 1is now i+ 1

Fig. 7. Procedure for finding an memory-optimal traversal of an expression tree.

sequentially, the worst-case complexity for an unbalanced n-node tree would be O(n?), since for every node a linear-time
merge operation would be performed.

With a more efficient data structure, the time complexity of our algorithm (the MemMinTraversal procedure) is
O log2 n) for an n-node expression tree. We represent a sequence of indivisible units as a red-black tree with the
indivisible units at the leaves. The tree is sorted in decreasing hi—lo order. In addition, the leaves are linked in sorted order
in a doubly linked list, and a count of the number of indivisible units in the sequence is maintained.

The cost of constructing the final evaluation order consists of the cost for traversing the expression tree, the cost for
building sequences of indivisible units, and the cost for combining indivisible units into larger indivisible units. The cost for
traversing the expression tree is linear, since MemMinTraversal visits each node in the expression tree only once. For
finding an upper bound on the cost of the algorithm, the worst-case cost for building sequences can be analyzed separately
from the worst-case cost for combining indivisible units.

The sequence for a leaf node of the expression tree can be constructed in constant time. For a unary interior node, we
call the AppendSeq procedure to append an element containing the node to the sequence of its subtree, which costs
O(logn) time for inserting the element in the red-black tree.

For an m-ary interior node, the MergeSeq procedure must merge the sequences of the subtrees by inserting the nodes
from the smaller sequences into the largest sequence. Inserting a node into a sequence represented as a red-black tree
costs O(logn) time. Since we always insert the nodes of the smaller sequences into the largest one, every time a given node
of the expression tree gets inserted into a sequence the size of the sequence containing this node at least doubles. Each
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node, therefore, can be inserted into a sequence at most O(log n) times, with each insertion costing O(logn) time. The cost
for building the traversal for the entire expression tree is, therefore, O(nlog? n).

Two individual indivisible units can be combined in the AppendSeq procedure in constant time. When combining two
adjacent indivisible units within a sequence, one of them must be deleted from the sequence and the red-black tree must
be re-balanced, which costs O(logn) time. Since there can be at most n—1 of these combine operations, the total cost is
O(nlogn). The cost of the whole algorithm is, therefore, dominated by the cost for building sequences, which is O(n log2 n.

Combining indivisible units into larger ones reduces the number of elements in the sequences and, therefore, the time
required for merging and combining sequences. In the best case, indivisible units are always combined such that each
sequence contains a single element. In this case, the algorithm only takes linear time.

In the worst case, a degenerate expression tree consists of small nodes and large nodes such that every small node has
as its only child a large node. A pair of such nodes will form an indivisible unit with the hi being the sum of the sizes of the
two nodes and the lo being the size of the small node. Such a tree can be constructed such that these indivisible units will
not further combine into larger indivisible units. In this case, the algorithm will result in a sequence of n/2 indivisible units
containing two nodes each. If such a degenerate expression tree is also unbalanced, the algorithm requires Q(nlog? n) time
for computing the optimal traversal.

5. Correctness of the algorithm

We now show the correctness of the algorithm. The proof proceeds as follows. Lemma 1 characterizes the indivisible
units in a subtree traversal by providing some invariants that are maintained by the algorithm. Lemma 2 shows that, once
formed, each indivisible unit can be considered as a whole. Lemma 3 deals with the optimal ordering of indivisible units
from different subtrees. Finally, using the three lemmas we prove as Theorem 4 the optimality of the traversal found by the
algorithm by arguing that any traversal of an expression tree can be transformed in a series of steps into the optimal
traversal found by the algorithm without increasing memory usage.

The first lemma establishes some important invariants about the indivisible units in an ordered list v.seq that
represents a traversal. The hi value of an indivisible unit is the highest himem of the nodes in the indivisible unit. The lo
value of an indivisible unit is the lomem of the last node in the indivisible unit. Given a sequence of nodes, an indivisible
unit extends to the last node with the lowest lomem following the last node with the highest himem. In addition, the
indivisible units in a sequence are in decreasing hi and increasing lo order.

