Part 4: Communication Avoiding Algorithms

Loris Marchal (CNRS, Lyon, France)
loris.marchal@ens-lyon.fr

November 20, 2019

Part 4: Communication Avoiding Algorithms

Introduction

2/21

Communication Avoiding Algorithms

Context: Distributed Memory

EEE,

memory memory memory memory

disk ‘

Communications: Data movements between:
» one processor and its memory

» different processors/memories

Objective:

» Derive communication lower bounds for many linear algebra
operations

» Design communication-optimal algorithms

3/21

Reminder: Matrix Product Lower Bound

Context: Single processor + Memory (size M)

‘ disk ‘

» Analysis in phases of M /O operations

» Bound on the number of elementary product in each phase:
F = O(M3/2)

Geometric argument: Loomis-Whitney inequality

> At least n®/F phases, of M 1/Os, in total: ©(n%/v/M) 1/0s

4/21

Part 4: Communication Avoiding Algorithms

Generalization to other Linear Algebra Algorithms
Generalized Matrix Computations
[/O Analysis
Application to LU Factorization

5/21

Generalization to other Linear Algebra Algorithms

» Inputs/Ouput: n x n matrices A,B,C

» Any mapping of the matrices to the memory
(possibly overlapping)

6/21

Generalization to other Linear Algebra Algorithms

» Inputs/Ouput: n x n matrices A,B,C

» Any mapping of the matrices to the memory
(possibly overlapping)

General computation
For all (i,j) € S,

C,'J — f,',j (giJ,k(Ai,kBkJ) for k € 5,"]', any other arguments)

6/21

Generalization to other Linear Algebra Algorithms

» Inputs/Ouput: n x n matrices A,B,C
» Any mapping of the matrices to the memory

(possibly overlapping)
General computation
For all (i,j) € S,

C,'J = f,',j (giJ,k(Ai,kBkJ) for k € 5,"]', any other arguments)

» f;,j and g non-trivial:
» gk needs to the value of A; x and By ; in memory
> f;,j needs at least an “accumulator” while results of g; ; «(...)
are loaded /computed in memory one after the other

> Sc, S;J, fij. &ijk possibly determined at runtime

6/21

Generalization to other Linear Algebra Algorithms

» Inputs/Ouput: n x n matrices A,B,C

» Any mapping of the matrices to the memory
(possibly overlapping)

General computation
For all (i,j) € S,

C,'J — f,',j (giJ,k(Ai,kBkJ) for k € 5,"]', any other arguments)

» f;,j and g non-trivial:
» gijk needs to the value of A; x and By ; in memory
» f;,j needs at least an “accumulator” while results of gj; «(...)
are loaded /computed in memory one after the other
> Sc, S;J, fij. &ijk possibly determined at runtime
» For matrix multiplication:

6/21

Generalization to other Linear Algebra Algorithms

» Inputs/Ouput: n x n matrices A,B,C

» Any mapping of the matrices to the memory
(possibly overlapping)

General computation
For all (i,j) € S,

C,'J — f,',j (giJ,k(Ai,kBkJ) for k € 5,"]', any other arguments)

» f;,j and g non-trivial:
» gijk needs to the value of A; x and By ; in memory
» f;,j needs at least an “accumulator” while results of gj; «(...)
are loaded /computed in memory one after the other
> Sc, S;J, fij. &ijk possibly determined at runtime
» For matrix multiplication:
» f; ;1 summation, g;j «: product
> Sij=1[1,n], Sc =[1,n] x [1,n]

6/21

Generalized Matrix Computations

» f and g are not assumed associative or commutative

» Correct computations may require special ordering of
computations: no such constraint needed for the lower bound

Analysis based on Loomis-Whitney inequality:

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of ZP and Vi, Vb, V3 denotes the
orthogonal projections of V on each coordinate planes, we have:
V2 < |- Vol - | Vs,

7/21

1/O Analysis

One phase: M 1/Os operations (loads and stores)

