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Abstract. The pebble game on directed acyclic graphs is commonly encountered as an 

abstract model for register allocation problems. The traditional move rule of the 

game asserts that one may "put a pebble on node x once all its immediate predeces- 

sors have a pebble", leaving it open whether the pebble to be placed on x should 

be taken from some predecessor of x or from the free pool (the strict interpreta- 

tion). We show that allowing pebbles to slide along an edge as a legal move enables 

one to save precisely one pebble over the strict interpretation. However, in the 

worst case the saving may be obtained only at the cost of squaring the time needed 

to pebble the dag. It shows that one has to he very careful in describing properties 

of pebblings; the interpretation of the rules can seriously affect the results. As 

a main result we prove a linear to exponential time trade-off for any fixed inter- 

pretation of the rules when a single pebble is saved. There exist families of dags 

with indegrees 52 , with the property that they can be pebbled in linear time when 

one more pebble than the minimum needed is available but which require exponential 

time when the extra pebble is dropped. 

1 Introduction 

The pebble game has received interest in the theory of computational complexity 

both for practical and more theoretical goals (register alloc, network complexity, 

time-space trade-offs). The oldest references are Paterson & Hewitt [6] and Walker 

[14] (cited in [15]). The revived interest for pebbling ~rose from an application to 

Turing machine complexity by Hopcroft, Paul & Valiant [3]. 

The pebble game is played on directed acyclic graphs (dags). The nodes in the 

graph without incoming edges are called the inputs of the dag. Some other nodes 

are designated as the outputs of the dag. A position in the game is described by the 

subset of pebbled nodes. The size of this subset is the n~nber of pebbles used in 

this position. Starting from an empty dag, the aim of the game is to move 

pebbles around according to the move rules specified below, in such a way 
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that eventually all outputs get pebbled at least once. 'IRis should be achieved using 

as few pebbles as possible, or, when the number of pebbles is fixed, using as few 

moves as possible. 

Traditionally the moves are controlled by the following rules: 

(I) one can always put a pebble on an input node 

(2) one can always remove a pebble from a node 

(3') one can put a pebble on node x provided all immediate predecessors of 

have a pebble. 

The formulation of rule (3') leaves open where the pebble to be placed on x has 

to come from. As stated rule (3') apparently allows us to slide a pebble from a pre- 

decessor of x to x , a liberal interpretation most often used in the literature 

For example, the well-known result that the complete binary tree T of height n 

with 2 n leaves (inputs) requires n+l pebbles is valid only if the liberal inter- 

pretation is used ; otherwise n+2 pebbles are required. The authors were reminded 

of this discrepancy during a live demonstration of the pebble game by J. Savage at 

the 1977 Fachtagung on Complexity Theory in Oberwolfach (using authentic Schwarzwal- 

der pebbles). 

Instead of following the established practice of allowing the above ambiguity in 

rule (3') (cf. [5, 7, 8, 9, Ill) we recognise the liberal interpretation as an addi- 

tional move rule. Hence we replace (3') by the pair : 

(3) one can put a free pebble on node x provided all immediate predecessors 

of x have a pebble 

(4) if all predecessors of an empty node x have a pebble then one can slide 

one of these pebbles to x . 

Rule (4) has been stated by Cook [2], but to our knowledge only Sethi [12] explicit- 

ly distinguished between (3) and (4) before. 

We shall demonstrate that (3) and (4) should not be equivalenced ; it can have a 

serious impact on the complexity of pebbling whether rule (4) is allowed or not. We 

show that when rule (4) is allowed, then it is possible to save precisely one pebble 

over the minimum needed if the strict interpretation, i.e. rule (3), is used. How- 

ever, in the worst case this saving may be obtained only at the price of squaring 

the number of moves needed. 

