Part 4: Communication Avoiding Algorithms

Loris Marchal (CNRS, Lyon, France)
loris.marchal@ens-lyon.fr

October 21, 2020
Yet Another Motivation...

... for limiting communications

Source: John Shalf, LBL
Communication Avoiding Algorithms

Context: Distributed Memory

Communications: Data movements between:
- one processor and its memory
- different processors/memories

Objective:
- Derive communication lower bounds for many linear algebra operations
- Design communication-optimal algorithms
Context: Single processor + Memory (size M)

- Analysis in phases of M I/O operations
- Bound on the number of elementary product in each phase: $F = O(M^{3/2})$

 Geometric argument: Loomis-Whitney inequality

- At least n^3 / F phases, of M I/Os, in total: $\Theta(n^3 / \sqrt{M})$ I/Os
Part 4: Communication Avoiding Algorithms

Generalization to other Linear Algebra Algorithms
 Generalized Matrix Computations
 I/O Analysis
 Application to LU Factorization

Analysis and Lower Bounds for Parallel Algorithms
 Matrix Multiplication Lower Bound for P processors
 2D and 3D Algorithms for Matrix Multiplication
 2.5D Algorithm for Matrix Multiplication

Conclusion
Part 4: Communication Avoiding Algorithms

Generalization to other Linear Algebra Algorithms
 Generalized Matrix Computations
 I/O Analysis
 Application to LU Factorization

Analysis and Lower Bounds for Parallel Algorithms
 Matrix Multiplication Lower Bound for P processors
 2D and 3D Algorithms for Matrix Multiplication
 2.5D Algorithm for Matrix Multiplication

Conclusion
Generalization to other Linear Algebra Algorithms

▶ Inputs/Output: $n \times n$ matrices A, B, C
▶ Any mapping of the matrices to the memory (possibly overlapping)
Generalization to other Linear Algebra Algorithms

▶ Inputs/Output: \(n \times n \) matrices \(A, B, C \)
▶ Any mapping of the matrices to the memory (possibly overlapping)

General computation

For all \((i, j) \in S_c\),

\[
C_{i,j} \leftarrow f_{i,j} \left(g_{i,j,k}(A_{i,k}B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \right)
\]
Generalization to other Linear Algebra Algorithms

- Inputs/Output: $n \times n$ matrices A, B, C
- Any mapping of the matrices to the memory (possibly overlapping)

General computation

For all $(i, j) \in S_c$,

$$C_{i,j} \leftarrow f_{i,j} \left(g_{i,j,k}(A_{i,k}B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \right)$$

- For matrix multiplication:
Generalization to other Linear Algebra Algorithms

- Inputs/Output: $n \times n$ matrices A, B, C
- Any mapping of the matrices to the memory (possibly overlapping)

General computation

For all $(i, j) \in S_c$,

$$C_{i,j} \leftarrow f_{i,j} \left(g_{i,j,k}(A_{i,k}B_{k,j}) \right) \text{ for } k \in S_{i,j}, \text{ any other arguments}$$

- For matrix multiplication:
 - $f_{i,j}$: summation, $g_{i,j,k}$: product
 - $S_{i,j} = [1, n]$, $S_C = [1, n] \times [1, n]$
General Matrix Computations

General computation

For all \((i, j) \in S_c\),

\[C_{i,j} \leftarrow f_{i,j} \left(g_{i,j,k}(A_{i,k}B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \right) \]

- \(f_{i,j}\) and \(g_{i,j,k}\) non-trivial:
 - \(g_{i,j,k}\) needs to the value of \(A_{i,k}\) and \(B_{k,j}\) in memory
 - \(f_{i,j}\) needs at least an "accumulator" while results of \(g_{i,j,k}(\ldots)\) are loaded/computed in memory one after the other

- \(S_c, S_{i,j}, f_{i,j}, g_{i,j,k}\) possibly determined at runtime
- Correct computations may require special ordering of computations: no such constraint needed for the lower bound:
 - any order for computing the \(g_{i,j,k}\)
 - any order for computing and storing the \(f_{i,j}\)
Generalized Matrix Computations