Classify operands based on their root and destination:
» R1: operands present in fast memory at the beginning of the
phase or loaded (at most 2M such operands)
> R2: operands computed during the phase

8 /21

1/O Analysis

One phase: M 1/Os operations (loads and stores)

Classify operands based on their root and destination:
» R1: operands present in fast memory at the beginning of the
phase or loaded (at most 2M such operands)
> R2: operands computed during the phase
» D1: operands left in fast memory at the end of the phase or
written (at most 2M such operands)
» D2: operands discarded

8 /21

1/O Analysis

One phase: M 1/Os operations (loads and stores)

Classify operands based on their root and destination:

>

>
|

R1: operands present in fast memory at the beginning of the
phase or loaded (at most 2M such operands)

R2: operands computed during the phase

D1: operands left in fast memory at the end of the phase or
written (at most 2M such operands)

D2: operands discarded

Forget about R2/D2 operands

8 /21

1/0O Analysis

One phase: M 1/Os operations (loads and stores)

Classify operands based on their root and destination:
» R1: operands present in fast memory at the beginning of the
phase or loaded (at most 2M such operands)
> R2: operands computed during the phase
» D1: operands left in fast memory at the end of the phase or
written (at most 2M such operands)
» D2: operands discarded

» Forget about R2/D2 operands
» At most 4M operands available in one phase, for each matrix

8 /21

1/0O Analysis

One phase: M 1/Os operations (loads and stores)

Classify operands based on their root and destination:

>

>
|

R1: operands present in fast memory at the beginning of the
phase or loaded (at most 2M such operands)

R2: operands computed during the phase

D1: operands left in fast memory at the end of the phase or
written (at most 2M such operands)

D2: operands discarded

Forget about R2/D2 operands
At most 4M operands available in one phase, for each matrix
Loomis-Whitney = at most F = /(4M)3 computations of g

8 /21

1/0O Analysis

One phase: M 1/Os operations (loads and stores)

Classify operands based on their root and destination:
» R1: operands present in fast memory at the beginning of the
phase or loaded (at most 2M such operands)
> R2: operands computed during the phase
» D1: operands left in fast memory at the end of the phase or
written (at most 2M such operands)
D2: operands discarded

v

Forget about R2/D2 operands

At most 4M operands available in one phase, for each matrix
Loomis-Whitney = at most F = /(4M)3 computations of g
Total number of loads and stores:

vVvyyvyy

MﬁJ:M{\/(zlGTPstjM_M

8 /21

Application to LU Factorization (1/2)

LU factorization (Gaussian elimination):
» Convert a matrix A into product L x U
> [is lower triangular with diagonal 1
» U is upper triangular
» (L— D+ U) stored in place with A

LU Algorithm
Fork=1...n—1:

» Fori=k-+1...n,
Aj k < ajk/ak k (column/panel preparation)
» Fori=k+1...n,
Forj=k+1...n,
A,"J' — A,"J' = Ai,kAk,j (update)

9/21

Application to LU Factorization (2/2)

Can be expressed as follows:

Lij= (A ZL”‘ Ukj)/ for i > j
k<j

U,'7j=A,',j—ZLi,k‘Uk,j fori<j
k<i

Fits the generalized matrix computations:

C(I,_]) = f;,_/ (gi,j,k(A(ia k)a B(ka./)) for k € Si:j’ K)

» A=B=C
gij.x multiplies L; - Uy j

1/O lower bound: O(G/vVM)=0(n?/vM)

>

» f;j performs the sum, subtracts from A;,j (divides by U;)

>

P> A recursive algorithm achieves this bound 1021

Part 4: Communication Avoiding Algorithms

Analysis and Lower Bounds for Parallel Algorithms
Matrix Multiplication Lower Bound for P processors
2D and 3D Algorithms for Matrix Multiplication
2.5D Algorithm for Matrix Multiplication

11 /21

Matrix Multiplication Lower Bound for P processors

memory

memory

‘ disk ‘

Lemma.