Clearly the problem mentioned above is related to a fundamental issue in the de- 

sign of machines. Should machine-instructions always deliver their result in a non- 

operand register (rule (3)), or should we allow that one of the operands is over- 

written (rule (4)). Our result shows that the usual architectures permitting over- 

writing instructions may save precisely one register in the register allocation pro- 

blem, at a price which has to be considered a considerable loss of speed. 
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The argument used to obtain the quadratic increase in time can be extended to ob- 

tain an extreme time-space trade-off result for any fixed pebbling strategy. Paul 

and Tarjan [7] obtained an infinite class of graphs (with indegrees ~2) such that 

the saving of some constant fraction of the pebbles may force the time required for 

pebbling a graph to blow up exponentially. Lingas [5] recently obtained a similar 

result by saving only 2 pebbles. We show that such an explosion may even occur when 

just a single pebble is saved. The results of this paper are spelled out in greater 

detail in []3] . 

The observation that rule (4) allows one to save precisely one pebble has been 

made independently by Gilbert and Tarjan [4]. However, their proof overlooks the 

crucial case (iii) below (which is responsible for the squaring of the time needed) 

and seems therefore incomplete. Sethi [oral comm.] has conjectured that the dags he 

used for the NP-hardness construction in [12] may provide examples of trade-offs 

similar to the one described in the paper but no specific claims have been made. our 

results are unrelated to the trade-offs recently announced by Reischuk [10] and 

Tarjan [oral comm.]. 

2 Some definitions and the saving of a pebble 

Let G be an arbitrary dag. Given a convention for the type of moves allowed in the 

game, we shall count the number of moves in which a pebble gets placed (or "moved"), 

i.e. we count all moves which are described by rules (I), (3) and (4) (the latter 

only if permitted). 

Definition 

S(G) = the minimum number ofpebbles required for pebbling G according to rules 

(I), (2) and (3). 

S'(G) = the minimum number of pebbles required for pebbling O according to rules 

(1), (2), (3) and (4). 

Tk(G ) = the minimum number of counted moves required for pebbling G according to 

rules (1), (2) and (3) when S(G) + k pebbles may be used. 

T~(G) = the minimum number of counted moves required for pebbling G according to 

rules (I), (2), (3) and (4) when S'(G) + k pebbles may be used. 

Note that S and T k are quantities related to the "strict" interpretation of the 

T game, S' and T k are the corresponding quantities for the extended move-policy. T k 
! 

and T k measure the "time" required for pebbling a dag if one is given k more pebbles 

than the minimum needed. In particular, T O and T~ measure the time required to pebble 

a dag with the smallest possible number of pebbles. 
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It is quite easy to see that for all dags G : 

S(G) eS'(G) eS(G) - I. (2.1) 

The first part is trivial, the second part (which may be read as S(G) sS'(G) + l) 

follows by observing that each application of rule (4) may be.simulated by rules (3) 

and (2) if one extra pebble is provided from the start. Moves like 

o 

• . @ ..° @ .. @ ~ @ ** .o. .. 

can be replaced throughout by 

o 

(3) 

@ .... . .. 

(2) 

//\\ free; 

Note that the number of counted moves is not changed in the simulation. 

Our first result is that rule (4) always enables one to save exactly one pebble 

over S(G). Observe that if G contains no edges then clearly G is pebbled by pebbling 

its nodes succesively using a single pebble; thus S(G) = S'(G) = 1. 

Theorem A. For dags G with at least one edge, S'(G) = S(G) - I. 

Proof• 

It suffices to prove that S'(G) ~S(G) - I. Consider a strategy W=W0,WI, ..... W N 

which uses k = S(G) pebbles, with W 0 the empty position and each Wj obtained from 

W~_] by an application of rule (1), (2) or (3). Consider the W i where exactly k 

pebbles are used. In the next move some pebble must be removed, as otherwise k+1 

pebbles would be present in Wj+ 1 . The following possibilities arise: 

(i) The pebble removed in the move W~,W~+| is not removed from a predecessor 
~ J 

of the node pebbled during the preceding move, or from this node itself. In this 

situation the order of the two moves may be interchanged, thus eliminating the posi- 

tion involving k pebbles. 

(ii) The pebble removed in the move W~,W~+ 1 is taken from a predecessor of the 

node pebbled during the preceding move. In this situation the two moves may be repla- 

ced by an application of rule (4) thus eliminating the position involving k pebbles. 