General computation

For all \((i,j) \in S_c\),

\[
C_{i,j} \leftarrow f_{i,j}(g_{i,j,k}(A_{i,k}B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments})
\]

- \(f_{i,j}\) and \(g_{i,j,k}\) non-trivial:
 - \(g_{i,j,k}\) needs to the value of \(A_{i,k}\) and \(B_{k,j}\) in memory
 - \(f_{i,j}\) needs at least an “accumulator” while results of \(g_{i,j,k}(\ldots)\) are loaded/computed in memory one after the other

- \(S_C, S_{i,j}, f_{i,j}, g_{i,j,k}\) possibly determined at runtime

Correct computations may require special ordering of computations: no such constraint needed for the lower bound:

- any order for computing the \(g_{i,j,k}\)
- any order for computing and storing the \(f_{i,j}\)
Generalized Matrix Computations

General computation

For all \((i, j) \in S_c\),

\[
C_{i,j} \leftarrow f_{i,j}(g_{i,j,k}(A_{i,k}B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments})
\]

- \(f_{i,j}\) and \(g_{i,j,k}\) non-trivial:
 - \(g_{i,j,k}\) needs to the value of \(A_{i,k}\) and \(B_{k,j}\) in memory
 - \(f_{i,j}\) needs at least an “accumulator” while results of \(g_{i,j,k}(\ldots)\)
 are loaded/computed in memory one after the other

- \(S_C, S_{i,j}, f_{i,j}, g_{i,j,k}\) possibly determined at runtime

- Correct computations may require special ordering of computations: no such constraint needed for the lower bound:
 - any order for computing the \(g_{i,j,k}\)
 - any order for computing and storing the \(f_{i,j}\)
Geometric analysis

Analysis based on Loomis-Whitney inequality:

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of \mathbb{Z}^D and V_1, V_2, V_3 denotes the orthogonal projections of V on each coordinate planes, we have:

$$|V|^2 \leq |V_1| \cdot |V_2| \cdot |V_3|,$$
I/O Analysis

One phase: \(M \) I/Os operations (loads and stores)

Classify operands based on their root and destination:

- **R1**: operands present in fast memory at the beginning of the phase or loaded (at most \(2M \) such operands)
- **R2**: operands computed during the phase
- **D1**: operands left in fast memory at the end of the phase or written (at most \(2M \) such operands)
- **D2**: operands discarded

Forget about R2/D2 operands

At most \(4M \) operands available in one phase, for each matrix

Loomis-Whitney ⇒ at most \(F = \sqrt{4M} \) computations of \(g \)

Total number of loads and stores:

\[
M \left\lfloor \frac{G}{F} \right\rfloor = M \left[\frac{G}{\sqrt{4M}} \right] \geq \frac{G}{\sqrt{M}} - M
\]
I/O Analysis

One phase: M I/Os operations (loads and stores)

Classify operands based on their root and destination:

- **R1**: operands present in fast memory at the beginning of the phase or loaded (at most $2M$ such operands)
- **R2**: operands computed during the phase
- **D1**: operands left in fast memory at the end of the phase or written (at most $2M$ such operands)
- **D2**: operands discarded

Forget about R2/D2 operands

At most 4M operands available in one phase, for each matrix

Loomis-Whitney ⇒ at most $F = \sqrt[3]{(4M)^2}$ computations of g

Total number of loads and stores:

\[
M \left\lceil \frac{G}{F} \right\rceil = M \left\lceil \frac{G}{\sqrt[3]{(4M)^2}} \right\rceil \leq \frac{G}{8\sqrt[3]{M}} - M
\]
I/O Analysis

One phase: M I/Os operations (loads and stores)

Classify operands based on their root and destination:

- **R1**: operands present in fast memory at the beginning of the phase or loaded (at most $2M$ such operands)
- **R2**: operands computed during the phase
- **D1**: operands left in fast memory at the end of the phase or written (at most $2M$ such operands)
- **D2**: operands discarded