Lemma 1. Let v be any node in an expression tree, S = v.seq, and P be the traversal represented by S of the subtree rooted at v,
i.e., P=S[1].nodelist+ - - - +S[|S|].nodelist. The algorithm maintains the following invariants:

For all 1 <i<|S|, let S[i].nodelist = {vq,V,, ...,vy > and vy, be the last node in S[i].nodelist that has the maximum himem
value, i.e., for all k <m, himem(v,,P) < himem(vy,,P) and for all k > m, himem(v,P) < himem(vy,,P). Then, we have,

1. S[i].hi = himem(vy,,P),

2. §[il.lo = lomem(vy,,P),

3. for all m <k < n, lomem(vy,P) > lomem(v,,P),
4. forall 1 <j<i,

(a) for all 1 <k <n, S[j].hi > himem(v,,P),
(b) for all 1 <k <n, S[j].lo <lomem(vy,P),
(¢) S[j]l.hi > S[i].hi, and

(d) Spjllo < S[i)lo.

Proof. The above invariants are true by construction. The invariants (1) and (2) are maintained by adding the appropriate
base value to the hi and lo arguments in the calls of AppendSeq. The invariant (3) is maintained by AppendSeq, and (4) is
maintained by the merge order in MergeSeq and by AppendSeq. O

The second lemma asserts the ‘indivisibility’ of an indivisible unit by showing that unrelated nodes inserted in between
the nodes of an indivisible unit can always be moved to the beginning or the end of the indivisible unit without increasing
memory usage. Thus, once an indivisible unit has been formed as part of the traversal of a subtree, we do not need to
consider breaking it up later for inserting nodes from another subtree. This lemma allows the MemMinTraversal algorithm
to treat each traversal as a sequence of indivisible units (each containing one or more nodes) instead of a list of the
individual nodes.

Lemma 2. Let v be a node in an expression tree T, S=v.seq, and P be a traversal of T in which the nodes from S[i].nodelist
appear in the same order as they are in S[i].nodelist, but not contiguously. Then, any nodes that are in between the nodes in
S[i].nodelist can always be moved to the beginning or the end of S[i].nodelist without increasing memory usage, provided that
none of the nodes that are in between the nodes in S[i].nodelist are ancestors or descendants of any nodes in S[i].nodelist.
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Proof. Let S[i].nodelist= {vq,...,Vn), Vo be the node before v, in S, v;;, be the node in S[i].nodelist such that for all k <m,
himem(vy,P) < himem(v,,P) and for all k > m, himem(v;,,S) > himem(v,,S). Let v'1,...,v’, be the ‘foreign’ nodes, i.e., the

nodes that are in between the nodes in S[i].nodelist in P, with v'y,...,v"; (not necessarily contiguously) before v, and
V'at1,...,Vp( NOt necessarily contiguously) after v,, in P. Let Q be the traversal obtained from P by removing the nodes in
S[il.nodelist. We construct another traversal P’ of T from P by moving v'q,...,vq to the beginning of S[i].nodelist and
Vat1,...,V to the end of S[i].nodelist. In other words, we replace <vi,...,V'1,....Va .. .sUms...sVas1s .- sUby...,Un» iN P
with <v'q,...,V¢,V1, ..., Um, ..., Un,Vas1,...,Vp, » to form P

Traversals P and P’ differ in memory usage only at the nodes {v, ...,vn,V'1,...,Vp}. P’ does not use more memory than P
because:

1. The memory usage for P’ at v, is the same as the memory usage for P at v, since himem(v,,P)=
himem(v,,S)+lomem(v’4,Q) = himem(v,,,P).

2. For all 1 <k <n, the memory usage for P’ at v, is no higher than the memory usage for P at vy, since himem(v,,S) <
himem(v,,,S) implies that himem(v,,P’) = himem(v,S)+lomem(v’4,Q) < himem(vy,,S)+lomem(v'q,Q) = himem(vp,, P).

3. For all 1<j<a, the memory usage for P’ at v’; is no higher than the memory usage for P at v';, since for all
1 <k <mlomem(v,S) < lomem(v,,S) (by invariant 4(b) in Lemma 1) implies himem(v’;,P’) = himem(v’;,Q)+
lomem(vy,S) < himem(v';,P).

4. For all a <j <b, the memory usage for P’ at v’; is no higher than the memory usage for P at v}, since for all m<k <n,
lomem(vy,S) > lomem(v,,,S) (by invariant 3 in Lemma 1) implies himem(v’;,P’) = himem(v';,Q)+ lomem(v,,S) <
himem(v';,P).

