Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing
 Complexity and Space-Time Tradeoffs for Trees
 Processing DAGs with Limited Memory
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing
 Complexity and Space-Time Tradeoffs for Trees
 Processing DAGs with Limited Memory
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing
 Complexity and Space-Time Tradeoffs for Trees
 Processing DAGs with Limited Memory
Model for Parallel Tree Processing

- p uniform processors
- Shared memory of size M
- Task i has execution times p_i
- Parallel processing of nodes \Rightarrow larger memory
- Trade-off time vs. memory
NP-Completeness in the Pebble Game Model

Background:

- Makespan minimization NP-complete for trees ($P|\text{trees}|C_{\text{max}}$)
- Polynomial when unit-weight tasks ($P|p_i = 1, \text{trees}|C_{\text{max}}$)
- Pebble game polynomial on trees

Pebble game model:

- Unit execution time: $p_i = 1$
- Unit memory costs: $n_i = 0, f_i = 1$

 (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at most C steps is NP-complete.
NP-Completeness – Proof

Reduction from 3-Partition:

- 3m integers a_i and B with $\sum a_i = mB$,
- find m subsets S_k of 3 elements with $\sum_{i \in S_k} a_i = B$

Schedule the tree using:

- $p = 3mB$ processors,
- at most $B = 3m \times B + 3m$ pebbles,
- at most $C = 2m + 1$ steps.
Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq 2(n - 1)$$

Proof: each edge stays in memory for at least 2 steps.

Corollary: Lower Bound on Space-Time Product

For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq \sum_i \text{mem_needed_for_task}_i \times p_i$$
Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq 2(n-1)$$

Proof: each edge stays in memory for at least 2 steps.

Corollary: Lower Bound on Space-Time Product

For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq \sum_i \text{mem_needed_for_task}_i \times p_i$$
Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1
There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma
For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq 2(n - 1)$$

Proof: each edge stays in memory for at least 2 steps.

Corollary: Lower Bound on Space-Time Product
For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq \sum_i \text{mem_needed_for_task}_i \times p_i$$
With m^2 processors: $C_{\text{max}}^* = 3$

With 1 processor, sequentialize the a_i subtrees: $M^* = 2m$

By contradiction, approximating both objectives:
$C_{\text{max}} \leq 3 \alpha$ and $M \leq 2m \beta$

But $M \times C_{\text{max}} \geq 2(n - 1) = 2m^2 + 2m$

$2m^2 + 2m \leq 6m \alpha \beta$

Contradiction for a sufficiently large value of m
Complexity – Summary

For task trees:

- Optimizing both makespan memory is NP-Complete
 ⇒ Same for minimizing makespan under memory budget
- No scheduling algorithm can be a constant factor approximation on both memory and makespan
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing
 Complexity and Space-Time Tradeoffs for Trees
 Processing DAGs with Limited Memory
Processing DAGs with Limited Memory

- Schedule general graphs
- On a shared-memory platform

First option: design good static scheduler:
- NP-complete, non-approximable
- Cannot react to unpredicted changes in the platform or inaccuracies in task timings

Second option:
- Limit memory consumption of any dynamic scheduler
 Target: runtime systems
- Without impacting too much parallelism
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing

Complexity and Space-Time Tradeoffs for Trees

Processing DAGs with Limited Memory
 Model and maximum parallel memory
 Maximum parallel memory/maximal topological cut
 Efficient scheduling with bounded memory
 Heuristics and simulations
Memory model

Task graphs with:
- **Vertex weights** (w_i): task (estimated) durations
- **Edge weights** ($m_{i,j}$): data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- **Vertex weights** \((w_i)\): task (estimated) durations
- **Edge weights** \((m_{i,j})\): data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- **Vertex weights** \((w_i) \): task (estimated) durations
- **Edge weights** \((m_{i,j}) \): data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

![Task graph diagram]

\(A \rightarrow B \rightarrow D \rightarrow F \)
\(C \rightarrow E \)

Weights:
- \(A \rightarrow B: 1 \)
- \(B \rightarrow D: 3 \)
- \(D \rightarrow F: 1 \)
- \(C \rightarrow E: 5 \)
- \(E \rightarrow F: 5 \)
Memory model

Task graphs with:
- **Vertex weights** (w_i): task (estimated) durations
- **Edge weights** ($m_{i,j}$): data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:

- **Vertex weights** (w_i): task (estimated) durations
- **Edge weights** ($m_{i,j}$): data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory
Memory model

Task graphs with:
- **Vertex weights** (w_i): task (estimated) durations
- **Edge weights** ($m_{i,j}$): data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

