CR05: Data Aware Algorithms

Topics covered:

▶ Pebble game models
▶ Cache oblivious algorithms
▶ Memory-aware scheduling
▶ Communication-avoiding algorithms
▶ Big-Data algorithms (streaming algorithms)

Teachers:

▶ Loris Marchal
 (CNRS & ENS Lyon)
▶ Olivier Beaumont
 (Inria Bordeaux)

Schedule: Wednesday 1:30pm + Thursday 10:15am
Contact: loris.marchal@ens-lyon.fr
CR05: details

Evaluation:
- Two (short) exams Graded homework (40%)
- Group project (60%): 1/2 students, paper(s) reading + (optional) code writing, report + presentation

Website:
- Course material available online (right after class)
- Link to other resources

(Your) Participation:
- Class generally goes to fast!
- Stop me with questions, ask for re-explanation
- Especially since half the group is through video
- Participation welcomed (and rewarded?)
Part 1: Introduction and Pebble Game models

Introduction and Motivation

Link between Algorithm Design and Data Movement

(Black) Pebble Game and Memory Minimization
 Motivation and rules of the game
 Complexity and variants
 Pebble game on trees
 Space-Time tradeoffs
Introduction & Motivation

- (Fast) Memory: place to store data for compute
- Always been a limited resource (4KB in Appollo 11 computer)
- Not limited anymore?
 (last iPhone: 4GB, workstations, 1TB)
- But problem size always gets bigger...
- ...And this is rather a question of speed!
- Annual improvements:
 - Time per flop (computation): 59%
 - Data movement:
 - Bandwidth
 - Network: 26%
 - DRAM: 23%
 - Latency
 - 15%
 - 5%

Introduction & Motivation

- (Fast) Memory: place to store data for compute
- Always been a limited resource (4KB in Appollo 11 computer)
- Not limited anymore?
 (last iPhone: 4GB, workstations, 1TB)
- But problem size always gets bigger...
- ...And this is rather a question of speed!
- Annual improvements:
 - Time per flop (computation): 59%
 - Data movement:
 - Bandwidth: 26% Network, 23% DRAM
 - Latency: 15% Network, 5% DRAM

Introduction & Motivation

- (Fast) Memory: place to store data for compute
- Always been a limited resource (4KB in Appollo 11 computer)
- Not limited anymore?
 (last iPhone: 4GB, workstations, 1TB)
- But problem size always gets bigger . . .
- . . . And this is rather a question of speed!
- Annual improvements:
 - Time per flop (computation): 59%
 - Data movement:
 - Bandwidth
 - Network: 26%
 - DRAM: 23%
 - Latency
 - Network: 15%
 - DRAM: 5%

Figures from Getting up to speed: The future of supercomputing, 2005,
Flop per byte moved ratio

"flop per byte (moved)"

- number of flops perform in the time needed to move a byte
- computing speed / communication speed

From http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
Bypass the memory wall

- Time to move the data > Time to compute on the data
- Similar problem in microprocessor design: “memory wall”
- Traditional workaround:
 add a faster but smaller “cache” memory
- Now a hierarchy of caches!
Computing with caches

- Limited amount of fast cache
- Performance sensitive to data locality
- Optimize data reuse
- Avoid data movements between memory and cache(s) (time- and energy-consuming)

In this class: algorithmic approaches to this problem
Computing with caches

- Limited amount of fast cache
- Performance sensitive to data locality
- Optimize data reuse
- Avoid data movements between memory and cache(s) (time- and energy-consuming)

In this class: algorithmic approaches to this problem
Part 1: Introduction and Pebble Game models

Introduction and Motivation

Link between Algorithm Design and Data Movement

(Black) Pebble Game and Memory Minimization
Motivation and rules of the game
Complexity and variants
Pebble game on trees
Space-Time tradeoffs
Example: matrix-matrix product

Consider two square matrices A and B (size $n \times n$)

Compute generalized matrix product: $C \leftarrow C + AB$

Simple-Matrix-Multiply(n, C, A, B)

for $i = 0 \rightarrow n - 1$ do
 for $j = 0 \rightarrow n - 1$ do
 for $k = 0 \rightarrow n - 1$ do
 $C_{i,j} = C_{i,j} + A_{i,k} B_{k,j}$

Assume simple two-level memory model:

- Slow but infinite disk storage
 (where A and B are originally stored)
- Fast and limited memory (size M)

Objective: limit data movement between disk/memory

NB: also applies to other two-level systems (memory/cache, etc.)
Simple algorithm analysis

