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Ideal Cache Model

Properties of real cache:

I Memory/cache divided into blocks (or lines) of size B

I Limited associativity:

I each block of memory belongs to a cluster
(usually computed as address % M)

I at most c blocks of a cluster can be stored in cache at once
(c-way associative)

I Trade-off between hit rate and time for searching the cache

I Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

I Fully associative
c =∞, blocks can be store everywhere in the cache

I Optimal replacement policy
Belady’s rule: evict block whose next access is furthest

I Tall cache: M/B � B (M = Θ(B2))



Ideal Cache Model

Properties of real cache:

I Memory/cache divided into blocks (or lines) of size B

I Limited associativity:

I each block of memory belongs to a cluster
(usually computed as address % M)

I at most c blocks of a cluster can be stored in cache at once
(c-way associative)

I Trade-off between hit rate and time for searching the cache

I Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

I Fully associative
c =∞, blocks can be store everywhere in the cache

I Optimal replacement policy
Belady’s rule: evict block whose next access is furthest

I Tall cache: M/B � B (M = Θ(B2))



LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985).

For any sequence s:

TLRU(s) ≤ kLRU
kLRU + 1− kOPT

TOPT(s) + kOPT

I TA(s): nb of cache miss for the optimal replacement policy A
with cache size kA

I OPT: optimal (offline) replacement policy (Belady’s rule)

I LRU, A: online algorithms (no knowledge on future requests)

I kA, kLRU ≥ kOPT

Theorem (Bound on competitive ratio).

Assume there exists a and b such that TA(s) ≤ aTOPT(s) + b for
all s, then a ≥ kA/(kA + 1− kOPT).
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LRU competitive ratio – Proof

I Consider any subsequence t of s, such that CLRU(t) ≤ kLRU
(t should not include first request)

I Let p be the block request right after t in s

I If LRU loads twice the same block in s, then CLRU(t) ≥ kLRU + 1
(contradiction)

I Same if LRU loads p during t

I Thus on t, LRU loads CLRU(t) different blocks, different from p

I When starting t, OPT has p in cache

I On t, OPT must load at least CLRU(t)− kOPT + 1

I Partition s into s0, s1, . . . , sn s.t.
CLRU(s0) ≤ kLRU and CLRU(si ) = kLRU for i > 1

I On s0, COPT(s0) ≥ CLRU(s0)− kOPT

I In total for LRU: CLRU = CLRU(s0) + nkLRU
I In total for OPT: COPT ≥ CLRU(s0)− kOPT + n(kLRU− kOPT + 1)



Bound on Competitive Ratio – Proof

I Let S init
A (resp. S init

OPT) the set of blocks initially in A’cache
(resp. OPT’s cache)

I Consider the block request sequence made of two steps:

S1: kA − kOPT + 1 (new) blocks not in S init
A ∪ S init

OPT

S2: kOPT − 1 blocks s.t. then next block is always in
(S init

OPT ∪ S1)\SA

NB: step 2 is possible since |S init
OPT ∪ S1| = kA + 1

I A loads one block for each request of both steps: kA loads

I OPT loads one block only in S1: kA − kOPT + 1 loads



Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M/2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Definition (Regularity condition).

Let T (M) be the number of memory transfers for an algorithm
with cache of size M and an optimal replacement policy. The
regularity condition of the algorithm writes

T (M) = O(T (M/2))

Corollary

If an algorithm follows the regularity condition and makes T (M)
transfers with cache size M and an optimal replacement policy, it
makes Θ(T (M)) memory transfers with LRU.
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External Memory Model

Model:

I External Memory (or disk): storage

I Internal Memory (or cache): for computations, size M

I Ideal cache model for transfers: blocks of size B

I Input size: N

I Lower-case letters: in number of blocks
n = N/B, m = M/B

Theorem.

Scanning N elements stored in a contiguous segment of memory
costs at most dN/Be+ 1 memory transfers.
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Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: logN levels, N comparisons in each level

Adaptation for External Memory: Phase 1

I Partition the array in N/M chunks of size M

I Sort each chunks independently (→ runs)

I Block transfers: 2M/B per chunk, 2N/B in total

I Number of comparisons: M logM per chunk, N logM in total
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Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size L → one run T of size 2L

1. Load first blocks R̂ (and Ŝ) of R (and S)

2. Allocate first block T̂ of T

3. While R and S both not exhausted

(a) Merge as much R̂ and Ŝ into T̂ as possible

(b) If R̂ (or Ŝ) gets empty, load new block of R (or S)

(c) If T̂ gets full, flush it into T

4. Transfer remaining items of R (or S) in T

I Internal memory usage: 3 blocks

I Block transfers: 2L/B reads + 2L/B writes = 4L/B

I Number of comparisons: 2L



Total complexity of Two-Way Merge Sort

Analysis at each level:

I At level k : runs of size 2kM (nb: N/(2kM))

I Merge to reach levels k = 1 . . . log2N/M

I Block transfers at level k : 2k+1M/B × N/(2kM) = 2N/B

I Number of comparisons: N

Total complexity of phases 1+2:

I Block transfers: 2N/B(1 + log2N/B) = O(N/B log2N/B)

I Number of comparisons: N logM + N log2N/M = N logN

but we use only 3 blocks of internal memory /



Optimization: K -Way Merge Sort

I Consider K input runs at each merge step
I Efficient merging, e.g.: MinHeap data structure

insert, extract: O(logK )
I Complexity of merging K runs of length L: KL logK
I Block transfers: no change (2KL/B)

Total complexity of merging:
I Block transfers: logK N/M steps → 2N/B logK N/M
I Computations: N logK per step → N logK × logK N/M

= N log2N/M (id.)