![Diagram of a task graph with vertex weights and edge weights labeled with numbers representing durations and data sizes respectively.](Image)
Memory model

Task graphs with:
- **Vertex weights** \((w_i)\): task (estimated) durations
- **Edge weights** \((m_{i,j})\): data sizes

Simple memory model: at the beginning of a task
- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:
- Inputs + outputs allocated during task: duplicate nodes
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing
 Complexity and Space-Time Tradeoffs for Trees
 Processing DAGs with Limited Memory
 Model and maximum parallel memory
 Maximum parallel memory/maximal topological cut
 Efficient scheduling with bounded memory
 Heuristics and simulations
Computing the maximum memory peak

Topological cut: \((S, T)\) with:

- \(S\) include the source node, \(T\) include the target node
- No edge from \(T\) to \(S\)
- Weight of the cut = weight of all edges from \(S\) to \(T\)

Any topological cut corresponds to a possible state when all node in \(S\) are completed or being processed.

Two equivalent questions (in our model):

- What is the *maximum memory* of any parallel execution?
- What is the *topological cut with maximum weight*?
Computing the maximum topological cut

Literature:

- Lots of studies of various cuts in non-directed graphs ([Diaz, 2000] on Graph Layout Problems)
- Minimum cut is polynomial on both directed/non-directed graphs
- Maximum cut NP-complete on both directed/non-directed graphs ([Karp 1972] for non-directed, [Lampis 2011] for directed ones)
- Not much for topological cuts

Theorem.
Computing the maximum topological cut of a DAG can be done in polynomial time.
Maximum topological cut – using LP

Consider one classical LP formulation for finding a minimum cut:

\[
\begin{align*}
\min & \sum_{(i,j) \in E} m_{i,j} d_{i,j} \\
\forall (i,j) \in E, & \quad d_{i,j} \geq p_i - p_j \\
\forall (i,j) \in E, & \quad d_{i,j} \geq 0 \\
& \quad p_s = 1, \quad p_t = 0
\end{align*}
\]

Integer solution \(\Leftrightarrow \) topological cut

Then change the optimization direction (min \(\rightarrow \) max)

Draw \(w \) uniformly in \(]0, 1[\), define the cut such that

\[
S_w = \{ i \mid p_i > w \} , \quad T_w = \{ i \mid p_i \leq w \}
\]

Expected cost of this cut = \(M^* \) (opt. rational solution)

All cuts with random \(w \) have the same cost \(M^* \)
Maximum topological cut – using LP

Consider one classical LP formulation for finding a minimum cut:

\[
\begin{align*}
\text{min} \quad & \sum_{(i,j) \in E} m_{i,j} d_{i,j} \\
\text{s.t.} \quad & \forall (i,j) \in E, \quad d_{i,j} \geq p_i - p_j \\
& \forall (i,j) \in E, \quad d_{i,j} \geq 0 \\
& p_s = 1, \quad p_t = 0
\end{align*}
\]

Integer solution \(\Leftrightarrow\) topological cut

Then change the optimization direction (min \(\rightarrow\) max)

Draw \(w\) uniformly in \(]0, 1[\), define the cut such that

\[
S_w = \{i \mid p_i > w\}, \quad T_w = \{i \mid p_i \leq w\}
\]

Expected cost of this cut = \(M^*\) (opt. rational solution)

All cuts with random \(w\) have the same cost \(M^*\)
Maximum topological cut – using LP

- Consider one classical LP formulation for finding a minimum cut:

\[
\text{max} \sum_{(i,j) \in E} m_{i,j} d_{i,j} \\
\forall (i,j) \in E, \quad d_{i,j} = p_i - p_j \\
\forall (i,j) \in E, \quad d_{i,j} \geq 0 \\
p_s = 1, \quad p_t = 0
\]

- Integer solution \(\Leftrightarrow\) topological cut
- Then change the optimization direction (min \(\rightarrow\) max)
- Draw \(w\) uniformly in \([0, 1]\), define the cut such that
 \[
 S_w = \{i \mid p_i > w\}, \quad T_w = \{i \mid p_i \leq w\}
 \]
- Expected cost of this cut = \(M^*\) (opt. rational solution)
- All cuts with random \(w\) have the same cost \(M^*\)
Maximum topological cut – using LP

Consider one classical LP formulation for finding a minimum cut:

\[
\max \sum_{(i,j) \in E} m_{i,j} d_{i,j} \\
\forall (i,j) \in E, \quad d_{i,j} = p_i - p_j \\
\forall (i,j) \in E, \quad d_{i,j} \geq 0 \\
p_s = 1, \quad p_t = 0
\]

