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Communication Avoiding Algorithms

Context: Distributed Memory

memory memory memory memory

disk

Communications: Data movements between:

I one processor and its memory

I different processors/memories

Objective:

I Derive communication lower bounds for many linear algebra
operations

I Design communication-optimal algorithms
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Reminder: Matrix Product Lower Bound

Context: Single processor + Memory (size M)

memory

disk

I Analysis in phases of M I/O operations

I Bound on the number of elementary product in each phase:
F = O(M3/2)
Geometric argument: Loomis-Whitney inequality

I At least n3/F phases, of M I/Os, in total: Θ(n3/
√
M) I/Os
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Generalization to other Linear Algebra Algorithms

I Inputs/Ouput: n × n matrices A,B,C

I Any mapping of the matrices to the memory
(possibly overlapping)

General computation

For all (i , j) ∈ Sc ,

Ci ,j ← fi ,j

(
gi ,j ,k(Ai ,kBk,j) for k ∈ Si ,j , any other arguments

)
I fi , j and gi ,j ,k non-trivial:

I gi,j,k needs to the value of Ai,k and Bk,j in memory
I fi , j needs at least an “accumulator” while results of gi,j,k(. . .)

are loaded/computed in memory one after the other

I SC , Si ,j , fi ,j , gi ,j ,k possibly determined at runtime
I For matrix multiplication:

I fi,j : summation, gi,j,k : product
I Si,j = [1, n], SC = [1, n]× [1, n]
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Generalized Matrix Computations

I f and g are not assumed associative or commutative

I Correct computations may require special ordering of
computations: no such constraint needed for the lower bound

Analysis based on Loomis-Whitney inequality:

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of ZD and V1,V2,V3 denotes the
orthogonal projections of V on each coordinate planes, we have:

|V |2 ≤ |V1| · |V2| · |V3|,

V2
V

V3

k

i

j

V1

V1

V2

V
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I/O Analysis

One phase: M I/Os operations (loads and stores)

Classify operands based on their root and destination:
I R1: operands present in fast memory at the beginning of the

phase or loaded (at most 2M such operands)
I R2: operands computed during the phase
I D1: operands left in fast memory at the end of the phase or

written (at most 2M such operands)
I D2: operands discarded

I Forget about R2/D2 operands
I At most 4M operands available in one phase, for each matrix
I Loomis-Whitney ⇒ at most F =

√
(4M)3 computations of g

I Total number of loads and stores:

M

⌊
G

F

⌋
= M

⌊
G√

(4M)3

⌋
≥ G

8
√
M
−M
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Application to LU Factorization (1/2)

LU factorization (Gaussian elimination):

I Convert a matrix A into product L×U

I L is lower triangular with diagonal 1

I U is upper triangular

I (L− D + U) stored in place with A

schemes: Cholesky, QR, and LU. No algorithmic variants for a
particular method were considered.

4. ORIGINAL CONTRIBUTION
The unique contribution of this survey is in implementing all the
algorithms, being compared using the same framework, the same
data layout, and the same set of parallel layout translation routines,
as well as the same runtime scheduling system. This allows for
gaining a level of insight into the trade-offs of the different methods
that one could not reach by comparing published data for different
implementations in different environments.

5. ALGORITHMS
5.1 Partial Pivoting
The LAPACK block LU factorization is the main point of refer-
ence here, and LAPACK naming convention is followed. The LU
factorization of a matrix A has the form

PA = LU,

where L is a unit lower triangular matrix, U is an upper triangular
matrix and P is a permutation matrix. The LAPACK algorithm
proceeds in the following steps: Initially, a set of NB columns (the
panel) is factored and a pivoting pattern is produced (implemented
by the DGETF2 routine). Then the elementary transformations,
resulting from the panel factorization, are applied in a block fash-
ion to the remaining part of the matrix (the trailing submatrix).
This involves swapping of up to NB rows of the trailing submatrix
(DLASWP), according to the pivoting pattern, application of a tri-
angular solve with multiple right-hand-sides to the top NB rows of
the trailing submatrix (DTRSM), and finally application of matrix
multiplication of the form Ai j  Ai j�Aik⇥Ak j (DGEMM), where
Aik is the panel without the top NB rows, Ak j is the top NB rows of
the trailing submatrix and Ai j is the trailing submatrix without the
top NB rows. Then the procedure is applied repeatedly, descending
down the diagonal of the matrix (Figure 1). The block algorithm is
described in detail in section 2.6.3 of the book by Demmel [13]

U (done)

L
 (

d
o

n
e

)

Aij

Akj

Aik

Figure 1: The block LU factorization (Level 3 BLAS algorithm
of LAPACK).

