Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing
Introduction

- Directed Acyclic Graphs: express task dependencies
 - nodes: computational tasks
 - edges: dependencies
 (data = output of a task = input of another task)
- Formalism proposed long ago in scheduling
- Back into fashion thanks to task based runtimes

Special focus on task trees:
- Single output for each task
- Arise in multifrontal sparse matrix factorization
- Assembly/Elimination tree: application task graph is a tree
- Large temporary data
- Memory usage becomes a bottleneck
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: \[\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i \]

Two equivalent problems (reverse schedules):
- Bottom-up processing
- Top-down processing
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two equivalent problems (reverse schedules):
- Bottom-up processing
- Top-down processing
Notations: Tree-Shaped Task Graphs

- In-tree of \(n \) nodes
- Output data of size \(f_i \)
- Execution data of size \(n_i \)
- Input data of leaf nodes have null size

Memory for node \(i \):
\[
\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i
\]

Two equivalent problems (reverse schedules):
- Bottom-up processing
- Top-down processing
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

- Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two equivalent problems (reverse schedules):
- Bottom-up processing
- Top-down processing
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two equivalent problems (reverse schedules):
- Bottom-up processing
- Top-down processing
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum f_i + n_r + f_r\}$$

- Optimal order:
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r\}$$

- Optimal order:
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

▶ For each subtree T_i: peak memory P_i, residual memory f_i
▶ For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum f_i + n_r + f_r\}$$

▶ Optimal order:
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

▶ For each subtree T_i: peak memory P_i, residual memory f_i
▶ For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum f_i + n_r + f_r\}$$

▶ Optimal order:
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

▶ For each subtree T_i: peak memory P_i, residual memory f_i
▶ For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum f_i + n_r + f_r\}$$

▶ Optimal order:
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

For each subtree T_i: peak memory P_i, residual memory f_i

For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum f_i + n_r + f_r\}$$

Optimal order: non-increasing $P_i - f_i$
Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtained by processing subtrees in non-increasing order $P_i - f_i$.

Proof:

- Consider an optimal traversal which does not respect the order:
 - subtree j is processed right before subtree k
 - $P_k - f_k \geq P_j - f_j$

<table>
<thead>
<tr>
<th></th>
<th>peak when j, then k</th>
<th>peak when k, then j</th>
</tr>
</thead>
<tbody>
<tr>
<td>during first subtree</td>
<td>$\text{mem_before} + P_j$</td>
<td>$\text{mem_before} + P_k$</td>
</tr>
<tr>
<td>during second subtree</td>
<td>$\text{mem_before} + f_j + P_k$</td>
<td>$\text{mem_before} + f_k + P_j$</td>
</tr>
</tbody>
</table>

- $f_k + P_j \leq f_j + P_k$
- Transform the schedule step by step without increasing the memory.
Proof for best post-order

Theorem (Best Post-Order).
The best post-order traversal is obtained by processing subtrees in non-increasing order $P_i - f_i$.

Proof:
- Consider an optimal traversal which does not respect the order:
 - subtree j is processed right before subtree k
 - $P_k - f_k \geq P_j - f_j$

<table>
<thead>
<tr>
<th></th>
<th>peak when j, then k</th>
<th>peak when k, then j</th>
</tr>
</thead>
<tbody>
<tr>
<td>during first subtree</td>
<td>$\text{mem_before} + P_j$</td>
<td>$\text{mem_before} + P_k$</td>
</tr>
<tr>
<td>during second subtree</td>
<td>$\text{mem_before} + f_j + P_k$</td>
<td>$\text{mem_before} + f_k + P_j$</td>
</tr>
</tbody>
</table>

- $f_k + P_j \leq f_j + P_k$
- Transform the schedule step by step without increasing the memory.
Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

\[
M_{\text{min}} = M + \epsilon + (b-1)\epsilon
\]

Minimum post-order peak memory:
\[
M_{\text{min}} = M + \epsilon + (b-1)M/b
\]

<table>
<thead>
<tr>
<th>non optimal traversals</th>
<th>actual trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2%</td>
<td>61%</td>
<td></td>
</tr>
<tr>
<td>18%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>12%</td>
<td></td>
</tr>
</tbody>
</table>
Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum peak memory:
 \[M_{\text{min}} = M + \epsilon + (b - 1)\epsilon \]

- Minimum post-order peak memory:
 \[M_{\text{min}} = M + \epsilon + (b - 1)\frac{M}{b} \]

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case.

There is no constant k such that the best post-order traversal is a k-approximation.

Minimum peak memory:
$$M_{\text{min}} = M + \epsilon + (b - 1)\epsilon$$

Minimum post-order peak memory:
$$M_{\text{min}} = M + \epsilon + (b - 1)M/b$$

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case.

There is no constant k such that the best post-order traversal is a k-approximation.

Minimum peak memory:
$$M_{\text{min}} = M + \epsilon + 2(b-1)\epsilon$$

Minimum post-order peak memory:
$$M_{\text{min}} = M + \epsilon + 2(b-1)M/b$$

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case.