Consider a conventional matrix multiplication performed on P
processors with distributed memory. A processor with memory M

that perform W elementary products must send or receive at least
_w
T M elements.

12 /21

Matrix Multiplication Lower Bound for P processors

i

memory

‘ disk ‘

memory

Lemma.

Consider a conventional matrix multiplication performed on P
processors with distributed memory. A processor with memory M
that perform W elementary products must send or receive at least
_w

T M elements.

Theorem.

Consider a conventional matrix multiplication on P processors,
each with a memory M. Some processor has a volume of I/O at

o
least N M

12 /21

Matrix Multiplication Lower Bound for P processors

memory memory

‘ disk ‘

Lemma.

Consider a conventional matrix multiplication performed on P
processors with distributed memory. A processor with memory M
that perform W elementary products must send or receive at least
_w

T M elements.

Theorem.

Consider a conventional matrix multiplication on P processors,
each with a memory M. Some processor has a volume of I/O at

n3
least m - M
NB: bound useful only when M < n?/(2P3/?) 12/21

Cannon’s 2D algorithm

> Processors organized on a square 2D grid of size VP x v/P

> A, B, C matrices distributed by blocks of size N/v/P x N//P
Processor P; ; initially holds matrices A, j, B; j, computes C; ;

» At each step, each proc. performs a A; , X By j block product

o H E o
Stagger left Stagger up
Alij] := Ali,j+11 BIi,jl := Bli+1,j]

Shift r\ght Shift down
Alij] = Aliij- B[ij] := BIi-1,j]

13 /21

Cannon’s 2D algorithm

Processors organized on a square 2D grid of size VP x v/P

A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A, j, B; j, computes C; ;

At each step, each proc. performs a A; , x By ; block product

First reallign matrices:
» Shift A;; blocks to the
left by i (wraparound)
» Shift B;; blocks to the
top by j (wraparound)
After computation,
shift A blocks right
shift B blocks down

Total 1/0 cost: O(n*v/P)

Storage O(n?/P) per proc.

Starting position

H E o
Stagger left
Alij] = Ali,j+1]

Stagger up
BIi,jl := Bli+1,j]

Shift down
BIi,j] := BIi-1,j]

Shift r\ght
Alij]:= Ali,j-

13 /21

Other 2D Algorithm: SUMMA

» SUMMA: Scalable Universal Matrix Multiplication Algorithm
» Same 2D grid distribution

» At each step k, column k of A and row k of B are broadcasted
(from processors owning the data)

» Each processor computes a local contribution (outer-product)

k

J B(kJ)

!

=

N/
}

C(1,J)

/,/
A(Lk)

. \
.)

Py

©2012 Scott B. Baden /CSE 260/ Fall 2012

Acol

Brow

» Smaller communications = smaller temporary storage

> Same 1/O volume: O(n*V/P)

14 / 21

1/0O Lower Bound for 2D algorithms

Theorem.

Consider a conventional matrix multiplication on P processors each
with O(n?/P) storage, some processor has a I/O volume at least

o(n?/\V/P).

Proof: Previous result: O(n3/Pv/M) with M = n?/P.

> When balanced, total 1/0 volume: ©(n?v/P)
» Both Cannon's algorithm and SUMMA are optimal

Can we do better?

15/ 21

1/0O Lower Bound for 2D algorithms

Theorem.

Consider a conventional matrix multiplication on P processors each
with O(n?/P) storage, some processor has a I/O volume at least

o(n?/\V/P).

Proof: Previous result: O(n3/Pv/M) with M = n?/P.

» When balanced, total I/O volume: ©(n?v/P)

» Both Cannon's algorithm and SUMMA are optimal among 2D
algorithms (memory limited to O(n?/P))

Can we do better?