Simple-Matrix-Multiply\((n, C, A, B)\)

\[
\text{for } i = 0 \rightarrow n - 1 \text{ do}
\]

\[
\text{for } j = 0 \rightarrow n - 1 \text{ do}
\]

\[
\text{for } k = 0 \rightarrow n - 1 \text{ do}
\]

\[
C_{i,j} = C_{i,j} + A_{i,k}B_{k,j}
\]

▶ Assume the memory cannot store half of a matrix: \(M < n^2/2\)

▶ **Question**: How many data movement in this algorithm?
Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)

for $i = 0 \rightarrow n - 1$ do
 for $j = 0 \rightarrow n - 1$ do
 for $k = 0 \rightarrow n - 1$ do
 $C_{i,j} = C_{i,j} + A_{i,k}B_{k,j}$

Assume the memory cannot store half of a matrix: $M < n^2/2$

Question: How many data movement in this algorithm?

Answer:

- all elements of B accessed during one iteration of the outer loop
- At most half of B stays in memory
- At least $n^2/2$ elements must be read per outer loop
- At least $n^3/2$ read for entire algorithms
- Same order of magnitude of computations: $O(n^3)$
- Very bad data reuse 😞 Question: How to do better?
Blocked matrix-matrix product

- Divide each matrix into blocks of size $b \times b$: $A^b_{i,k}$ is the block of A at position (i, k)
- Perform “coarse-grain” matrix product on blocks
- Perform each block product with previous algorithms

```
 Blocked-Matrix-Multiply(n, A, B, C)
    $b \leftarrow \sqrt{M/3}$
    for $i = 0, \rightarrow n/b - 1$ do
        for $j = 0, \rightarrow n/b - 1$ do
            for $k = 0, \rightarrow n/b - 1$ do
                Simple-Matrix-Multiply($n, C^b_{i,j}, A^b_{i,k}, B^b_{k,j}$)
```
Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n, A, B, C)

\[b \leftarrow \sqrt{M/3} \]

for \(i = 0, \rightarrow n/b - 1 \) do

\[\text{for } j = 0, \rightarrow n/b - 1 \text{ do} \]

\[\text{for } k = 0, \rightarrow n/b - 1 \text{ do} \]

\[\text{Simple-Matrix-Multiply}(n, C_{i,j}^{b}, A_{i,k}^{b}, B_{k,j}^{b}) \]

Question: Number of data movements?
Blocked matrix-matrix product – Analysis

Block-Matrix-Multiply\((n,A,B,C) \)

\(b \leftarrow \sqrt{M/3} \)

\(\text{for } i = 0, \rightarrow n/b - 1 \text{ do} \)

\(\text{for } j = 0, \rightarrow n/b - 1 \text{ do} \)

\(\text{for } k = 0, \rightarrow n/b - 1 \text{ do} \)

\(\text{Simple-Matrix-Multiply}(n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b) \)

Question: Number of data movements?

- Iteration of inner loop: 3 blocks of size
 \(b \times b = \sqrt{M/3}^3 = M/3 \)
 \(\rightarrow \) fits in memory

- At most \(M + M/3 \) (\(O(M) \)) data movements for each inner loop (reading/writing)

- Number of inner iterations:
 \((n/b)^3 = n^3/(M/3) = O(n^3/M\sqrt{M}) \)

- Total number of data movements: \(O(n^3/\sqrt{M}) \)

» Can we do (significantly) better?

Answer: tomorrow!
Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(\(n,A,B,C\))

\[b \leftarrow \sqrt{M/3} \]

\[\text{for } i = 0, \rightarrow n/b - 1 \text{ do} \]

\[\quad \text{for } j = 0, \rightarrow n/b - 1 \text{ do} \]

\[\quad \quad \text{for } k = 0, \rightarrow n/b - 1 \text{ do} \]

\[\quad \quad \quad \text{Simple-Matrix-Multiply}(n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b) \]

Question: Number of data movements ?

- Iteration of inner loop: 3 blocks of size
 \[b \times b = \sqrt{M/3}^3 = M/3 \]
 \[\rightarrow \text{fits in memory} \]

- At most \(M + M/3 \) \((O(M)) \) data movements for each inner loop (reading/writing)

- Number of inner iterations:
 \[(n/b)^3 = n^3/(M/3) = O(n^3/M\sqrt{M}) \]

- Total number of data movements: \(O(n^3/\sqrt{M}) \)

Question: Can we do (significantly) better ?
Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C)
\[b \leftarrow \sqrt{M/3} \]
\[\text{for } i = 0, \rightarrow n/b - 1 \text{ do} \]
\[\quad \text{for } j = 0, \rightarrow n/b - 1 \text{ do} \]
\[\quad \quad \text{for } k = 0, \rightarrow n/b - 1 \text{ do} \]
\[\quad \quad \quad \text{Simple-Matrix-Multiply}(n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b) \]

Question: Number of data movements?