Integer solution \(\iff\) topological cut

Then change the optimization direction (min \(\rightarrow\) max)

Draw \(w\) uniformly in \([0, 1[\), define the cut such that
\[
S_w = \{i \mid p_i > w\}, \quad T_w = \{i \mid p_i \leq w\}
\]

Expected cost of this cut = \(M^*\) (opt. rational solution)

All cuts with random \(w\) have the same cost \(M^*\)
Maximum topological cut – direct algorithm

- Dual problem: Min-Flow \((\text{larger than all edge weights})\)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow \(F\) on the graph \(G\)
2. Consider \(G^{\text{diff}}\) with edge weights \(F_{i,j} - m_{i,j}\)
3. Compute a maximum flow \(\text{maxdiff}\) in \(G^{\text{diff}}\)
4. \(F - \text{maxdiff}\) is a minimum flow in \(G\)
5. Residual graph \(\rightarrow\) maximum topological cut

Complexity: same as maximum flow, e.g., \(O(|V|^2|E|)\)
Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (*larger than all edge weights*)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G
2. Consider G^{diff} with edge weights $F_{i,j} - m_{i,j}$
3. Compute a maximum flow maxdiff in G^{diff}
4. $F - \text{maxdiff}$ is a minimum flow in G
5. Residual graph \rightarrow maximum topological cut

- **Complexity:** same as maximum flow, e.g., $O(|V|^2|E|)$
Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (*larger than all edge weights*)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G
2. Consider G^{diff} with edge weights $F_{i,j} - m_{i,j}$
3. Compute a maximum flow maxdiff in G^{diff}
4. $F - \text{maxdiff}$ is a minimum flow in G
5. Residual graph \rightarrow maximum topological cut

Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$
Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (*larger than all edge weights*)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G
2. Consider G^{diff} with edge weights $F_{i,j} - m_{i,j}$
3. Compute a maximum flow maxdiff in G^{diff}
4. $F - \text{maxdiff}$ is a minimum flow in G
5. Residual graph \rightarrow maximum topological cut

Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$
Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (*larger than all edge weights*)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G
2. Consider G^{diff} with edge weights $F_{i,j} - m_{i,j}$
3. Compute a maximum flow maxdiff in G^{diff}
4. $F - \text{maxdiff}$ is a minimum flow in G
5. Residual graph \rightarrow maximum topological cut

Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$
Summary 1

Predict the *maximal memory of any dynamic scheduling*

\[\iff \]

 Compute the *maximal topological cut*

Two algorithms:

- Linear program + rounding
- Direct algorithm based on MaxFlow/MinCut

Downsides:

- Large running time: \(O(|V|^2|E|) \) or solving a LP
- May include edges corresponding to the computing of more than \(p \) tasks
Faster Max. Memory Computation for SP Graphs

Recursive algorithm to compute maximum topological cut on SP-graphs:

- Single edge $i \to j$:
 \[M(G) = m_{i,j} \]

- Series combination:
 \[M(G) = \max(M(G_1), M(G_2)) \]

- Parallel combination:
 \[M(G) = M(G_1) + M(G_2) \]

Complexity: $O(|E|)$

Proof:

- consider tree of compositions: (full) binary tree
- $|E|$ leaves
- $|E| - 1$ internal nodes (compositions)
Maximum memory with p processors

Change in the model:
- Black (regular) edges
- Red edges corresponding to computations

Definition.

P-MaxTopCut Given a graph with black/red edges and a number p of processor, what is the maximal weight of a topological cut including at most p red edges?

Theorem.

P-MaxTopCut is NP-complete
Special Case of SP Graphs – Exact Algorithm

Compute the maximum memory with \(p \) red edges \(M(G, p) \):

- Adapt previous algorithm:
 Compute \(M(G, k) \) for each \(k = 1, \ldots, p \)

- Single edge \(i \to j \):

 \[
 M(G, k) = \begin{cases}
 m_{i,j} & \text{if edge is black or } k \geq 0 \\
 -\infty & \text{otherwise}
 \end{cases}
 \]

- Series combination:

 \[
 M(G, k) = \max(M(G_1, k), M(G_2, k))
 \]

- Parallel combination:

 \[
 M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)
 \]

Complexity:

- Simple Dynamic Programming algorithm: \(O(|E|p^2) \).
- By restricting the search on each subgraph to \(w(G) \) (maximum width), and with tighter analysis: \(O(|E|p) \).
Special Case of SP Graphs – Exact Algorithm

