Part 2: External Memory and Cache Oblivious Algorithms

CR10: Data Aware Algorithms

September 25, 2019
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
- External Memory Model
- Merge Sort
- Lower Bound on Sorting
- Permuting
- Searching and B-Trees
- Matrix-Matrix Multiplication
Ideal Cache Model

Properties of real cache:

- Memory/cache divided into blocks (or lines) of size B
- Limited associativity:
 - each block of memory belongs to a cluster (usually computed as $address \% M$)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
 - Trade-off between hit rate and time for searching the cache
- Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

- Fully associative
 - $c = \infty$, blocks can be store everywhere in the cache
- Optimal replacement policy
 - Belady’s rule: evict block whose next access is furthest
- Tall cache: $M/B \gg B$ ($M = \Theta(B^2)$)
Ideal Cache Model

Properties of real cache:

- Memory/cache divided into blocks (or lines) of size B
- Limited associativity:
 - each block of memory belongs to a cluster (usually computed as $address \% M$)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
 - Trade-off between hit rate and time for searching the cache
- Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

- Fully associative
 - $c = \infty$, blocks can be stored everywhere in the cache
- Optimal replacement policy
 - Belady’s rule: evict block whose next access is furthest
- Tall cache: $M/B \gg B$ ($M = \Theta(B^2)$)
Lemma (Sleator and Tarjan, 1985).

For any sequence s:

$$T_{LRU}(s) \leq \frac{k_{LRU}}{k_{LRU} + 1 - k_{OPT}} T_{OPT}(s) + k_{OPT}$$

- $T_A(s)$: nb of cache miss for the optimal replacement policy A with cache size k_A
- OPT: optimal (offline) replacement policy (Belady’s rule)
- LRU, A: online algorithms (no knowledge on future requests)
- $k_A, k_{LRU} \leq k_{OPT}$

Theorem (Bound on competitive ratio).

Assume there exists a and b such that $T_A(s) \leq aT_{OPT}(s) + b$ for all s, then $a \geq k_A/(k_A + 1 - k_{OPT})$.
LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985).
For any sequence s:

$$T_{LRU}(s) \leq \frac{k_{LRU}}{k_{LRU} + 1 - k_{OPT}} T_{OPT}(s) + k_{OPT}$$

- $T_A(s)$: nb of cache miss for the optimal replacement policy A with cache size k_A
- OPT: optimal (offline) replacement policy (Belady’s rule)
- LRU, A: online algorithms (no knowledge on future requests)
- $k_A, k_{LRU} \leq k_{OPT}$

Theorem (Bound on competitive ratio).
Assume there exists a and b such that $T_A(s) \leq a T_{OPT}(s) + b$ for all s, then $a \geq k_A/(k_A + 1 - k_{OPT})$.
LRU competitive ratio – Proof

- Consider any subsequence t of s, such that $C_{LRU}(t) \leq k_{LRU}$ (t should not include first request)
- Let p be the block request right after t in s
- If LRU loads twice the same block in s, then $C_{LRU}(t) \geq k_{LRU} + 1$ (contradiction)
- Same if LRU loads p during t
- Thus on t, LRU loads $C_{LRU}(t)$ different blocks, different from p
- When starting t, OPT has p in cache
- On t, OPT must load at least $C_{LRU}(t) - k_{OPT} + 1$
- Partition s into s_0, s_1, \ldots, s_n s.t.
 \[C_{LRU}(s_0) \leq k_{LRU} \quad \text{and} \quad C_{LRU}(s_i) = k_{LRU} \quad \text{for} \ i > 1 \]
- On s_0, $C_{OPT}(s_0) \geq C_{LRU}(s_0) - k_{OPT}$
- In total for LRU: $C_{LRU} = C_{LRU}(s_0) + nk_{LRU}$
- In total for OPT: $C_{OPT} \geq C_{LRU}(s_0) - k_{OPT} + n(k_{LRU} - k_{OPT} + 1)$
Let S_A^{init} (resp. $S_{\text{OPT}}^{\text{init}}$) the set of blocks initially in A’s cache (resp. OPT’s cache).