5.2 Incremental Pivoting
The worst performance-limiting aspect of Gaussian elimination with
partial pivoting is the panel factorization operation. First, it is an
inefficient operation, usually based on a sequence of calls to Level 2
BLAS. Second, it introduces synchronization, by locking the entire
panel of the matrix at a time. Therefore, it is desirable to split
the panel factorization into a number of smaller, finer-granularity

operations, which is the basic premise of the incremental pivoting
implementation, also known in literature as the tile LU factorization.

In this algorithm, instead of factoring the panel one column at a
time, the panel is factored one tile at a time. The operation proceeds
as follows: First the diagonal tile is factored, using the standard LU
factorization procedure. Then the factored tile is combined with the
tile directly below it, and factored. Then the re-factored diagonal tile
is combined with the next tile, and factored again. The algorithm
descends down the panel until the bottom of the matrix is reached.
At each step, the standard partial pivoting procedure is applied to
the tiles being factored. Also, at each step, all the tiles to the right of
the panel are updated with the elementary transformations resulting
from the panel operations. This way of pivoting is basically the
idea of pairwise pivoting applied at the level of tiles, rather than
individual elements (Figure 2). The main benefit comes from the
fact that updates of the trailing submatrix can proceed alongside
panel factorizations, leading to a very efficient parallel execution,
where multiple steps of the algorithm are smoothly pipelined.

Figure 2: Incremental LU factorization.

5.3 Tournament Pivoting
The panel factorization is one of the most important tasks, because
it creates parallelism for the update of the trailing submatrices.
Hence, its ineffective execution suffices to reduce considerably
the performance of the overall algorithm. Classic approaches that
implement partial pivoting algorithm spend more time to perform
communication during the panel factorization and hence are not
optimal. This is because pivoting forces the algorithm to factor
the panel column by column, and then this leads to an algorithm
which communicates asymptotically more than the established lower
bounds [11].

The basic idea of communication avoiding algorithms, initially intro-
duced for distributed memories [11, 23], and later adapted to shared
memories [14], is to replace the search for maximum, performed
at each column, by a single reduction of the maximums altogether.
This is done thanks to a new pivoting strategy referred to as tour-
nament pivoting (TSLU), which performs redundant computations
and is shown to be stable in practice. TSLU reduces the bottleneck
introduced by the pivoting operation through a block reduction op-
eration to factor the panel. It factors the panel in two steps. The
first one identifies rows, which can be used as good pivots for the
factorization of the whole panel, with a tournament selection. The
second one swaps the selected pivot to the top of the panel, and then
factors the entire panel without pivoting in a tiled Cholesky-like
operation. With this strategy, the panel is efficiently parallelized and
the communication is provably minimized.

Akk

LU Algorithm

For k = 1 . . . n − 1:

I For i = k + 1 . . . n,
Ai ,k ← ai ,k/ak,k (column/panel preparation)

I For i = k + 1 . . . n,
For j = k + 1 . . . n,
Ai ,j ← Ai ,j − Ai ,kAk,j (update)
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Application to LU Factorization (2/2)

Can be expressed as follows:

Li ,j = (Ai ,j −
∑
k<j

Li ,k · Uk,j)/Uj ,j for i > j

Ui ,j = Ai ,j −
∑
k<i

Li ,k · Uk,j for i ≤ j

Fits the generalized matrix computations:

C (i , j) = fi ,j

(
gi ,j ,k(A(i , k),B(k, j)) for k ∈ Si ,j ,K

)
with:

I A = B = C

I gi ,j ,k multiplies Li ,k · Uk,j

I fi ,j performs the sum, subtracts from Ai , j (divides by Uj ,j)

I I/O lower bound: O(G/
√
M)=O(n3/

√
M)

I A recursive algorithm achieves this bound
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Matrix Multiplication Lower Bound for P processors

memory memory memory memory

disk

Lemma.