Maximize K to reduce transfers:
I (K + 1)B = M (K input blocks + 1 output block)

I Block transfers: O

(
N

B
logM

B

N

M

)
I NB: logM/B N/M = logM/B N/B − 1

I Block transfers: O

(
N

B
logM

B

N

B

)
= O(n logm n)
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Lower Bound on Sorting

I Comparison based model:
elements compared when in internal memory

I Inputs of new blocks give new information (but not outputs)
I St : number of permutations consistent with knowledge after

reading t blocks of inputs
I At the beginning: S0 = N! possible orderings (no information)

I After reading one block: new information (answer)
how the elements read are ordered among themselves
and among the M elements in memory ?

I Assume X possible answers after one read, then

St+1 ≥ St/X

Proof:
I Partition of the St orderings into X parts
I There exists a part of size at least St/X , that is an answer

with at least St/X compatible orderings



Lower Bound on Sorting

Bound the number of possible orderings:

(i) When reading a block already seen: X =
(M
B

)
(ii) When reading a new block (never seen): X =

(M
B

)
B!

NB: at most N/B new blocks (case (i))

From S0 = N! and St+1 ≥ St/X , we get:

St ≥
N!(M

B

)t
(B!)N/B

St = 1 for final step
Stirling’s formula gives: log x! ≈ x log x and log

(x
y

)
≈ x log x/y

t = Ω

(
N

B
logM

B

N

B

)
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Permuting

Inputs:

I N elements together with their final position:
(a,3) (b,2) (c,1) (d,4) → c,b,a,d

Two simple strategies:

I Place each element at its final position, one after the other
I/O cost: Θ(N) (cmp cost: O(N))

I Sort elements based on final position
I/O cost: Θ(SORT (N)) = Θ(N/B logM/B N/B)
(cmp cost: O(N logN))

Lower-bound:

I Using similar argument, one may prove that the
I/O complexity is bounded by Θ(min(SORT (N),N))

I NB: generally, SORT (N)� N
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B-Trees

I Problem: Search for a particular element in a huge dataset

I Solution: Search tree with large degree (≈ B)

Definition (B-tree with minimum degree d).

Search tree such that:

I Each node (except the root) has at least d children

I Each node has at most 2d children

I Node with k children has k − 1 keys separating the children

I All leaves have the same depth

Proposed by Bayer and McCreigh (1972)



Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.

Searching in a B-Tree requires O(logd N) I/Os.

Insertion algorithm:

1. If root node is full (2d children), split it:

(a) Find median key, send it to the father f
(if any, otherwise it becomes the new root)

(b) Keys and subtrees < median key → new left subtree of f
(c) Keys and subtrees > median key → new right subtree f

2. If root node = leaf, insert new key

3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split → balanced tree
Number of transfers: O(h)



Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

I If tree=leaf, straightforward
I If k = key of root node:

I If subtree s immediately left of k has d keys,
remove maximum element k ′ of s, replace k by k ′

I Same on right subtree (with minimum element)
I Otherwise (both neighbor subtrees have d − 1 keys): remove k

and merge these neighbor subtrees

I If k is in a subtree, find the correct subtree T
I If T has only d − 1 keys:

I Try to steal one key from a neighbor of T with at least d keys
I Otherwise merge T with one of its neighbors

I Call recursively on the correct subtree

Number of block transfers: O(h)



Usage of B-Trees

Widely used in large database and filesystems
(SQL, ext4, Apple File System, NTFS)

Variants:

I B+ Trees: store data only on leaves
increase degree → reduce height
add pointer from leaf to next one to speedup sequential access

I B* Trees: better balance of internal node
(max size: 2b → 3b/2, nodes at least 2/3 full)

I When 2 siblings full: split into 3 nodes
I Pospone splitting: shift keys to neighbors if possible



Searching Lower Bound

Theorem.

Searching for an element among N elements in external memory
requires Θ(logB+1N) block transfers.

Proof:

I Adversary argument

I Total order of N elements known to the algorithm

I Let Ct be the number of candidates after t reads (C0 = N)

I When a block of size B is read, the Ct − B remaining
elements are distributed into B + 1 parts, one of them has at
least (Ct − B)/(B + 1) elements.

I By induction, Ct ≥ N/(B + 1)t − (B + 1)/B

If memory initially full, C0 = (N −M)/(M + 1), lower bound:
Θ(logB+1N/M)
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Matrix-Matrix Multiplication

The I/O bound on matrix multiplication seen previously is
extended:

Theorem.

The number of block transfers for multiplying two N × N matrices
is Θ(N3/(B

√
M)) when M < N2.

Blocked algorithms naturally reduces block transfers.



Summary: External Memory Bounds

Internal External

Scanning N N/B
Sorting N log2N N/B logM/B N/B

Permuting N min(N,N/B logM/B N/B)

Searching log2N logB N

Matrix Mult. N3 N3/(B
√
M)

Notes:

I Linear I/O: O(N/B)

I Permuting is not linear

I B is an important factor: N/B < N/B logM/B N/B � N

I Search tree cannot lead to optimal sort
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