
Part 2: External Memory
and Cache Oblivious Algorithms

CR10: Data Aware Algorithms

September 25, 2019



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



Ideal Cache Model

Properties of real cache:

I Memory/cache divided into blocks (or lines) of size B

I Limited associativity:

I each block of memory belongs to a cluster
(usually computed as address % M)

I at most c blocks of a cluster can be stored in cache at once
(c-way associative)

I Trade-off between hit rate and time for searching the cache

I Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

I Fully associative
c =∞, blocks can be store everywhere in the cache

I Optimal replacement policy
Belady’s rule: evict block whose next access is furthest

I Tall cache: M/B � B (M = Θ(B2))



Ideal Cache Model

Properties of real cache:

I Memory/cache divided into blocks (or lines) of size B

I Limited associativity:

I each block of memory belongs to a cluster
(usually computed as address % M)

I at most c blocks of a cluster can be stored in cache at once
(c-way associative)

I Trade-off between hit rate and time for searching the cache

I Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

I Fully associative
c =∞, blocks can be store everywhere in the cache

I Optimal replacement policy
Belady’s rule: evict block whose next access is furthest

I Tall cache: M/B � B (M = Θ(B2))



LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985).

For any sequence s:

TLRU(s) ≤ kLRU
kLRU + 1− kOPT

TOPT(s) + kOPT

I TA(s): nb of cache miss for the optimal replacement policy A
with cache size kA

I OPT: optimal (offline) replacement policy (Belady’s rule)

I LRU, A: online algorithms (no knowledge on future requests)

I kA, kLRU ≥ kOPT

Theorem (Bound on competitive ratio).

Assume there exists a and b such that TA(s) ≤ aTOPT(s) + b for
all s, then a ≥ kA/(kA + 1− kOPT).



LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985).

For any sequence s:

TLRU(s) ≤ kLRU
kLRU + 1− kOPT

TOPT(s) + kOPT

I TA(s): nb of cache miss for the optimal replacement policy A
with cache size kA

I OPT: optimal (offline) replacement policy (Belady’s rule)

I LRU, A: online algorithms (no knowledge on future requests)

I kA, kLRU ≥ kOPT

Theorem (Bound on competitive ratio).

Assume there exists a and b such that TA(s) ≤ aTOPT(s) + b for
all s, then a ≥ kA/(kA + 1− kOPT).



LRU competitive ratio – Proof

I Consider any subsequence t of s, such that CLRU(t) ≤ kLRU
(t should not include first request)

I Let p be the block request right after t in s

I If LRU loads twice the same block in s, then CLRU(t) ≥ kLRU + 1
(contradiction)

I Same if LRU loads p during t

I Thus on t, LRU loads CLRU(t) different blocks, different from p

I When starting t, OPT has p in cache

I On t, OPT must load at least CLRU(t)− kOPT + 1

I Partition s into s0, s1, . . . , sn s.t.
CLRU(s0) ≤ kLRU and CLRU(si ) = kLRU for i > 1

I On s0, COPT(s0) ≥ CLRU(s0)− kOPT

I In total for LRU: CLRU = CLRU(s0) + nkLRU
I In total for OPT: COPT ≥ CLRU(s0)− kOPT + n(kLRU− kOPT + 1)



Bound on Competitive Ratio – Proof

I Let S init
A (resp. S init

OPT) the set of blocks initially in A’cache
(resp. OPT’s cache)

I Consider the block request sequence made of two steps:

S1: kA − kOPT + 1 (new) blocks not in S init
A ∪ S init

OPT

S2: kOPT − 1 blocks s.t. then next block is always in
(S init

OPT ∪ S1)\SA

NB: step 2 is possible since |S init
OPT ∪ S1| = kA + 1

I A loads one block for each request of both steps: kA loads

I OPT loads one block only in S1: kA − kOPT + 1 loads



Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M/2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Definition (Regularity condition).

Let T (M) be the number of memory transfers for an algorithm
with cache of size M and an optimal replacement policy. The
regularity condition of the algorithm writes

T (M) = O(T (M/2))

Corollary

If an algorithm follows the regularity condition and makes T (M)
transfers with cache size M and an optimal replacement policy, it
makes Θ(T (M)) memory transfers with LRU.



Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M/2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Definition (Regularity condition).

Let T (M) be the number of memory transfers for an algorithm
with cache of size M and an optimal replacement policy. The
regularity condition of the algorithm writes

T (M) = O(T (M/2))

Corollary

If an algorithm follows the regularity condition and makes T (M)
transfers with cache size M and an optimal replacement policy, it
makes Θ(T (M)) memory transfers with LRU.



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



External Memory Model

Model:

I External Memory (or disk): storage

I Internal Memory (or cache): for computations, size M

I Ideal cache model for transfers: blocks of size B

I Input size: N

I Lower-case letters: in number of blocks
n = N/B, m = M/B

Theorem.

Scanning N elements stored in a contiguous segment of memory
costs at most dN/Be+ 1 memory transfers.



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: logN levels, N comparisons in each level

Adaptation for External Memory: Phase 1

I Partition the array in N/M chunks of size M

I Sort each chunks independently (→ runs)

I Block transfers: 2M/B per chunk, 2N/B in total

I Number of comparisons: M logM per chunk, N logM in total



Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: logN levels, N comparisons in each level

Adaptation for External Memory: Phase 1

I Partition the array in N/M chunks of size M

I Sort each chunks independently (→ runs)

I Block transfers: 2M/B per chunk, 2N/B in total

I Number of comparisons: M logM per chunk, N logM in total



Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size L → one run T of size 2L

1. Load first blocks R̂ (and Ŝ) of R (and S)

2. Allocate first block T̂ of T

3. While R and S both not exhausted

(a) Merge as much R̂ and Ŝ into T̂ as possible

(b) If R̂ (or Ŝ) gets empty, load new block of R (or S)

(c) If T̂ gets full, flush it into T

4. Transfer remaining items of R (or S) in T

I Internal memory usage: 3 blocks

I Block transfers: 2L/B reads + 2L/B writes = 4L/B

I Number of comparisons: 2L



Total complexity of Two-Way Merge Sort

Analysis at each level:

I At level k : runs of size 2kM (nb: N/(2kM))

I Merge to reach levels k = 1 . . . log2N/M

I Block transfers at level k : 2k+1M/B × N/(2kM) = 2N/B

I Number of comparisons: N

Total complexity of phases 1+2:

I Block transfers: 2N/B(1 + log2N/B) = O(N/B log2N/B)

I Number of comparisons: N logM + N log2N/M = N logN

but we use only 3 blocks of internal memory /



Optimization: K -Way Merge Sort

I Consider K input runs at each merge step
I Efficient merging, e.g.: MinHeap data structure

insert, extract: O(logK )
I Complexity of merging K runs of length L: KL logK
I Block transfers: no change (2KL/B)

Total complexity of merging:
I Block transfers: logK N/M steps → 2N/B logK N/M
I Computations: N logK per step → N logK × logK N/M

= N log2N/M (id.)

Maximize K to reduce transfers:
I (K + 1)B = M (K input blocks + 1 output block)

I Block transfers: O

(
N

B
logM

B

N

M

)
I NB: logM/B N/M = logM/B N/B − 1

I Block transfers: O

(
N

B
logM

B

N

B

)
= O(n logm n)



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



Lower Bound on Sorting

I Comparison based model:
elements compared when in internal memory

I Inputs of new blocks give new information (but not outputs)
I St : number of permutations consistent with knowledge after

reading t blocks of inputs
I At the beginning: S0 = N! possible orderings (no information)

I After reading one block: new information (answer)
how the elements read are ordered among themselves
and among the M elements in memory ?

I Assume X possible answers after one read, then

St+1 ≥ St/X

Proof:
I Partition of the St orderings into X parts
I There exists a part of size at least St/X , that is an answer

with at least St/X compatible orderings



Lower Bound on Sorting

Bound the number of possible orderings:

(i) When reading a block already seen: X =
(M
B

)
(ii) When reading a new block (never seen): X =

(M
B

)
B!