Consider the block request sequence made of two steps:

- S_1: $k_A - k_{\text{OPT}} + 1$ (new) blocks not in $S_A^{\text{init}} \cup S_{\text{OPT}}^{\text{init}}$
- S_2: $k_{\text{OPT}} - 1$ blocks s.t. then next block is always in $(S^{\text{init}}_{\text{OPT}} \cup S_1) \setminus S_A$

NB: step 2 is possible since $|S_{\text{OPT}}^{\text{init}} \cup S_1| = k_A + 1$

- A loads one block for each request of both steps: k_A loads
- OPT loads one block only in S_1: $k_A - k_{\text{OPT}} + 1$ loads
Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).
If an algorithm makes T memory transfers with a cache of size $M/2$ with optimal replacement, then it makes at most $2T$ transfers with cache size M with LRU.

Definition (Regularity condition).
Let $T(M)$ be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

$$T(M) = O(T(M/2))$$

Corollary
If an algorithm follows the regularity condition and makes $T(M)$ transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with LRU.
Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).
If an algorithm makes T memory transfers with a cache of size $M/2$ with optimal replacement, then it makes at most $2T$ transfers with cache size M with LRU.

Definition (Regularity condition).
Let $T(M)$ be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

$$T(M) = O(T(M/2))$$

Corollary
If an algorithm follows the regularity condition and makes $T(M)$ transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with LRU.
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

- External Memory Model
- Merge Sort
- Lower Bound on Sorting
- Permuting
- Searching and B-Trees
- Matrix-Matrix Multiplication
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
External Memory Model

Model:
- **External** Memory (or disk): storage
- **Internal** Memory (or cache): for computations, size M
- Ideal cache model for transfers: blocks of size B
- Input size: N
- Lower-case letters: in number of blocks
 \[n = \frac{N}{B}, \quad m = \frac{M}{B} \]

Theorem.
Scanning N elements stored in a contiguous segment of memory costs at most $\lceil \frac{N}{B} \rceil + 1$ memory transfers.
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

- External Memory Model
- Merge Sort
- Lower Bound on Sorting
- Permuting
- Searching and B-Trees
- Matrix-Matrix Multiplication
Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1
2. Merge two sorted arrays of size L into one of size $2L$
 requires $2L$ comparisons

In total: log N levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N/M chunks of size M
- Sort each chunks independently (runs)
- Block transfers: $2M/B$ per chunk, $2N/B$ in total
- Number of comparisons: $M \log M$ per chunk, $N \log M$ in total
Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer
1. Recursively split the array (size N) in two, until reaching size 1
2. Merge two sorted arrays of size L into one of size $2L$
 requires $2L$ comparisons
In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1
- Partition the array in N/M chunks of size M
- Sort each chunks independently (→ runs)
- Block transfers: $2M/B$ per chunk, $2N/B$ in total
- Number of comparisons: $M \log M$ per chunk, $N \log M$ in total
Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size $L \rightarrow$ one run T of size $2L$

1. Load first blocks \hat{R} (and \hat{S}) of R (and S)
2. Allocate first block \hat{T} of T
3. While R and S both not exhausted
 (a) Merge as much \hat{R} and \hat{S} into \hat{T} as possible
 (b) If \hat{R} (or \hat{S}) gets empty, load new block of R (or S)
 (c) If \hat{T} gets full, flush it into T
4. Transfer remaining items of R (or S) in T

- Internal memory usage: 3 blocks
- Block transfers: $2L/B$ reads + $2L/B$ writes = $4L/B$
- Number of comparisons: $2L$
Total complexity of Two-Way Merge Sort

Analysis at each level:
► At level k: runs of size $2^k M$ (nb: $N / (2^k M)$)
► Merge to reach levels $k = 1 \ldots \log_2 N / M$
► Block transfers at level k: $2^{k+1} M / B \times N / (2^k M) = 2N / B$
► Number of comparisons: N