(iii) The pebble removed in the move Wi,W~+ 1 is the pebble which was placed du- 

ring the preceding move. 
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Only this third case requires a non-local transformation in order to eliminate 

the position using k pebbles. Note that the move makes sense only if the node pebbl- 

ed is an output (otherwise Wj and W~+ I may be eliminated alltogether). We replace Wj 

by a shift, provided the pebbled node has some predecessor. Otherwise we take some 

arbitrary pebble from the dag and use this pebble instead. In both cases the position 

involving k pebbles has been eliminated. However, in order to regenerate position 

W. which equals Wj_ I in this case, it no longer suffices to take the pebble just 
j+1 ' 

placed from the dag ; instead we take all pebbles from the dag and repeat the entire 

pebbling strategy upto Wi_ I~ , in this way restoring configuration Wj+] • 

It is not hard to obtain a complete proof based upon the above transformation 

[13] . Always taking W. as the first position involving k pebbles, we can use 
J 

complete induction based on the number of positions in a pebbling strategy which have 

k pebbles on the dag. [] 

We should point out that the re-pebbling of portions of the dag, called for in 

case (iii) of the given proof, may cause a substantial increase in the time for pebbl- 

ing G. The next result puts a bound on the number of extra moves needed. 

proposition B. Let G be a dag with m outputs. Then T~(G) ~m.To(G) 

Proof 

The argument before shows that no time is lost if the dag contains only one out- 

put. If there are m outputs, then split the pebbling strategy into m strategies, 

starting from empty dags and each involving a single output (costing together at most 

m.T0(G) moves). Apply the transformation from the proof of theorem A to each strategy 

individually, n 

Proposition B shows that the loss of time in saving one pebble with rule (4) stays 

within reasonable limits as long as the number of outputs of a dag is small. In gene- 

ral, m can be as large as O(To(G)) (whereas clearly m~ T0(G))and proposition B 

learns that in worst case a squaring of the pebbling time may occur. A simple example 

shows that the worst case can occur and that the bound of proposition B is best pos- 

sible. 
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Consider the dag En, I defined as 

u °~'~o 
Un_, 

Pn 

Pn-1 

u 2 

u! 
P2 

Pl 

(2.2) 

The reader easily verifies that S(En, I) = 2, T0(En, I) = 2n and S'(En,]) = 1 

but 

T~(En, I ) = 2+3+ ... + (n+I) = 0(n 2) 

We conclude 

Theorem C. Saving a pebble by allowing rule (4) in worst case squares the (order of 

magnitude of the) pebbling time in the strict interpretation. 

3 Extreme time-space trade-offs 

A pebbling strategy is called a real-time pebbling of G in case no node in G 

gets pebbled twice during the game. Assuming that G does not contain useless nodes 

(i.e, nodes which do not precede any output) this is equivalent to saying that the 

time needed to pebble G equals the size of G . Clearly each dag can be pebbled in 

real-time provided sufficiently many pebbles are available. 

We noted that rule (4) can be simulated by a combination of rules (3) and (2) with- 

out changing the number of counted moves, provided one extra pebble is made available. 

Together with the result of theorem C, we conclude that for any dag G : 

To (G) 2 > T; (G) . . . . . . . .  eTo(G) >T~(G) >TI(G) > >Tk(G) = T~(G) = size (G) (3.]) 

' t ' 1 

for some k> 0 (the last equality holding only if G contains no useless nodes). 

From theorem C we conclude that in general : 
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Tj (G) 2 ~ T!3 (G) (3.2) 

Examining the two inequalities underscored in (3.1), we shall discover here that 

there can be very large (exponential) gaps between the quantities on the left-hand 

and right-hand sides in both. Our main goal shall be to prove the following time- 

space trade-off result, stated informally as 

Theorem D. There is an infinite family of dags Hn(n e I), with indegrees bounded by 

2, such that T~(Hn) is exponentially worse than T~(Hn) = size (Hn) 

2 
Because T~(G)~ T0~G) and, on the other hand, TI(G ) NT~(G) , the same family of 

dags suffices to show that T0(G) can be exponentially worse than TI(G ) uniformly. 

Thus, we need only pursue the details of the result when rule (4) is allowed. Note 

that it substantiates an earlier claim that, in any interpretation of the rules, the 

saving of a single pebble can blow up the. pebbling time exponentially. 