- Forget about R2/D2 operands

At most $4M$ operands available in one phase, for each matrix

Loomis-Whitney \Rightarrow at most $F = \sqrt{(4M)^3}$ computations of g

Total number of loads and stores:

$$M \left\lfloor \frac{G}{F} \right\rfloor = M \left\lfloor \frac{G}{\sqrt{(4M)^3}} \right\rfloor \geq \frac{G}{8\sqrt{M}} - M$$
I/O Analysis

One phase: M I/Os operations (loads and stores)

Classify operands based on their root and destination:

- **R1**: operands present in fast memory at the beginning of the phase or loaded (at most $2M$ such operands)
- **R2**: operands computed during the phase
- **D1**: operands left in fast memory at the end of the phase or written (at most $2M$ such operands)
- **D2**: operands discarded

- Forget about R2/D2 operands
- At most $4M$ operands available in one phase, for each matrix
 - Loomis-Whitney ⇒ at most $F = \sqrt{(4M)^3}$ computations of g
 - Total number of loads and stores:

\[
M \left[\frac{G}{F} \right] = M \left[\frac{G}{\sqrt{(4M)^3}} \right] \geq \frac{G}{8\sqrt{M}} - M
\]
I/O Analysis

One phase: \(M \) I/Os operations (loads and stores)

Classify operands based on their root and destination:
- **R1**: operands present in fast memory at the beginning of the phase or loaded (at most \(2M \) such operands)
- **R2**: operands computed during the phase
- **D1**: operands left in fast memory at the end of the phase or written (at most \(2M \) such operands)
- **D2**: operands discarded

- Forget about R2/D2 operands
- At most \(4M \) operands available in one phase, for each matrix
- Loomis-Whitney \(\implies \) at most \(F = \sqrt{(4M)^3} \) computations of \(g \)

Total number of loads and stores:

\[
M \left[\frac{G}{F} \right] = M \left[\frac{G}{\sqrt{(4M)^3}} \right] \geq \frac{G}{8\sqrt{M}} - M
\]
I/O Analysis

One phase: M I/Os operations (loads and stores)

Classify operands based on their root and destination:

- R1: operands present in fast memory at the beginning of the phase or loaded (at most $2M$ such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most $2M$ such operands)
- D2: operands discarded

Forget about R2/D2 operands

At most $4M$ operands available in one phase, for each matrix

Loomis-Whitney \Rightarrow at most $F = \sqrt{(4M)^3}$ computations of g

Total number of loads and stores:

$$M \left\lfloor \frac{G}{F} \right\rfloor = M \left\lfloor \frac{G}{\sqrt{(4M)^3}} \right\rfloor \geq \frac{G}{8\sqrt{M}} - M$$
Application to LU Factorization (1/2)

LU factorization (Gaussian elimination):
- Convert a matrix A into product $L \times U$
- L is lower triangular with diagonal 1
- U is upper triangular
- $(L - D + U)$ stored in place with A

LU Algorithm

For $k = 1 \ldots n - 1$:
- For $i = k + 1 \ldots n$,
 $A_{i,k} \leftarrow a_{i,k}/a_{k,k}$ (column/panel preparation)
- For $i = k + 1 \ldots n$,
 For $j = k + 1 \ldots n$,
 $A_{i,j} \leftarrow A_{i,j} - A_{i,k}A_{k,j}$ (update)
Application to LU Factorization (2/2)

Can be expressed as follows:

\[U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j} \quad \text{for } i \leq j \]

\[L_{i,j} = (A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}) / U_{j,j} \quad \text{for } i > j \]

Fits the generalized matrix computations:

\[C(i,j) = f_{i,j} \left(g_{i,j,k}(A(i,k), B(k,j)) \right) \quad \text{for } k \in S_{i,j}, K \]

with:
Application to LU Factorization (2/2)