Compute the maximum memory with \(p \) red edges \(M(G, p) \):

- Adapt previous algorithm:
 Compute \(M(G, k) \) for each \(k = 1, \ldots, p \)

- Single edge \(i \to j \):
 \[
 M(G, k) = \begin{cases}
 m_{i,j} & \text{if edge is black or } k \geq 0 \\
 -\infty & \text{otherwise}
 \end{cases}
 \]

- Series combination:
 \[
 M(G, k) = \max(M(G_1, k), M(G_2, k))
 \]

- Parallel combination:
 \[
 M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)
 \]

Complexity:

- Simple Dynamic Programming algorithm: \(O(|E|p^2) \).
- By restricting the search on each subgraph to \(w(G) \) (maximum width), and with tighter analysis: \(O(|E|p) \).
Special Case of SP Graphs – Exact Algorithm

Compute the maximum memory with p red edges $M(G, p)$:

- Adapt previous algorithm:
 Compute $M(G, k)$ for each $k = 1, \ldots, p$

- Single edge $i \rightarrow j$:

 $M(G, k) = \begin{cases}
 m_{i,j} & \text{if edge is black or } k \geq 0 \\
 -\infty & \text{otherwise}
 \end{cases}$

- Series combination:
 $M(G, k) = \max(M(G_1, k), M(G_2, k))$

- Parallel combination:
 $M(G, k) = \max_{j=0,\ldots,k} M(G_1, j) + M(G_2, k - j)$

Complexity:

- Simple Dynamic Programming algorithm: $O(|E|p^2)$.
- By restricting the search on each subgraph to $w(G)$ (maximum width), and with tighter analysis: $O(|E|p)$.
Special Case of SP Graphs – Exact Algorithm

Compute the maximum memory with \(p \) red edges \(M(G, p) \):

- Adapt previous algorithm:
 Compute \(M(G, k) \) for each \(k = 1, \ldots, p \)

- Single edge \(i \to j \):
 \[
 M(G, k) = \begin{cases}
 m_{i,j} & \text{if edge is black or } k \geq 0 \\
 -\infty & \text{otherwise}
 \end{cases}
 \]

- Series combination:
 \[
 M(G, k) = \max(M(G_1, k), M(G_2, k))
 \]

- Parallel combination:
 \[
 M(G, k) = \max_{j=0, \ldots, k} M(G_1, j) + M(G_2, k - j)
 \]

Complexity:

- Simple Dynamic Programming algorithm: \(O(|E|p^2) \).
- By restricting the search on each subgraph to \(w(G) \) (maximum width), and with tighter analysis: \(O(|E|p) \).
Definition (Dual Approximation).

For a given guess λ, algo. that answers “1” if $M(G, p) \leq \lambda$ and “0” if $M(G, p) > \lambda/2$.

Idea:

- Consider only edges whose weight is $> \lambda/2p$
- Apply SP algorithms for without bound on p
- Return 1 iff $M(G, \infty) \geq \lambda/2$

Using binary search: 2-approximation algorithm
Predict the *maximal memory of any dynamic scheduling*

⇔

Compute the *maximal topological cut*

Two algorithms:
- Linear program + rounding
- Direct algorithm based on MaxFlow/MinCut

Downsides:
- Large running time ($O(|V|^2|E|)$)
- Taking into account the bound on task being processed makes the problem NP complete

Special case of SP graphs:
- Max. Top. cut computed in $O(|E|)$
- Max. Top. cut with p procs computed in $O(|E|p)$
- Max. Top. cut with p procs: 2-approximation in $O(|E|)$
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing

Complexity and Space-Time Tradeoffs for Trees

Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations
Coping with limiting memory

Problem:
- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:
- Add edges to guarantee that any parallel execution stays below M
- Fictitious dependencies to reduce maximum memory
- Minimize the obtained critical path
Coping with limiting memory

Problem:
- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:
- Add edges to guarantee that any parallel execution stays below M
 fictitious dependencies to reduce maximum memory
- Minimize the obtained critical path

M = 10
Coping with limiting memory

Problem:
▶ Limited available memory M
▶ Allow use of dynamic schedulers
▶ Avoid running out of memory
▶ Keep high level of parallelism (as much as possible)

Our solution:
▶ Add *edges* to guarantee that any parallel execution stays below M

fictitious dependencies to reduce maximum memory
▶ Minimize the obtained *critical path*

![Diagram of tasks and edges]

$M = 10$
Problem definition and complexity

Definition (PartialSerialization).
Given a DAG $G = (V, E)$ and a bound M, find a set of new edges E' such that $G' = (V, E \cup E')$ is a DAG, $\text{MaxMem}(G') \leq M$ and $\text{CritPath}(G')$ is minimized.