- Iteration of inner loop: 3 blocks of size
 \[b \times b = \sqrt{M/3} \times \sqrt{M/3} = M/3 \]
 \[\rightarrow \text{fits in memory} \]
- At most \(M + M/3 \) (\(O(M) \)) data movements for each inner loop (reading/writing)
- Number of inner iterations:
 \[(n/b)^3 = n^3/(M/3) = O(n^3/M\sqrt{M}) \]
- Total number of data movements: \(O(n^3/\sqrt{M}) \)

Question: Can we do (significantly) better? Answer: tomorrow!
Part 1: Introduction and Pebble Game models

Introduction and Motivation

Link between Algorithm Design and Data Movement

(Black) Pebble Game and Memory Minimization
 Motivation and rules of the game
 Complexity and variants
 Pebble game on trees
 Space-Time tradeoffs
Pebble Game and Register Minimization

- First model introduced in the 70s
- Motivation: limit the usage of registers for a computation (scarce resource, typically 16/32 for CPUs)
- Registers: at the top of the memory hierarchy
- Restrict to straight-line program: control flow independant from input data
- Modeled as Directed Acyclic Graph:

$$7 + (5 - z) \times (1 + x) - (1 + x - t)/(2 + z) + v$$
1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Analogy with register allocation:
- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Analogy with register allocation:
- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Analogy with register allocation:

- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex \(v \) are pebbled, a pebble may be placed on \(v \).

Analogy with register allocation:

- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex \(v \) are pebbled, a pebble may be placed on \(v \).

Analogy with register allocation:
- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
Black Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex \(v \) are pebbled, a pebble may be placed on \(v \).

Analogy with register allocation:

- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Analogy with register allocation:
- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Analogy with register allocation:

- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
(Black) Pebble Game – Rules

1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Analogy with register allocation:

- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
1. A pebble may be removed from a vertex at any time.
2. A pebble may be placed on a source node at any time.
3. If all predecessors of an unpebbled vertex \(v \) are pebbled, a pebble may be placed on \(v \).

Analogy with register allocation:
- Rule 2: Load in register
- Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using minimum number of pebbles
Progressive pebble game:
 ▶ Forbid pebbling twice the same vertex
 ▶ NP-Hard

More general problem with re-computation:
 ▶ PSpace-complete

Variant with pebble shifting:
 ▶ Rule 3 → If all predecessors of an unpebbled vertex \(v \) are pebbled, a pebble may be shifted from a predecessor to \(v \).
 ▶ Decrease the minimum number pebbles required for a graph by at most one (may induce large number of recomputations)
Complete binary tree of depth \(k = 4 \)

![Complete binary tree of depth 4](image)

Theorem.

Any pebbling strategy (with or without recomputation, without shifting) for the complete balanced binary tree of depth \(k \) uses at least \(k + 2 \) pebbles and \(2^{k+1} - 1 \) steps. There is a pebbling strategy that reaches both bounds.

NB: All proofs on the board will be made available online.
Lemma.
Depth-First Traversal are dominant

Depth-First: Totally pebble a subtree, remove all pebbles except on its root, before starting a sibling subtree.

Theorem.
An optimal solution is obtained by ordering subtrees by non-increasing value of $P(i)$, where the peak $P(v)$ of the subtree rooted at v is recursively defined by:

$$P(v) = \begin{cases}
1 & \text{if } v \text{ is a leaf} \\
\max(k + 1, \max_{i=1 \ldots k} P(c_i) + i - 1) & \text{otherwise}
\end{cases}$$

where $c_1, \ldots c_k$ are the children of v ordered such that $P(c_1) \geq P(c_2) \geq \cdots \geq P(c_k)$.
Consider a pyramid graph, obtained by slicing a 2D $n \times n$ mesh along its diagonal.

1. Describe a pebbling strategy (without shift) that pebbles the n-level pyramid using only $n + 1$ pebbles (for $n \geq 2$).

2. Prove that any pebbling strategy (without shift) this graph uses at least $n + 1$ pebbles (for $n \geq 2$).
Space-Time tradeoffs – FFT example

- Fast-Fourrier Transform
- Recursive graph based on the “exchange graph” with 2 inputs and 2 outputs

FFT graph with 8 input/output vertices (depth $k = 3$)

$n = 2^k$ vertices at each level
Strategy 1:

- Pebble one tree up to one output, then start over
 (variant: pebble two outputs before re-starting)
- Uses $k + 1$ pebbles
 (minimum value since it contains binary tree of depth k)
- Large number of recomputations

Strategy 2:

- Pebble level by level
- Requires $2n = 2^{k+1}$ pebbles
- No recomputations (minimum number of steps)
Grigoriev’s Lower-Bound Method

Definition (w(u, v)-flow).