Can be expressed as follows:

\[
U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j} \quad \text{for } i \leq j
\]

\[
L_{i,j} = (A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}) / U_{j,j} \quad \text{for } i > j
\]

Fits the generalized matrix computations:

\[
C(i,j) = f_{i,j}\left(g_{i,j,k}(A(i,k), B(k,j)) \text{ for } k \in S_{i,j}, K\right)
\]

with:

▶ \(A = B = C \)
▶ \(g_{i,j,k} \) multiplies \(L_{i,k} \cdot U_{k,j} \)
▶ \(f_{i,j} \) performs the sum, subtracts from \(A_{i,j} \) (divides by \(U_{j,j} \))
▶ I/O lower bound: \(O(G/\sqrt{M}) = O(n^3/\sqrt{M}) \)
▶ Some algorithms attain this bound (hard because of pivoting)
We consider the following algorithm for computing the solution of a linear system of equations $Ax = b$ where A is a lower triangular matrix (of size $n \times n$) and x and b are two vectors (of size n):

$$
\begin{align*}
&\text{for } i = 1 \ldots n \text{ do} \\
&\quad x_i \leftarrow b_i \\
&\text{for } i = 1 \ldots n \text{ do} \\
&\quad x_i \leftarrow \frac{x_i}{A_{i,i}} \quad \text{for } k = i + 1 \ldots n \text{ do} \\
&\quad x_k \leftarrow x_k - x_i \times A_{k,i}
\end{align*}
$$

Questions:

1. Show how this computation can be modeled as a generalized matrix computation. In particular, exhibit $A, B, C, f_{i,j}, g_{i,j,k}, S_{i,j}$ and possibly other arguments.

2. Extend the previous lower bound on the total volume of communication to this problem.
Part 4: Communication Avoiding Algorithms

Generalization to other Linear Algebra Algorithms
Generalized Matrix Computations
I/O Analysis
Application to LU Factorization

Analysis and Lower Bounds for Parallel Algorithms
Matrix Multiplication Lower Bound for P processors
2D and 3D Algorithms for Matrix Multiplication
2.5D Algorithm for Matrix Multiplication

Conclusion
Lemma.
Consider a conventional $N \times N$ matrix multiplication performed on P processors with distributed memory. A processor with memory M that perform W elementary products must send or receive at least $\frac{W}{2^{\sqrt{2}}\sqrt{M}} - M$ elements.

Theorem.
Consider a conventional $N \times N$ matrix multiplication on P processors, each with a memory M. Some processor has a volume of I/O at least $\frac{N^3}{2^{\sqrt{2}}P\sqrt{M}} - M$.

NB: bound useful only when $M < \frac{N^2}{(2P^{3/2})}$
Lemma.
Consider a conventional $N \times N$ matrix multiplication performed on P processors with distributed memory. A processor with memory M that perform W elementary products must send or receive at least $\frac{W}{2\sqrt{2\sqrt{M}}} - M$ elements.

Theorem.
Consider a conventional $N \times N$ matrix multiplication on P processors, each with a memory M. Some processor has a volume of I/O at least $\frac{N^3}{2\sqrt{2P\sqrt{M}}} - M$.

NB: bound useful only when $M < \frac{N^2}{(2P^{3/2})}$.
Matrix Multiplication Lower Bound for P processors

Lemma.
Consider a conventional $N \times N$ matrix multiplication performed on P processors with distributed memory. A processor with memory M that performs W elementary products must send or receive at least $\frac{W}{2\sqrt{2\sqrt{M}}} - M$ elements.

Theorem.
Consider a conventional $N \times N$ matrix multiplication on P processors, each with a memory M. Some processor has a volume of I/O at least $\frac{N^3}{2\sqrt{2P\sqrt{M}}} - M$.