Consider a conventional matrix multiplication performed on P
processors with distributed memory. A processor with memory M
that perform W elementary products must send or receive at least

W
2
√
2
√
M
−M elements.

Theorem.

Consider a conventional matrix multiplication on P processors,
each with a memory M. Some processor has a volume of I/O at

least n3

2
√
2P

√
M
−M.

NB: bound useful only when M < n2/(2P3/2)
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Cannon’s 2D algorithm

I Processors organized on a square 2D grid of size
√
P ×
√
P

I A,B,C matrices distributed by blocks of size N/
√
P × N/

√
P

Processor Pi ,j initially holds matrices Ai ,j , Bi ,j , computes Ci ,j

I At each step, each proc. performs a Ai ,k × Bk,j block product

I First reallign matrices:
I Shift Ai,j blocks to the

left by i (wraparound)
I Shift Bi,j blocks to the

top by j (wraparound)

I After computation,
shift A blocks right
shift B blocks down

I Total I/O cost: O(n2
√
P)

I Storage O(n2/P) per proc.
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Other 2D Algorithm: SUMMA

I SUMMA: Scalable Universal Matrix Multiplication Algorithm

I Same 2D grid distribution

I At each step k , column k of A and row k of B are broadcasted
(from processors owning the data)

I Each processor computes a local contribution (outer-product)

Parallel algorithm 
•  Processors organized into rows and columns, process rank an ordered pair 
•  Processor geometry P = px × py  
•  Blocked (serial) matrix multiply, panel size = b << N/max(px,py) 
      for k := 0 to n-1 by b  

     Owner of A[:,k:k+b-1]   Bcasts to ACol    // Along processor rows"
           Owner of B[k:k+b-1,:]   Bcasts BRow       // Along processor columns"
           C += Serial Matrix Multiply(ACol,BRow ) 
•  Each row and column of processors independently participate in a panel 

broadcast  
•  Owner of the panel (Broadcast root) changes with k, shifts across matrix 

©2012 Scott B. Baden /CSE 260/ Fall 2012 39 

*"  ="
I"

J"

A(I,k)"

k"
k"

B(k,J)"

C(I,J) 

Acol 

Brow 

I Smaller communications ⇒ smaller temporary storage

I Same I/O volume: O(n2
√
P)
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I/O Lower Bound for 2D algorithms

Theorem.

Consider a conventional matrix multiplication on P processors each
with O(n2/P) storage, some processor has a I/O volume at least
Θ(n2/

√
P).

Proof: Previous result: O(n3/P
√
M) with M = n2/P.

I When balanced, total I/O volume: Θ(n2
√
P)

I Both Cannon’s algorithm and SUMMA are optimal

among 2D
algorithms (memory limited to O(n2/P))

Can we do better?
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3D Algorithm

I Consider 3D grid of processor: q × q × q
(q = P1/3)

I Processor i , j , k owns blocks Ai ,k ,Bk,j ,C
(k)
i ,j

I Matrices are replicated (including C )

I Each processor computes its local contribution

I Then summation of the various C
(k)
i ,j for all k

I Memory needed: O(n2/q2) = O(n2/P2/3) per processor

I Total I/O volume: O(n2/q2 × q3) = O(n2q) = O(n2P1/3)

Lower Bound:

I Previous theorem does not give useful bound
(M = Θ(n2P1/3))

I More complex analysis shows that the I/O volume on some
processor is Θ(n2/P2/3)
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2.5D Algorithm (1/2)

I 3D algorithm requires large memory on each processor (P1/3

copies of each matrices)

I What if we have space for only 1 < c < P1/3 copies ?