Theorem.
PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G which uses at most a memory M.
NP-completeness – proof sketch

- Reduction from 3-Partition: a_i s.t. $\sum a_i = mB$, solution: m sets of 3 a_i's summing to B

- Set the memory bound to B
- Bound on the critical path: m
- Solution to PartialSerialization \iff group edges by 3 s.t. $\sum a_i = B$
NP-completeness – proof sketch

- Reduction from 3-Partition: \(a_i \) s.t. \(\sum a_i = mB \), solution: \(m \) sets of 3 \(a_i \)'s summing to \(B \)

- Set the memory bound to \(B \)
- Bound on the critical path: \(m \)
- Solution to PartialSerialization \(\Leftrightarrow \) group edges by 3 s.t. \(\sum a_i = B \)
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing

Complexity and Space-Time Tradeoffs for Trees

Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations
Heuristic solutions for Partial Serialization Framework:

(inspired by [Sbîrlea et al. 2014])

1. Compute a max. top. cut \((S, T)\)
2. If weight \(\leq M\) : succeeds
3. Add edge \((u, v)\) with \(u \in T, v \in S\) without creating cycles; or fail
4. Goto Step 1

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule, always succeeds

MaxSize targets nodes dealing with large data

MaxMinMax variant of MaxSize
Simulations: dense random graphs (25, 50, 100 nodes)

![Graph showing normalized memory bound and normalized critical path for different heuristics.]

- **x**: memory ($0 = \text{DFS}, 1 = \text{MaxTopCut}$)
 - Median ratio $\text{MaxTopCut} / \text{DFS} \approx 1.3$
- **y**: $\text{CP} / \text{original CP} \rightarrow \text{lower is better}$
- **MinLevels** performs best
Simulations: sparse random graphs (25, 50, 100 nodes)

- **Heuristic**
 - MinLevels
 - RespectOrder
 - MaxMinSize
 - MaxSize

- **DFS memory** ≡ 0
- **1 ≡ MaxTopCut**

- **x**: memory (0 = DFS, 1 = MaxTopCut)
 - Median ratio MaxTopCut / DFS ≈ 2

- **y**: CP / original CP → lower is better

- **MinLevels** performs best, but might fail
Simulations – Pegasus workflows (LIGO 100 nodes)

- Median ratio $\text{MaxTopCut} / \text{DFS} \approx 20$
- MinLevels performs best, RespectOrder always succeeds
- Memory divided by 5 for CP multiplied by 3
Simulations – Pegasus workflows (LIGO 100 nodes)

- Median ratio $\text{MaxTopCut} / \text{DFS} \approx 20$
- MinLevels performs best, RespectOrder always succeeds
- Memory divided by 5 for CP multiplied by 3
Summary – Memory-Aware DAG Scheduling

Several models:

1. Memory weights on edges and nodes, inputs+outputs+tmp needed to compute tasks
2. Memory weights only on edges
 Processing tasks ⇔ replace inputs by outputs
3. (Memory increment on nodes)
 ▶ Model 2 emulates 1, Model 3 emulates 1 and 2, ...
 ▶ Choose the right model to solve each problem
 ▶ Same for in-trees vs. out-trees

Results:

▶ One processor: optimal algorithms for trees (postorder or not)
▶ Several processors: NP-complete problem, no \((\alpha, \beta)\)-approx.
▶ Dynamic scheduling with memory bound:
 ▶ Compute the worst memory: polynomial (linear for SP-graphs)
 ▶ Limit memory: NP-complete, heuristic solutions
Summary – Memory-Aware DAG Scheduling

Several models:

1. Memory weights on edges and nodes, inputs+outputs+tmp needed to compute tasks
2. Memory weights only on edges
 Processing tasks ⇔ replace inputs by outputs
3. (Memory increment on nodes)
 ▶ Model 2 emulates 1, Model 3 emulates 1 and 2, …
 ▶ Choose the right model to solve each problem
 ▶ Same for in-trees vs. out-trees

Results:

▶ One processor: optimal algorithms for trees (postorder or not)
▶ Several processors: NP-complete problem, no \((\alpha, \beta)\)-approx.
▶ Dynamic scheduling with memory bound:
 ▶ Compute the worst memory: polynomial (linear for SP-graphs)
 ▶ Limit memory: NP-complete, heuristic solutions