Since the memory usage of any node in v, ...,v, after moving the foreign nodes cannot exceed that of v, which remains
unchanged, and the memory usage of the foreign nodes does not increase as a result of moving them, the overall maximum
memory usage cannot increase. [

The next lemma deals with the ordering of indivisible units. It shows that arranging indivisible units from different
subtrees in the order of decreasing hi—lo, as maintained by the MergeSeq and AppendSeq procedures, minimizes memory
usage, since two indivisible units that are not in that order can be interchanged in the merged traversal without increasing
memory usage.

Lemma 3. Let v and v’ be two nodes in an expression tree that are siblings of each other, S = v.seq, and S' = v'.seq. Then, among
all possible merges of S and S', the merge that arranges the elements from S and S’ in the order of decreasing hi—lo uses the least
memory.

Proof. Let M be a merge of S and S’ that is not in the order of decreasing hi—lo. Then there exists an adjacent pair of
elements, one from each of S and S, that are not in that order. Without loss of generality, we assume the first element is S[j]
from S’ and the second one is S[i] from S. Consider the merge M’ obtained from M by interchanging S’[j] and S[i]. To simplify
the notation, let H, = S[r].hi, L, = S[r].lo, H;’ = S'[r].hi, and L,” = S'[r].lo. The memory usage of M and M’ differs only at S'[j] and
S[i] and is compared in Fig. 8.

The memory usage of M at the two elements is max(H';+L;_;,H;+L’j) while the memory usage of M’ at the same two
elements is max(H’;+L;,H; +L’j_1). Since the two elements are out of order, the hi—lo of S'[j] must be less than that of S[i], i.e.,
H';—L'; < Hi—L;. This implies H;+L’; > H';+L;. Invariant 4 in Lemma 1 gives us L; > L';_;, which implies H;+L; > H;+L’j_;.
Thus, max(H'j+L;_1,H;+L’j)) > H;+L’; > max(H’; +L;,H; +L’j_ ). Therefore, M’ cannot use more memory than M. By switching
all adjacent pairs in M that are out of order until no such pair exists, we get an optimal order without increasing memory
usage. O

Theorem 4. Given an expression tree, the algorithm presented in Section 3 computes a traversal that uses the least memory.

Proof. We prove the correctness of the algorithm indirectly by describing a procedure that transforms any given traversal
to the traversal found by the algorithm without increase in memory usage in any transformation step. Given a traversal

a b

[ element | himem lomem | [ element [ himem [ lomem |
STl | B+ Loy | L+ Ly S | H+ L, | L+ L,
S| B+, | L+l ST | BH+L | L+L

Fig. 8. Memory usage comparison of two traversals in Lemma 3. (a) Sequence M, (b) sequence M'.
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P for an expression tree T, we visit the nodes in T in a bottom-up manner and, for each non-leaf node v in T, we perform the
following steps:

1. Let T’ be the subtree rooted at v and P’ be the minimal substring of P that contains all the nodes from T'—{v}. In the
following steps, we will rearrange the nodes in P’ such that the nodes that form an indivisible unit in v.seq are
contiguous and the indivisible units are in the same order as they are in v.seq.

2. First, we sort the components of the indivisible units in v.seq so that they are in the same order as in v.seq. The sorting
process involves rearranging two kinds of units. The first kind of units are the indivisible units in u.seq for each child u
of v. The second kind of units are the contiguous sequences of nodes in P’ which are from T—T". For this sorting step, we
temporarily treat each such maximal contiguous sequence of nodes as a unit. For each unit E of the second kind, we take
E.hi = max,,chimem(w,P) and E.lo = lomem(w,,P) where wj, is the last node in E. The sorting process is as follows.

While there exist two adjacent units E' and E in P’ such that E’ is before E and E".hi—E'.lo < E.hi—E.lo,
(a) Swap E’ and E. By Lemma 3, this does not increase the memory usage.
(b) If two units of the second kind become adjacent to each other as a result of the swapping, combine the two units
into one and recompute its new hi and lo.

When the above sorting process finishes, all units of the first kind, which are components of the indivisible units in
v.seq, are in the order of decreasing hi—lo. Since, for each child u of v, indivisible units in u.seq have been in the correct
order before the sorting process, their relative order is not changed. The order of the nodes from T—T' is preserved
because the sorting process never swaps two units of the second kind. Also, v and its ancestors do not appear in P, and
nodes in units of the first kind are not ancestors or descendants of any nodes in units of the second kind. Therefore, the
sorting process does not violate parent-child dependencies.