It will require a bit of "engineering" to keep the indegrees of all nodes in H 
n 

bounded by 2. We shall ignore this constraint for the moment, so as not to obscure 

the idea of the construction. Let f : N~N be some function to be chosen later. De- 

fine the following auxiliary graphs: 

x n / / ~  (a node with n immediate 

o~ ~ n ~ O  predecessors) 

Y ~ ~ - ' ~ ~ /  (a bipartite graph) 
n 

Now consider the family of dags Gn(n 2 ]) , defined inductively as follows: 

G I 

G 
n 

o 

I 
= l 

o 

...... ~ o /  LS  ol 
/ [7i .... is 

f (n) o__~utput s 

 o//I pre outputs 

(3.3) 
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The size of G n satisfies 

size (GI) = 2 

size (G2) = size (Gn_ I) + 2(n+I) + f(n) + f(n-l) for ne2 

and it follows that size (G n) ~ 2. ~f(i) + e(n 2) .Likewise one can easily verify tha~ 
2 

G has 0(n 2) input nodes and, obviously, exactly f(n) output nodes. 

,Clearly S'(Gn) = n. The following proposition makes some precise claims about the 

time needed to pebble G with n+] or n pebbles. 
n 

Proposition E, 
n 

(i) T~(Gn) = size (G n) ~ 2. Ef(i) + @(n 2) 
n 2 

(ii) T~(G) e ~f(n) 
2 

Proof. 

(i) The simplest strategy to pebble G using n+] pebbles proceeds as follows, 
n 

using as an induction-hypothesis that the outputs of Gn_ 1 can be pebbled (in conse- 

cutive order) using n pebbles in size (G_I) moves. First pebble ~ and slide its 

pebble along the chain to $, while pebbling the outputs of the embedded G_I in con- 

secutive order (indeed with exactly n free pebbles available to do itS) With a pebble 

on ~ we can place a pebble on each of the n pre-outputs of G n , which will be fixed 

there. Now take the pebble from ~ and use it to pebble each of the f(n) output nodes 

from left to right. This actually yields a real-time pebbling of G n. 

(ii) If only n pebbles are available one must initially proceed in a similar fash- 

ion, resorting to rule (4) more often now and using that G ] can be pebbled using 

n-1 pebbles as an inductive assumption. Once B is reached (i.e., pebbled) things will 

change and we are going to see the effect of having only n pebbles to play with. In 

order to pebble an output node of Y at all one must 
n 

(a) move a pebble to each pre-output node, which can be done only by cormmitting 

all n-I free pebbles and moving the pebble from $ to the last pre-output still open, 

(b) slide a pebble from any one pre-output node to the designated output. 

To pebble any other output, we are in deep trouble: we must get a pebble back on 

the one pre-output node which is now open. This requires that we get a pebble back 

on ~ first. The only way to repebble B is to pick up all n pebbles from the dag and 

to repebble the entire dag, including the embedded copy of G |! So we must proceed 

for each output node again, and clearly 

T~(Gn) ~ f(n).T~(Gn_]) 

which yields the desired estimate as stated. Note that the construction of G n indeed 

forces the entire repebbling of the embedded G_I , because pebbles must appear on 

its outputs from left to right if we are to move a pebble along the "chain" at all. m 
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Choosing f(n) = n we get a result as desired. The construction yields a family 

of Hags G n with size (G) = @(n 2) and T~(G) = O(n 2) but T;(G n) ~@(n~) , an exponen- 

tial blow-up by saving just one pebble~ One should note, however, that the indegrees 

of nodes in G can be as large as n. 
n 

We shall modify the construction to obtain a family H n , which exhibits the same 

behavior while indegrees remain bounded by 2. The idea is based on the inductive 

scheme Of (3.3), but the sub-dags Xn and Yn will be changed. So X and Yn should now 

be binary, chosen such that an argument as before will go through to get an analog 

of proposition E. 

Consider the following requirements for X n and Yn : 

Conditio n I. S'(Xn) = S'(Yn) = n , and n pebbles are actually required for pebbl- 

ing any single Output of Y above. Moreover X and Y can be pebbled in real-time 
n n n 

when one extra pebble is provided. 