NB: at most N/B new blocks (case (i))

From S0 = N! and St+1 ≥ St/X , we get:

St ≥
N!(M

B

)t
(B!)N/B

St = 1 for final step
Stirling’s formula gives: log x! ≈ x log x and log

(x
y

)
≈ x log x/y

t = Ω

(
N

B
logM

B

N

B

)



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



Permuting

Inputs:

I N elements together with their final position:
(a,3) (b,2) (c,1) (d,4) → c,b,a,d

Two simple strategies:

I Place each element at its final position, one after the other
I/O cost: Θ(N) (cmp cost: O(N))

I Sort elements based on final position
I/O cost: Θ(SORT (N)) = Θ(N/B logM/B N/B)
(cmp cost: O(N logN))

Lower-bound:

I Using similar argument, one may prove that the
I/O complexity is bounded by Θ(min(SORT (N),N))

I NB: generally, SORT (N)� N



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



B-Trees

I Problem: Search for a particular element in a huge dataset

I Solution: Search tree with large degree (≈ B)

Definition (B-tree with minimum degree d).

Search tree such that:

I Each node (except the root) has at least d children

I Each node has at most 2d children

I Node with k children has k − 1 keys separating the children

I All leaves have the same depth

Proposed by Bayer and McCreigh (1972)



Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.

Searching in a B-Tree requires O(logd N) I/Os.

Insertion algorithm:

1. If root node is full (2d children), split it:

(a) Find median key, send it to the father f
(if any, otherwise it becomes the new root)

(b) Keys and subtrees < median key → new left subtree of f
(c) Keys and subtrees > median key → new right subtree f

2. If root node = leaf, insert new key

3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split → balanced tree
Number of transfers: O(h)



Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

I If tree=leaf, straightforward
I If k = key of root node:

I If subtree s immediately left of k has d keys,
remove maximum element k ′ of s, replace k by k ′

I Same on right subtree (with minimum element)
I Otherwise (both neighbor subtrees have d − 1 keys): remove k

and merge these neighbor subtrees

I If k is in a subtree, find the correct subtree T
I If T has only d − 1 keys:

I Try to steal one key from a neighbor of T with at least d keys
I Otherwise merge T with one of its neighbors

I Call recursively on the correct subtree

Number of block transfers: O(h)



Usage of B-Trees

Widely used in large database and filesystems
(SQL, ext4, Apple File System, NTFS)

Variants:

I B+ Trees: store data only on leaves
increase degree → reduce height
add pointer from leaf to next one to speedup sequential access

I B* Trees: better balance of internal node
(max size: 2b → 3b/2, nodes at least 2/3 full)

I When 2 siblings full: split into 3 nodes
I Pospone splitting: shift keys to neighbors if possible



Searching Lower Bound

Theorem.

Searching for an element among N elements in external memory
requires Θ(logB+1N) block transfers.

Proof:

I Adversary argument

I Total order of N elements known to the algorithm

I Let Ct be the number of candidates after t reads (C0 = N)

I When a block of size B is read, the Ct − B remaining
elements are distributed into B + 1 parts, one of them has at
least (Ct − B)/(B + 1) elements.

I By induction, Ct ≥ N/(B + 1)t − (B + 1)/B

If memory initially full, C0 = (N −M)/(M + 1), lower bound:
Θ(logB+1N/M)



Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication



Matrix-Matrix Multiplication

The I/O bound on matrix multiplication seen previously is
extended:

Theorem.

The number of block transfers for multiplying two N × N matrices
is Θ(N3/(B

√
M)) when M < N2.

Blocked algorithms naturally reduces block transfers.



Summary: External Memory Bounds

Internal External

Scanning N N/B
Sorting N log2N N/B logM/B N/B

Permuting N min(N,N/B logM/B N/B)

Searching log2N logB N

Matrix Mult. N3 N3/(B
√
M)

Notes:

I Linear I/O: O(N/B)

I Permuting is not linear

I B is an important factor: N/B < N/B logM/B N/B � N

I Search tree cannot lead to optimal sort


	Ideal Cache Model
	External Memory Algorithms and Data Structures
	External Memory Model
	Merge Sort
	Lower Bound on Sorting
	Permuting
	Searching and B-Trees
	Matrix-Matrix Multiplication