NB: bound useful only when $M < \frac{N^2}{(2P^{3/2})}$
Cannon’s 2D Algorithm

- Processors organized on a square 2D grid of size \(\sqrt{P} \times \sqrt{P} \)
- \(A, B, C \) matrices distributed by blocks of size \(N/\sqrt{P} \times N/\sqrt{P} \)
 Processor \(P_{i,j} \) initially holds matrices \(A_{i,j}, B_{i,j} \), computes \(C_{i,j} \)
- At each step, each proc. performs a \(A_{i,k} \times B_{k,j} \) block product

First realign matrices:
- Shift \(A_{i,j} \) blocks to the left by \(i \) (wraparound)
- Shift \(B_{i,j} \) blocks to the top by \(j \) (wraparound)

 Then \(P_{i,j} \) holds blocks \(A_{i,i+j} \) and \(B_{i+j,j} \)

At each step:
- Compute one block product
- Shift \(A \) blocks right
- Shift \(B \) blocks down

Total I/O cost: \(O(N^2 \sqrt{P}) \)

Storage \(O(N^2/P) \) per proc.
Cannon’s 2D algorithm

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$
- Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step, each proc. performs a $A_{i,k} \times B_{k,j}$ block product

First realign matrices:
- Shift $A_{i,j}$ blocks to the left by i (wraparound)
- Shift $B_{i,j}$ blocks to the top by j (wraparound)

Then $P_{i,j}$ holds blocks $A_{i,i+j}$ and $B_{i+j,j}$

At each step:
- Compute one block product
- Shift A blocks right
- Shift B blocks down

Total I/O cost: $O(N^2 \sqrt{P})$

Storage $O(N^2/P)$ per proc.
Cannon’s 2D algorithm

- Processors organized on a **square 2D grid** of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$

 Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$

- At each step, each proc. performs a $A_{i,k} \times B_{k,j}$ block product

 First reallign matrices:
 - Shift $A_{i,j}$ blocks to the left by i (wraparound)
 - Shift $B_{i,j}$ blocks to the top by j (wraparound)

 Then $P_{i,j}$ holds blocks $A_{i,i+j}$ and $B_{i+j,j}$

- At each step:
 - Compute one block product
 - shift A blocks right
 - shift B blocks down

 Total I/O cost: $O(N^2 \sqrt{P})$

- **Storage** $O(N^2/P)$ per proc.
Cannon’s 2D algorithm

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$
 Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step, each proc. performs a $A_{i,k} \times B_{k,j}$ block product

First realign matrices:
- Shift $A_{i,j}$ blocks to the left by i (wraparound)
- Shift $B_{i,j}$ blocks to the top by j (wraparound)

Then $P_{i,j}$ holds blocks $A_{i,i+j}$ and $B_{i+j,j}$

At each step:
- Compute one block product
- shift A blocks right
- shift B blocks down

Total I/O cost: $O(N^2 \sqrt{P})$

Storage $O(N^2/P)$ per proc.
Other 2D Algorithm: SUMMA

- SUMMA: Scalable Universal Matrix Multiplication Algorithm
- Same 2D grid distribution: $P_{i,j}$ holds $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step k, column k of A and row k of B are broadcasted (from processors owning the data)
- Each processor computes a local contribution (outer-product)

Smaller communications \Rightarrow smaller temporary storage
- Same I/O volume: $O(N^2 \sqrt{P})$
Theorem.
Consider a conventional matrix multiplication on \(P \) processors each with \(O(N^2/P) \) storage, some processor has a I/O volume at least \(\Theta(N^2/\sqrt{P}) \).

Proof: Previous result: \(O(N^3/P\sqrt{M}) \) with \(M = N^2/P \).

- When balanced, total I/O volume: \(\Theta(N^2\sqrt{P}) \)
- Both Cannon’s algorithm and SUMMA are optimal

Can we do better?
I/O Lower Bound for 2D algorithms

Theorem.
Consider a conventional matrix multiplication on \(P \) processors each with \(O(N^2/P) \) storage, some processor has a I/O volume at least \(\Theta(N^2/\sqrt{P}) \).

Proof: Previous result: \(O(N^3/P\sqrt{M}) \) with \(M = N^2/P \).