Let $f : \mathcal{A}^n \rightarrow \mathcal{A}^m$. f has a $w(u, v)$-flow if for all partition (X_0, X_1) of the inputs and all partition (Y_0, Y_1) of the outputs, such that $|X_1| = u$ and $|Y_1| = v$, there exists a subfunction h of f obtained by assigning all variables in X_0 to fixed values and discarding output values in Y_0, such that h has at least $|\mathcal{A}|^{w(u, v)}$ distinct points in the image of its domain.
Grigoriev’s Lower-Bound Method

Definition \((w(u, v))-\text{flow}\).

Let \(f : \mathcal{A}^n \mapsto \mathcal{A}^m \). \(f \) has a \((w(u, v))\)-flow if for all partition \((X_0, X_1)\) of the inputs and all partition \((Y_0, Y_1)\) of the outputs, such that \(|X_1| = u\) and \(|Y_1| = v\), there exists a subfunction \(h \) of \(f \) obtained by assigning all variables in \(X_0 \) to fixed values and discarding output values in \(Y_0 \), such that \(h \) has at least \(|\mathcal{A}|^{w(u, v)}\) distinct points in the image of its domain.

Definition \(((\alpha, n, m, p))-\text{independant function}\).

\(f \) is an \((\alpha, n, m, p)\)-independant function if it has a \((w(u, v))\)-flow with \(w(u, v) \geq v/\alpha - 1 \) for all \(u, v \) such that \(n - u + v \leq p \).

Lemma.

The product of two \(N \times N \) matrices is \((1, 2N^2, N^2, N)\)-independant.

Interpretation for matrix product:
- Consider \(y_1 \) outputs, fix \(x_0 \) inputs, with \(x_0 + y_1 \leq p = N \)
- \(\Rightarrow \) large flow of information from the other inputs to \(Y_1 \)
Lower-bound an application to matrix product

Theorem.
Let $f : \mathcal{A}^n \mapsto \mathcal{A}^m$ be a function with a $w(u, v)$-flow. Any pebbling of any DAG computing f that takes T steps and S space respects:

$$T \geq \lfloor m/b \rfloor (n - d)$$

for any $b \leq m$ and d the largest integer such that $w(d, b) \leq S$.

Sketch of proof:

- Consider small multiple b of number of pebbles S
- Divide computations into intervals with b outputs pebbled
- Use pigeonhole to prove that we must read a lot of inputs during an interval:
 - If number of read inputs is small
 - Large flow by assumption
 - Large flow from inputs read before the interval
 - These inputs must be pebbled at the beginning of the interval
 - Flow cannot be larger than S, contradiction
- Multiply by the number of intervals

NB: Proofs available on the website.
Theorem.

Let \(f : \mathcal{A}^n \mapsto \mathcal{A}^m \) be a function with a \(w(u, v) \)-flow. Any pebbling of any DAG computing \(f \) that takes \(T \) steps and \(S \) space respects:
\[
T \geq \lfloor m/b \rfloor (n - d)
\]
for any \(b \leq m \) and \(d \) the largest integer such that \(w(d, b) \leq S \).

Corollary

Let \(f : \mathcal{A}^n \mapsto \mathcal{A}^m \) be \((\alpha, n, m, p)\)-independant. For every pebbling of every DAG computing \(f \) using \(S \) pebbles and \(T \) steps, we have
\[
\lceil \alpha(S + 1) \rceil T \geq mp/4
\]

Sketch of proof:

- Carefully choose \(b \)
- Derive an upper bound on \(d \) (thanks to the flow)
- Computations on inequalities and case studies
Theorem.

Let \(f : A^n \mapsto A^m \) be a function with a \(w(u, v) \)-flow. Any pebbling of any DAG computing \(f \) that takes \(T \) steps and \(S \) space respects:

\[
T \geq \left\lfloor \frac{m}{b} \right\rfloor (n - d)
\]

for any \(b \leq m \) and \(d \) the largest integer such that \(w(d, b) \leq S \).

Corollary

Let \(f : A^n \mapsto A^m \) be \((\alpha, n, m, p) \)-indepedendant. For every pebbling of every DAG computing \(f \) using \(S \) pebbles and \(T \) steps, we have

\[
\left\lceil \alpha(S + 1) \right\rceil T \geq mp/4
\]

Theorem.

Every pebbling strategy for any straight-line program computing the multiplication of two \(N \times N \) matrices uses a space \(S \) and time \(T \) respecting the following inequality:

\[
(S + 1)T \geq N^3/4
\]