3. Now that the components of the indivisible units in v.seq are in the correct order, we make the indivisible units
contiguous using the following combining process.

For each indivisible unit E in v.seq,

(a) In the traversal P, if there are nodes from T—T’ in between the nodes from E, move them either to the beginning or
the end of E as specified by Lemma 2.

(b) Make the contiguous sequence of nodes from E an indivisible unit.
Upon completion, each indivisible unit in v.seq is contiguous in P and the order in P of the indivisible units is the
same as they are in v.seq. According to Lemma 2, moving ‘foreign’ nodes out of an indivisible unit does not increase
the memory usage. Also, the order of the nodes from T—T’ is preserved. Hence, the combining process does not
violate parent-child dependencies.

We use induction to show that the above procedure correctly transforms any given traversal P into an optimal traversal
found by the algorithm. The induction hypothesis H(u) for each node u is that:

e the nodes in each indivisible unit in u.seq appear contiguously in P and are in the same order as they are in u.seq, and
e the order in P of the indivisible units in u.seq is the same as they are in u.seq.

Initially, H(u) is true for every leaf node u because there is only one traversal order for a leaf node. As the induction step,
assume H(u) is true for each child u of a node v. The procedure rearranges the nodes in P’ such that the nodes that form an
indivisible unit in v.seq are contiguous in P, the sets of nodes corresponding to the indivisible units are in the same order in
P as they are in v.seq, and the order among the nodes that are not in the subtree rooted at v is preserved. Thus, when the
procedure finishes processing a node v, H(v) becomes true. By induction, H(T.root) is true and a traversal found by the
algorithm is obtained. Since any traversal P can be transformed into a traversal found by the algorithm without increasing
memory usage in any transformation step, no traversal can use less memory and the algorithm is correct. O

6. Experiments

We have implemented our algorithm in the Tensor Contraction Engine [21] and tested it on a variety of equations.
Table 1 shows the results of several representative equations.

For the example from Fig. 1(b), we used the following array dimensions: V =100, O = 50.

The coupled cluster singles and doubles (CCSD) equations are the equations for an important quantum chemistry
model. We used the shorter spin-orbital variant of these equations. Each term in these equations is the contraction of up to
five two- and four-dimensional tensors. To illustrate the complexity of these equations, Fig. 9 shows the factored
(parenthesized) CCSD doubles equation in Einstein notation, where indices that occur twice in a term (once as upper and
once as lower index) are implicitly summed over. The h indices represent occupied orbitals of range O; the p indices
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Table 1
Memory usage for different traversals and the running time of our optimization algorithm.

Equation Terms Left-to-right Right-to-left Optimal Opt. time (ms)
Example from Fig. 1(b) 1 1.6GB 2.0GB 1.6GB 0.023
CCSD energy, small 3 1624B 1608B 1608B 0.025
CCSD singles, small 14 6888B 6080B 6000B 0.063
CCSD doubles, small 31 17,968B 32,800B 15,8008 0.161
CCSD energy, large 3 400MB 400MB 400MB 0.026
CCSD singles, large 14 600MB 600MB 600MB 0.065
CCSD doubles, large 31 1.8GB 2.2GB 1.4GB 0.159
CCSDTQ Lambda 1 264 8.0EB 8.0EB 8.0EB 2.761
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Fig. 9. The spin-orbital CCSD doubles equation.

represent virtual orbitals of range V. For our measurements, we used two different dimension sizes: 0=5 and V =2 for
modeling a water molecule and O =50 and V =100 for modeling a larger molecule.

The coupled cluster singles, doubles, triples, and quadruples (CCSDTQ) equation is the largest equation in the TCE
testsuite with 264 terms of up to six two-, four-, six-, and eight-dimensional tensors. We used O =10 and V =100.

For many equations, either a left-to-right or a right-to-left post-order traversal will find a solution that is close to
optimal. Which of these traversals works best depends on how the equation was written or which tool generated the
equation. A hand-factorized equation, such as the CCSD doubles equation, typically has less structure than an equation that
was generated and, therefore, provides more opportunity for reducing the memory usage. Some equations, such as
CCSDTQ, are dominated by a few terms involving very big tensors such that any improvements in the evaluation order are
minimal. The optimal traversal for CCSDTQ uses 80GB less memory than the right-to-left traversal and slightly less
memory than the left-to-right traversal, but these differences are insignificant compared to the 8EB term. Similarly, the
CCSD doubles equation would be dominated by the terms involving v_vvvv if V were orders of magnitude larger than O.
However, for many interesting tensor sizes the improvement is significant and can result in the computation to fit in
memory without resorting to loop fusion.