Conditio n II. If Yn is pebbled using n pebbles (~!~h~H~-ES~!!~_!~Z_!~2~), 

then at the time one of its outputs gets pebbled there must be a pebble-free path 

from each of the remaining outputs to an input. 

The qualifier "without repebbling any input" may seem unnatural but really isn't, 

considering that Yn is embedded in H n and the repebbling of an "input" is not just 

a matter of applying rule (1). 

Lemma F. If Xn and Yn satisfy conditions I and II and if the sequence of dags {Hn} 

is defined according to (3.3), then: 

(i) T~(H n) =nSize(Hn ) , so Hn can be pebbled in real time using one extra pebble 

(ii) T~(Hn) ~ ~f(n) . 
2 

~£!" Similar to the proof of proposition E (see [13]) . 

At this time 

width m ([2]): 

C = 
m 

it is useful to recall the structure of Cook's pyramidal dags C m of 

i I J J 

o ¢ ~ o  ~0~  l \ t \ t \ l "  
0 0 0 0 

m 

\ 
o 

znputs 

(3.4) 
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It is easy to see that by choosing X = C the requirements of condition I are 
n n 

satisfied as far as X is concerned. To obtain the Y's we introduce a family of 
n n 

dags Em, n . We enco~mtered its members Em, ] already in constructing a worst case 

example of the trade-off in section 2. 

The structure of E is obtained by vertical translation of a pyramid C over 
m,n n 

unit distance (m-l).n times, leading to a "staircase" of width n and heigth n.m tape- 

ring off as a pyramid at the top. Special (unary) output nodes ul,...,u m are added 

on to the left side of the staircase, with u i connected to the node at height i.n. 

It follows that each u i is connected to the top of an embedded copy of C n , denoted 

by P.. Observe that the base of P. is located at exactly one level above Pi-l" The 
l 1 

structure of E must be evident from (3.5), where Em, 4 is shown. 
m,n 

It is easy to verify that S(Em,n) = n+l , and if n+] pebbles are available then 

one can pebble E in real-time (in fact, regardless of whether rule (4) is used or 
m~n 

not). 

T 
outputs 

p i~ ~. 

° m i~i ~ i ~ o  

- ot~o.. . .ol ~ o .  

~ ,  ~ i ~  
m-2 o o o o 

i "~-, I~ i ~ 

I ,.t ~,I xl 

"~'o o ~o~o 

o ~~o'~ ul ~,~l~l 

inputs 

(3.5) 
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T 0(Era,n) = T~(Em, n) = 0(m.n 2) (3.6) 

We show that E satisfies conditions I and II for the Y : 
m,n n 

Proposition G. Let node u i of Em, n he pebbled, using rules (]) to (4) and m pebbles, 

without pebbling any input more than once. At the time u i g~ts pebbled, there must 

be a pebble-free path from each of the remaining outputs to some input. 

Proof. 

Let a configuration of pebbles on E be called proper if each of the following 
m~n 

conditions is satisfied: 

(i) each columm of E contains a pebble (hence, all available pebbles are in use 
m~n 

and occupy different columns), 

(ii) each pebble resides at the same level or one higher than the pebble in the 

column immediately to its right. 

It is possible to pebble u i in such a way that all intermediate configurations 

are proper. 

The following observations can be made for an arbitrary pebbling strategy: 

(a) Since we do not allow the repebbling of inputs in the pebbling of u i , a 

configuration must occur in which the last input gets pebbled before u i gets 

pebbled ; if this configuration is not proper, then it is impossible to pebble u i . 

(b) Before any u. can be pebbled the properness condition must he disturbed. 
i 

(c) Once the properness condition is established and it gets disturbed some time 

later, a situation will arise in which all outputs except possibly one have a pebble- 

free path to some input. 

The above observations together imply proposition G : in order to pebble u i 

the properness condition is established at the time the last input gets pebbled; at 

a later stage the properness gets disturbed, and from that stage onwards the pebble- 

free paths from outputs to inputs remain pebble-free since no input gets repebbled. 