- When balanced, total I/O volume: \(\Theta(N^2 \sqrt{P}) \)
- Both Cannon’s algorithm and SUMMA are optimal among 2D algorithms (memory limited to \(O(N^2/P) \))

Can we do better?
3D Algorithm

- Consider 3D grid of processor: \(q \times q \times q \)
 \((q = P^{1/3} = \sqrt[3]{P}) \)
- Processor \(i, j, k \) owns blocks \(A_{i,k}, B_{k,j}, C_{i,j}^{(k)} \)
- Matrices are replicated (including \(C \))
- Each processor computes its local contribution
- Then summation of the various \(C_{i,j}^{(k)} \) for all \(k \)
- Memory needed: \(O(N^2/q^2) = O(N^2/P^{2/3}) \) per processor
- Total I/O volume: \(O(N^2/q^2 \times q^3) = O(N^2q) = O(N^2\sqrt[3]{P}) \)

Lower Bound:

- Previous theorem does not give useful bound (only when \(M < N^2/2/P^{2/3} \))
- More complex analysis shows that the I/O volume on some processor is \(\Theta(N^2/P^{2/3}) \)
- In total, when balanced \(\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D \) algo. is optimal
- Can we do better?
3D Algorithm

- Consider 3D grid of processor: \(q \times q \times q \)
 \((q = P^{1/3} = \sqrt[3]{P}) \)
- Processor \(i, j, k \) owns blocks \(A_{i,k}, B_{k,j}, C_{i,j}^{(k)} \)
- Matrices are replicated (including \(C \))
- Each processor computes its local contribution
- Then summation of the various \(C_{i,j}^{(k)} \) for all \(k \)
- Memory needed: \(O(N^2/q^2) = O(N^2/P^{2/3}) \) per processor
- Total I/O volume: \(O(N^2/q^2 \times q^3) = O(N^2q) = O(N^2\sqrt[3]{P}) \)

Lower Bound:

- Previous theorem does not give useful bound (only when \(M < N^2/2/P^{2/3} \))
- More complex analysis shows that the I/O volume on some processor is \(\Theta(N^2/P^{2/3}) \)
- In total, when balanced \(\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D \) algo. is optimal
- Can we do better?
3D Algorithm

- Consider 3D grid of processor: \(q \times q \times q \)
 \((q = P^{1/3} = \sqrt[3]{P})\)
- Processor \(i, j, k\) owns blocks \(A_{i,k}, B_{k,j}, C_{i,j}^{(k)}\)
- Matrices are replicated (including \(C\))
- Each processor computes its local contribution
- Then summation of the various \(C_{i,j}^{(k)}\) for all \(k\)
- Memory needed: \(O(N^2/q^2) = O(N^2/P^{2/3})\) per processor
- Total I/O volume: \(O(N^2/q^2 \times q^3) = O(N^2q) = O(N^2\sqrt[3]{P})\)

Lower Bound:

- Previous theorem does not give useful bound (only when \(M < N^2/2/P^{2/3}\))
- More complex analysis shows that the I/O volume on some processor is \(\Theta(N^2/P^{2/3})\)
- In total, when balanced \(\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D\) algo. is optimal

Can we do better?
3D Algorithm

- Consider 3D grid of processor: $q \times q \times q$
 ($q = P^{1/3} = \sqrt[3]{P}$)

- Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$

- Matrices are replicated (including C)

- Each processor computes its local contribution

- Then summation of the various $C_{i,j}^{(k)}$ for all k

- Memory needed: $O(N^2/q^2) = O(N^2/P^{2/3})$ per processor

- Total I/O volume: $O(N^2/q^2 \times q^3) = O(N^2q) = O(N^2\sqrt[3]{P})$

Lower Bound:

- Previous theorem does not give useful bound (only when $M < N^2/2/P^{2/3}$)

- More complex analysis shows that the I/O volume on some processor is $\Theta(N^2/P^{2/3})$

- In total, when balanced $\Theta(N^2\sqrt[3]{P}) \Rightarrow$ 3D algo. is optimal

- Can we do better?
2.5D Algorithm (1/2)

- 3D algorithm requires large memory on each processor ($\sqrt[3]{P}$ copies of each matrices).
- What if we have space for only $1 < c < \sqrt[3]{P}$ copies?
- Assume each processor has a memory $M = O(c \cdot N^2 / P)$.
- Arrange processors in $\sqrt{P/c} \times \sqrt{P/c} \times c$ grid: c layers, each layer with P/c processors in square grid.
- A, B, C distributed by blocks of size $N \sqrt{c/P} \times N \sqrt{c/P}$, replicated on each layer.