We measured the performance of our algorithm by averaging the running time over 100 runs. The measurements were
performed on a Lenovo Thinkpad T400 with a 2.8 GHz Core 2 Duo processor. The results are shown in the right-most
column of Table 1.

The implementation of our algorithm simply represents traversals as doubly linked lists instead of using a balanced
tree. Even so, the algorithm computes the optimal traversal for most examples in less than 0.5 ms and takes only 2.76 ms
for CCSDTQ. Our implementation of the O(n) post-order traversal is actually slightly slower in most cases, since we use the
same data structure for representing traversals. It takes 2.80 ms for CCSDTQ. A simple list of nodes, instead of a list of
indivisible units containing one-element node lists, would have been sufficient as the data structure for a post-order
traversal. The efficiency of our algorithm compared to the post-order traversal does show, though, that a data structure
with a balanced tree will likely only pay off for much larger equations.

7. Conclusion

In this paper, we have considered the memory usage optimization problem in the evaluation of expression trees
involving large objects of different sizes. This problem arose in the context of optimizing electronic structure calculations.
The developed solution would apply in any context involving the evaluation of an expression tree, in which intermediate
results are so large that it is impossible to keep all of them in memory at the same time. In such situations, it is necessary to
dynamically allocate and deallocate space for the intermediate results and to find an evaluation order that uses the least
memory. We have developed an efficient algorithm that finds an optimal evaluation order in @(n log2 n) time for an
expression tree containing n nodes and proved its correctness.

The problem that has been presented is very similar to that of register allocation for expression trees, except that the
definition of the cost functions himem and lomem would be different, since in machine instructions one of the argument
registers is typically reused for the result of the instruction. For binary expression trees with unit-sized nodes, our



74 C.-C. Lam et al. / Computer Languages, Systems & Structures 37 (2011) 63-75

algorithm would find the same evaluation order as the Sethi-Ullman algorithm [16]. Our strategy of evaluating indivisible
units in hi—lo order is similar to that of the Appel-Supowit algorithm [18], except that the latter evaluates entire subtree
contiguously and then sorts the subtrees in hi—lo order, which is suboptimal, as we have shown in Section 2.

Modern compilers employ register allocators based on graph coloring [22]. While a graph-coloring register allocator is
an approximation algorithm, it allows register allocation across multiple expression trees or for directed acyclic graphs.
Using the Sethi-Ullman algorithm for determining the evaluation order of individual expressions will minimize the
number of simultaneously live temporaries and improve the result of a graph-coloring register allocator [23].

Our algorithm has some limitations. It assumes that the data for leaf nodes is produced or read in, and it minimizes the
memory usage for evaluating a single expression tree. If the resulting evaluation order does not fit in memory, we need to
resort to loop fusion [9,14] and tiling [12] for producing an out-of-core solution. For future work, we are planning
to explore the use of MinMemTraversal together with a generalized graph-coloring register allocator for producing
out-of-core solutions for sequences of expression trees. Such an approach could also allow leaf nodes that are already
memory-resident as well as directed acyclic graphs. Similar as with the combination of the Sethi-Ullman algorithm and a
graph-coloring register allocator in a traditional compiler, our algorithm could produce an evaluation order for the
individual expression trees. Then, following liveness analysis, a graph-coloring register allocator with heuristics for large
data objects could decide which nodes need to be spilled, i.e., temporarily stored on disk. Since loop fusion can result in
poor temporal locality and tiling results in temporaries being read in repeatedly, a combination of our algorithm with a
graph-coloring register allocator has the potential of producing competitive out-of-core solutions.

Another possible generalization of our algorithm is to use it for parallelizing the evaluation of an expression tree by
scheduling different indivisible units for evaluation on different (sets of) processors. Since the last node in an indivisible
unit has a small lomem, it is a good candidate for sending to another processor, since it will help keep the communication
cost small. For achieving load balancing, the algorithm could be turned into a dynamic programming algorithm that
computes all solutions with minimal memory usage as well as estimates of the communication and computation cost for
each solution. The communication and computation costs would then be used for selecting among multiple solutions with
minimal memory usage and for limiting the size of indivisible units to aid in load balancing.
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