15/ 21

3D Algorithm

» Consider 3D grid of processor: g x g X g %
(q=P'3)

(k)

Processor /,j, k owns blocks A; ., By j, C,.J

Matrices are replicated (including C)

Then summation of the various Ci(j) for all k
Memory needed: O(n?/q?) = O(n?/P?/3) per processor

>

>

» Each processor computes its local contribution
>

>

> Total 1/0 volume: O(n?/q? x ¢3) = O(n?q) = O(n*P1/3)

Lower Bound:
» Previous theorem does not give useful bound
(M = ©(n?P1/3))
» More complex analysis shows that the I/O volume on some
processor is ©(n?/P?/3)

16 / 21

2.5D Algorithm (1/2)

>

v

3D algorithm requires large memory on each processor (Pl/3
copies of each matrices)

What if we have space for only 1 < ¢ < P1/3 copies ?

Assume each processor has a memory M = O(cn?/P)

Arrange processors in \/P/c x \/P/c x c grid:

c layers, each layer with P/c processors in square grid

A, B, C distributed by blocks of size ny/c/P x n\/c/P,
replicated on each layer

N\
N
e

NB: ¢ =1 gets 2D, ¢ = P/3 gives 3D

(P/C)I/Z

17 /21

2.5D Algorithm (2/2)

N (P/c)l/ 2
\\

N
8\0

[—

» Each layer responsible for a fraction 1/c of Cannon’s alg.:

Different initial shifts of A and B
» Finally, sum C over layers

18 /21

2.5D Algorithm (2/2)

(P/C)I/Z
3

N

[—

» Each layer responsible for a fraction 1/c of Cannon’s alg.:
Different initial shifts of A and B

» Finally, sum C over layers
» Total I/O volume: O(n?/\/P/c)
> Replication, initial shift, final sum: O(n?c)
» ¢ layers of fraction 1/c of Cannon’s alg. with grid size \/P/c :

o (r*v/P/c)

18 /21

2.5D Algorithm (2/2)

(P/C)I/Z
3

N

[—

» Each layer responsible for a fraction 1/c of Cannon’s alg.:
Different initial shifts of A and B

» Finally, sum C over layers

» Total I/O volume: O(n?/\/P/c)

> Replication, initial shift, final sum: O(n?c)
» ¢ layers of fraction 1/c of Cannon’s alg. with grid size \/P/c :

o (n2v/P/c)

» Reaches lower bound on |/Os per processor:

= O(n?/V/cP)

() = ()

18 /21

Execution time normalized by 2D

Source Jim Demmel

Performance on Blue Gene P

Matrix multiplication on 16,384 nodes of BG/P

1.4

T T
communication m—
idle
95% reduction in comm computation =

1.2

0.8
0.6
0.4

0.2
0 2 22 2. 22
Qé) \\& \\7 \\7
79€ 5 7\9{) - 070)9 9]0)9
78} 50 S 90 5 96\0

©2012 Scott B. Baden /CSE 260/ Fall 2012 27

Part 4: Communication Avoiding Algorithms

Conclusion

20/ 21

Conclusion

Generalized 1/0 lower bound for matrix computations:
> Apply to most linear algebra algorithms
» Design of |/O-optimal algorithms

Parallel algorithms with distributed memory:
» Adapted 1/O lower bounds (depends on M on each processor)
> Asymptotically optimal algorithm for matrix multiplication. . .

» . ..and many other matrix computations
“communication-avoiding algorithms”

» Here: focus on the total 1/O volume

» Similar lower bound and analysis for the number of messages:
also important factor for performance

» Write-avoiding algorithms for NVRAMs
(writes more expensive than reads)

21/ 21

	Introduction
	Generalization to other Linear Algebra Algorithms
	Generalized Matrix Computations
	I/O Analysis
	Application to LU Factorization

	Analysis and Lower Bounds for Parallel Algorithms
	Matrix Multiplication Lower Bound for P processors
	2D and 3D Algorithms for Matrix Multiplication
	2.5D Algorithm for Matrix Multiplication

	Conclusion