NB: $c = 1$ gets 2D, $c = P^{1/3}$ gives 3D.
2.5D Algorithm (2/2)

- Each layer responsible for a fraction $1/c$ of Cannon’s alg.: Different initial shifts of A and B
- Finally, sum C over layers
 - Total I/O volume: $O(N^2 / \sqrt{P/c})$
 - Replication, initial shift, final sum: $O(N^2 c)$
 - c layers of fraction $1/c$ of Cannon’s alg. with grid size $\sqrt{P/c}$: $O\left(N^2 \sqrt{P/c}\right)$
 - Reaches lower bound on I/Os per processor:
 $$O\left(\frac{N^3}{P\sqrt{M}}\right) = O\left(\frac{N^3}{P\sqrt{cN^2/P}}\right) = O(N^2 / \sqrt{cP})$$
2.5D Algorithm (2/2)

- Each layer responsible for a fraction $1/c$ of Cannon’s alg.: Different initial shifts of A and B
- Finally, sum C over layers
- Total I/O volume: $O(N^2 / \sqrt{P/c})$
 - Replication, initial shift, final sum: $O(N^2 c)$
 - c layers of fraction $1/c$ of Cannon’s alg. with grid size $\sqrt{P/c}$:
 $O\left(N^2 \sqrt{P/c}\right)$
- Reaches lower bound on I/Os per processor:
 $$O\left(\frac{N^3}{P\sqrt{M}}\right) = O\left(\frac{N^3}{P\sqrt{cN^2/P}}\right) = O(N^2 / \sqrt{cP})$$
Each layer responsible for a fraction $1/c$ of Cannon’s alg.:
Different initial shifts of A and B

- Finally, sum C over layers
- Total I/O volume: $O(N^2 / \sqrt{P/c})$
 - Replication, initial shift, final sum: $O(N^2 c)$
 - c layers of fraction $1/c$ of Cannon’s alg. with grid size $\sqrt{P/c}$:
 $O\left(N^2 \sqrt{P/c}\right)$

Reaches lower bound on I/Os per processor:

$$O\left(\frac{N^3}{P \sqrt{M}}\right) = O\left(\frac{N^3}{P \sqrt{cN^2 / P}}\right) = O(N^2 / \sqrt{cP})$$
Performance on Blue Gene P

Matrix multiplication on 16,384 nodes of BG/P

95% reduction in communication

Execution time normalized by 2D

C=16

Source Jim Demmel
Part 4: Communication Avoiding Algorithms

Generalization to other Linear Algebra Algorithms
Generalized Matrix Computations
I/O Analysis
Application to LU Factorization

Analysis and Lower Bounds for Parallel Algorithms
Matrix Multiplication Lower Bound for P processors
2D and 3D Algorithms for Matrix Multiplication
2.5D Algorithm for Matrix Multiplication

Conclusion
Conclusion

Generalized I/O lower bound for matrix computations:

- Apply to most linear algebra algorithms
- Design of I/O-optimal algorithms

Parallel algorithms with distributed memory:

- Adapted I/O lower bounds (depends on M on each processor)
- Asymptotically optimal algorithm for matrix multiplication . . .
 . . . and many other matrix computations
 “communication-avoiding algorithms”

- Here: focus on the total I/O volume
- Similar lower bound and analysis for the number of messages:
 also important factor for performance
- Variant: Write-avoiding algorithms for NVRAMs
 (writes more expensive than reads)