I Assume each processor has a memory M = O(cn2/P)

I Arrange processors in
√

P/c ×
√
P/c × c grid:

c layers, each layer with P/c processors in square grid

I A,B,C distributed by blocks of size n
√

c/P × n
√
c/P,

replicated on each layer

2.5D Algorithm  
•  Assume can fit cn2/P data per processor, c>1 
•  Processors form (P/c)1/2  x  (P/c)1/2  x  c  grid 

 

26 ©2012 Scott B. Baden /CSE 260/ Fall 2012 Source Jim Demmel 

c 

(P/c)1/2 

Initially P(i,j,0) owns A(i,j) &B(i,j) 
    each of size n(c/P)1/2 x n(c/P)1/2 

(1)  P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k) 
(2)  Processors at level k perform 1/c-th of SUMMA, 
         i.e. 1/c-th of  Σm A(i,m)*B(m,j) 
(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so that   
       P(i,j,0) owns C(i,j) 

I NB: c = 1 gets 2D, c = P1/3 gives 3D
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2.5D Algorithm (2/2)
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       P(i,j,0) owns C(i,j) 

I Each layer responsible for a fraction 1/c of Cannon’s alg.:
Different initial shifts of A and B

I Finally, sum C over layers

I Total I/O volume: O(n2/
√

P/c)
I Replication, initial shift, final sum: O(n2c)
I c layers of fraction 1/c of Cannon’s alg. with grid size

√
P/c :

O
(
n2
√
P/c

)
I Reaches lower bound on I/Os per processor:

O

(
n3

P
√
M

)
= O

(
n3

P
√

cn2/P

)
= O(n2/

√
cP)
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Different initial shifts of A and B

I Finally, sum C over layers

I Total I/O volume: O(n2/
√

P/c)
I Replication, initial shift, final sum: O(n2c)
I c layers of fraction 1/c of Cannon’s alg. with grid size

√
P/c :

O
(
n2
√
P/c

)
I Reaches lower bound on I/Os per processor:

O

(
n3

P
√
M

)
= O

(
n3

P
√

cn2/P

)
= O(n2/

√
cP)
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2.5D Algorithm (2/2)

2.5D Algorithm  
•  Assume can fit cn2/P data per processor, c>1 
•  Processors form (P/c)1/2  x  (P/c)1/2  x  c  grid 
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c 

(P/c)1/2 

Initially P(i,j,0) owns A(i,j) &B(i,j) 
    each of size n(c/P)1/2 x n(c/P)1/2 

(1)  P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k) 
(2)  Processors at level k perform 1/c-th of SUMMA, 
         i.e. 1/c-th of  Σm A(i,m)*B(m,j) 
(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so that   
       P(i,j,0) owns C(i,j) 

I Each layer responsible for a fraction 1/c of Cannon’s alg.:
Different initial shifts of A and B

I Finally, sum C over layers

I Total I/O volume: O(n2/
√

P/c)
I Replication, initial shift, final sum: O(n2c)
I c layers of fraction 1/c of Cannon’s alg. with grid size

√
P/c :

O
(
n2
√
P/c

)
I Reaches lower bound on I/Os per processor:

O

(
n3

P
√
M

)
= O

(
n3

P
√

cn2/P

)
= O(n2/

√
cP)



Performance  on Blue Gene P 

27 ©2012 Scott B. Baden /CSE 260/ Fall 2012 Source Jim Demmel 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

n=8192, 2D

n=8192, 2.5D

n=131072, 2D

n=131072, 2.5D

E
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 b
y 

2D
Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

C=16 



20 / 21

Part 4: Communication Avoiding Algorithms

Introduction

Generalization to other Linear Algebra Algorithms
Generalized Matrix Computations
I/O Analysis
Application to LU Factorization

Analysis and Lower Bounds for Parallel Algorithms
Matrix Multiplication Lower Bound for P processors
2D and 3D Algorithms for Matrix Multiplication
2.5D Algorithm for Matrix Multiplication

Conclusion
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Conclusion

Generalized I/O lower bound for matrix computations:

I Apply to most linear algebra algorithms

I Design of I/O-optimal algorithms

Parallel algorithms with distributed memory:

I Adapted I/O lower bounds (depends on M on each processor)

I Asymptotically optimal algorithm for matrix multiplication. . .

I . . . and many other matrix computations
“communication-avoiding algorithms”

I Here: focus on the total I/O volume

I Similar lower bound and analysis for the number of messages:
also important factor for performance

I Write-avoiding algorithms for NVRAMs
(writes more expensive than reads)
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