There is no constant k such that the best post-order traversal is a k-approximation.

Minimum peak memory:
$$M_{\text{min}} = M + \epsilon + (b - 1)\epsilon$$

Minimum post-order peak memory:
$$M_{\text{min}} = M + \epsilon + (b - 1)M/b$$

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Liu’s optimal traversal – sketch

- Recursive algorithm: at each step, merge the optimal ordering of each subtree (sequence)
- Sequence: divided into segments:
 - H_1: maximum over the whole sequence (hill)
 - V_1: minimum after H_1 (valley)
 - H_2: maximum after H_1
 - V_2: minimum after H_2
 - …
 - The valleys V_is are the boundaries of the segments
- Combine the sequences by non-increasing $H - V$
- Complex proof based on a partial order on the cost-sequences: $(H_1, V_1, H_2, V_2, \ldots, H_r, V_r) \prec (H'_1, V'_1, H'_2, V'_2, \ldots, H'_{r'}, V'_{r'})$ if for each $1 \leq i \leq r$, there exists $1 \leq j \leq r'$ with $H_i \leq H'_j$ and $V_i \leq V'_j$.
Series-Parallel Graphs: Motivation

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs
Series-Parallel Graphs: Motivation

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs
Series-Parallel Graphs: Motivation

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs
Series-Parallel Graphs: Motivation

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs
First Step: Parallel-Chain Graphs

Select edges with minimal weight on each branch: e_1, \ldots, e_B

Theorem
There exists a schedule with minimal memory which synchronises at e_1, \ldots, e_B.

Algorithm:
1. Apply optimal algorithm for out-trees on the left part
2. Apply optimal algorithm for in-trees on the right part
 (Technicality: set weights of e_i to zero)
First Step: Parallel-Chain Graphs

Select edges with minimal weight on each branch: e_1, \ldots, e_B

Theorem
There exists a schedule with minimal memory which synchronises at e_1, \ldots, e_B.

Algorithm:
1. Apply optimal algorithm for out-trees on the left part
2. Apply optimal algorithm for in-trees on the right part

(technicality: set weights of e_i to zero)
First Step: Parallel-Chain Graphs

Select edges with minimal weight on each branch: \(e_1, \ldots, e_B \)

Theorem
There exists a schedule with minimal memory which synchronises at \(e_1, \ldots, e_B \).

Algorithm:
1. Apply optimal algorithm for out-trees on the left part
2. Apply optimal algorithm for in-trees on the right part
 (Technicality: set weights of \(e_i \) to zero)
First Step: Parallel-Chain Graphs

Select edges with minimal weight on each branch: \(e_1, \ldots, e_B \)

Theorem
There exists a schedule with minimal memory which synchronises at \(e_1, \ldots, e_B \).

Algorithm:
1. Apply optimal algorithm for out-trees on the left part
2. Apply optimal algorithm for in-trees on the right part

(Technicality: set weights of \(e_i \) to zero)
General Series-Parallel Graphs

Principle:
▶ Follow the recursive definition of the SP-graph
▶ Compute both optimal schedule and minimal cut
▶ Replace subgraphs by chains of nodes (based on opt. sched.)

For sequential composition:
▶ Select minimal cut
▶ Concatenate schedules

For parallel composition (as for Parallel-Chains):
▶ Merge cuts
▶ On the left part, use algo. for out-trees for merging schedules
▶ On the right, use algo. for in-trees for merging schedules

Simple algorithm vs. very complex proof of optimality
Minimizing I/Os for Trees

Problem:
- Amount of available memory M is too small to compute the whole tree
- Some data needs to be written to disk, and read back later
- Objective: minimize the amount of I/Os (total volume)

Theorem.
When data must be fully written to disk, deciding which data to write to disk is NP-complete.

$M = 2S$
Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input}, \text{output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

```
   4
  / \
 2   3
 /   /
1   3
```

Memory: 0 / 5
Disk: 0
I/Os: 0
Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input, output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

Memory: 3 / 5

Disk: 0

I/Os: 0
Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input, output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

Memory: 4 / 5
Disk: 0
I/Os: 0
Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input, output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

```
   4
 / \
2   3
\ / \  / \\
1   3   -2 I/Os
```

Memory: 5 / 5
Disk: 2
I/Os: 2
Minimizing I/O for Trees – with Paging

With paging:

- **Partial data** may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input}, \text{output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

```
1  2  3
  \\
4
  \\
3

Memory: 3 / 5
Disk: 2
I/Os: 2
```
Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input, output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

Memory: 5 / 5
Disk: 0
I/Os: 2
Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- Simpler model: memory weight only on edges
 output of $i = w_i$ (original model by Liu)
- When processing a node, $\max(\text{input, output})$ is needed
- I/O cost metric: volume of data written to disk

Example with $M = 5$:

Memory: 4 / 5

Disk: 0

I/Os: 2
Description of a solution

Traversal

▶ Schedule \(\sigma \): \(\sigma(i) = t \) if task \(i \) is the \(t \)-th executed
▶ I/O function \(\tau \): output data of task \(i \) has \(\tau(i) \) slots written to disk
▶ W.l.o.g. data written to disk ASAP and read ALAP

Validity of a traversal

▶ Schedule respects precedences
▶ I/Os consistent: \(\tau(i) \leq w_i \)
▶ The main memory (size \(M \)) is never exceeded, \(\forall i \in V \):

\[
\left(\sum_{(k,p) \in E} (w_k - \tau(k)) \right) + \max \left(w_i, \sum_{(j,i) \in E} w_j \right) \leq M
\]
Objective

The MinIO problem

Given a tree G and a memory limit M, find a valid traversal that minimizes the total amount of I/Os ($= \sum \tau(i)$).

An interesting subclass: postorder traversals

- Fully process a subtree before starting a new one
- Completely characterized by the execution order of subtrees
- Widely used in sparse matrix softwares (e.g., MUMPS, QR-MUMPS)
Preliminary results

Let \((\sigma, \tau)\) be an optimal traversal for MINIO of a given instance

Lemma (Schedule is enough).

Given \(\sigma\): the *Furthest In the Future* I/O policy minimizes I/Os.

Lemma (I/O function is enough).

Given \(\tau\): a valid traversal \((\sigma', \tau)\) can be computed in polynomial time.

Proof.

Expand each node following:

\[
\begin{align*}
\text{Expand each node following:} & \\
\begin{array}{c}
\text{Then minimize the memory peak.}
\end{array}
\end{align*}
\]
Postorder algorithms [Liu 1986, Agullo et al. 2010]

- When executing T_i: order of execution of children of i
- First compute the **storage requirement** of subtree T_i:

$$S_i = \max \left(w_i, \max_{j \in \text{Chil}(i)} \left(S_j + \sum_{k \in \text{Chil}(i) \atop \sigma(k) < \sigma(j)} w_k \right) \right)$$

- Memory really used: $A_i = \min(S_i, M)$
- For a given order σ, the volume of I/O is given by:

$$V_i = \max \left(0, \max_{j \in \text{Chil}(i)} \left(A_j + \sum_{k \in \text{Chil}(i) \atop \sigma(k) < \sigma(j)} w_k \right) - M \right) + \sum_{j \in \text{Chil}(i)} V_j$$
Best Postorder for Minimizing I/Os

For a given order σ, the volume of I/O is given by:

$$V_i = \max \left(0, \max_{j \in \text{Chil}(i)} \left(A_j + \sum_{k \in \text{Chil}(i) \atop \sigma(k) < \sigma(j)} w_k \right) - M \right) + \sum_{j \in \text{Chil}(i)} V_j$$

Theorem.

Given a set of values (x_i, y_i), the minimum of $\max(x_i + \sum_{j < i} y_j)$ is obtained by sorting the sequence by decreasing $x_i - y_i$.

Corollary

*The postorder traversal that minimizes I/Os sorts the subtree by decreasing $A_j - w_j$.***
Minimizing I/Os for Homogeneous Trees

Theorem.

Both \texttt{PostOrderMinMem} and \texttt{PostOrderMinIO} minimize I/Os on homogeneous trees (unit sizes).

Note: \texttt{PostOrderMinMem} does not rely on M so is optimal for any memory size and several memory layers (cache-oblivious)

But \texttt{PostOrderMinIO} is not competitive on heterogeneous trees:

- Cases when \texttt{PostOrderMinIO} needs I/O why optimal traversal does not
- Even in when the optimal traversal requires I/Os...
Minimizing I/Os for Homogeneous Trees

Theorem.

Both PostOrderMinMem and PostOrderMinIO minimize I/Os on homogeneous trees (unit sizes).

Note: PostOrderMinMem does not rely on M so is optimal for any memory size and several memory layers (cache-oblivious).

But PostOrderMinIO is not competitive on heterogeneous trees:

- Cases when PostOrderMinIO needs I/O why optimal traversal does not
- Even in when the optimal traversal requires I/Os...
PostOrderMinIO is not competitive
PostOrderMinIO is not competitive

I/O optimal
- Peak memory: $M + 1$
- I/Os: 1
PostOrderMinIO is not competitive

I/O optimal
- Peak memory: $M + 1$
- I/Os: 1

PostOrderMinIO
- Peak memory: $\frac{3}{2}M$
- I/Os: $\Theta(|V|M)$

Competitive ratio: $\Omega(|V|M)$
MinIO for Trees – Summary

- PostOrder algorithms optimal for homogeneous trees
- No known competitive algorithms for heterogeneous trees
- Heterogeneous trees: still an open problem!
Part 3: Memory-Aware DAG Scheduling

Minimize Memory for Trees

Minimize Memory for SP-Graphs

Minimize I/Os for Trees

Shared Memory of Parallel Processing