The proofs of the observations are tedious but straightforward (see []3]) [] 

Proof of theorem D. 

Choose X n = C n and Y = E . The reader easily verifies that the dags H 
n n,n 4 n 

constructed by (3.3) have size @(n ). Now T~(H n) = O(n 4) whereas T~(H#en~ by 

lemma F, thus yielding the required exponential blow-up. [] 

Theorem D shows that the explosion of time in minimizing register use, first re- 

ported by Paul and Tarjan [7] in case some constant fraction of the registers gets 

saved, can occur already if just one register is saved. We note that Lingas [5], 

independently, found a construction which yields a sequence of binary dags {G n} 

satisfying S' (Gn) = 2n, r~(Gn) ~ 2 n and T~(Gn) = size (G) = @(n3). The resulting 

trade-off is more extreme (because the dags are "smaller"), but one had to trade 2 

pebbles to get it. An interesting problem might be to find a family of dags {G n} 
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with S'(G) = O(n) , such that the saving of some constant number of pebbles gives 

a jump from linear to exponential in pebbling time whereas size (G n) is only o(n3). 

5 Re£erences 

[]] Aho, A.V. and J.D. Ullman, Principles of Compiler Design, Addison-Wesley Publ. 
Comp., Reading, Mass., ]977. 

[2] Cook, S.A., An Observation on Time-Storage Trade Off, Journal Computer Systems 
Sciences 9 (1974) 308-3]6. 

[3] Gilbert, J.R. and R.E. Tarjan, Variations of a pebble game on graphs. Rep. 
Stanford STAN-CS-78-661 (Sept. 1978). 

[4] Hopcroft, J., W. Paul and L. Valiant, On Time versus Space, J.A~ 24 (1977) 
332-337. 

[5] Lingas, A., A PSPACE-complete Problem related to a Pebble Game, in: 
G. Aussiello and C. Bohm (eds.), Automata, Languages and Programming (Fifth 
Colloquium, Udine, 1978), Springer Lecture Notes in Computer Science 62, 1978, 
pp. 300-32]. 

[6] Paterson, H.S. and C.E. Hewitt, Comparative Schematology, Record of Project MAC 
Conference on Concurrent Systems and Parallel Computations (June 1970) I]9-128, 
ACM, New Jersey, Dec. ]970. 

[7] Paul, W. and R,E. Tarjan, Time-Space Trade-offs in a Pebble Game, in: 
A. Salomaa and H. S-~einby (eds.), Automata, Languages and Programming (Fourth 
Colloquium, Turku, ]977), Springer Lecture Notes in Computer Science 52, 1977, 
pp. 365-369. 

[8] Paul, W., R.E. Tarjan and J.R. Celoni, Space Bounds for a Game on Graphs, Math. 
Syst. Th. iO (1976) 239-251. 

[9] Pippenger, N, A Time-Space Trade-off, Computer Science Res. Rep. RC 6550 (#28265) 
IBM, Yorktown Heights, 1977 (also" J.ACM 25 (]978) 509-515). 

[I0] Reischuk, R., Improved bounds on the Problem of Time-Space Trade-off in the 
Pebble Game (Preliminary version), Conf. Record 19th Annual IEEE Symp. on 
Foundations of Computer Science, Ann Arbor, 1978, pp. 84-91. 

[11] Savage, J.E. and S. Swamy, Space-Time Trade-offs in the FFT Algorithm, Techn. 
Rep. CS-3! (August 1977), Div. of Engineering, Brown University, Providence, 
1977. 

[12] Sethi, R., Complete Register Allocation Problems, SIAM J. Comput. 4 (1975) 
226-248. 

[13] van Emde Boas, P. and J. van Leeuwen, Move-rules and trade-offs in the pebble 
game, Techn. Rep. RUU-CS-78-4, Dept. of Computer Science, University of Utrecht, 
Utrecht, April/August 1978. 

[14] Walker, S.A., Some Graph Games related to Efficient Calculation of Expressions, 
Res. Rep. RC-3633, IBM, 1971. 

[15] Walker, S.A. and H.R. Strong, Characterizations of Flow-chartable Recursions, 
Journ. Computer System Sciences 7 (1973) 404-447. 