Total complexity of phases 1+2:
► Block transfers: $2N / B (1 + \log_2 N / B) = O(N / B \log_2 N / B)$
► Number of comparisons: $N \log M + N \log_2 N / M = N \log N$

but we use only 3 blocks of internal memory 😞
Optimization: K-Way Merge Sort

- Consider K input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure
 insert, extract: $O(\log K)$
- Complexity of merging K runs of length L: $KL \log K$
- Block transfers: no change ($2KL/B$)

Total complexity of merging:

- Block transfers: $\log_K N/M$ steps $\rightarrow 2N/B \log_K N/M$
- Computations: $N \log K$ per step $\rightarrow N \log K \times \log_K N/M$
 $= N \log_2 N/M$ (id.)

Maximize K to reduce transfers:

- $(K + 1)B = M$ (K input blocks + 1 output block)
- Block transfers: $O \left(\frac{N}{B} \log_{M/B} \frac{N}{M} \right)$
- NB: $\log_{M/B} N/M = \log_{M/B} N/B - 1$
- Block transfers: $O \left(\frac{N}{B} \log_{M/B} \frac{N}{B} \right) = O(n \log_m n)$
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

- External Memory Model
- Merge Sort
- Lower Bound on Sorting
- Permuting
- Searching and B-Trees
- Matrix-Matrix Multiplication
Lower Bound on Sorting

- Comparison based model: elements compared when in internal memory
- Inputs of new blocks give new information (but not outputs)
- S_t: number of permutations consistent with knowledge after reading t blocks of inputs
- At the beginning: $S_0 = N!$ possible orderings (no information)
- After reading one block: new information (answer) *how the elements read are ordered among themselves and among the M elements in memory?*
- Assume X possible answers after one read, then
 \[S_{t+1} \geq S_t / X \]

Proof:
- Partition of the S_t orderings into X parts
- There exists a part of size at least S_t / X, that is an answer with at least S_t / X compatible orderings
Lower Bound on Sorting

Bound the number of possible orderings:

(i) When reading a block already seen: $X = \binom{M}{B}

(ii) When reading a new block (never seen): $X = \binom{M}{B} B!

NB: at most N/B new blocks (case (i))

From $S_0 = N!$ and $S_{t+1} \geq S_t / X$, we get:

$$S_t \geq \frac{N!}{\binom{M}{B}^t (B!)^{N/B}}$$

$S_t = 1$ for final step

Stirling’s formula gives: $\log x! \approx x \log x$ and $\log \binom{x}{y} \approx x \log x/y$

$$t = \Omega \left(\frac{N}{B} \log \frac{M}{B} \frac{N}{B} \right)$$
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
Permuting

Inputs:
- N elements together with their final position:
 (a,3) (b,2) (c,1) (d,4) \rightarrow c,b,a,d

Two simple strategies:
- Place each element at its final position, one after the other
 \(\text{I/O cost: } \Theta(N) \quad (\text{cmp cost: } O(N)) \)
- Sort elements based on final position
 \(\text{I/O cost: } \Theta(SORT(N)) = \Theta(N/B \log_{M/B} N/B) \)
 \((\text{cmp cost: } O(N \log N)) \)

Lower-bound:
- Using similar argument, one may prove that the
 \(\text{I/O complexity is bounded by } \Theta(\min(SORT(N), N)) \)
- NB: generally, \(SORT(N) \ll N \)
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting

Searching and B-Trees
Matrix-Matrix Multiplication
Problem: Search for a particular element in a huge dataset
Solution: Search tree with large degree ($\approx B$)

Definition (B-tree with minimum degree d).
Search tree such that:
- Each node (except the root) has at least d children
- Each node has at most $2d$ children
- Node with k children has $k - 1$ keys separating the children
- All leaves have the same depth

Proposed by Bayer and McCreigh (1972)
Search and Insertion in B-Trees

Usually, we require that $d = O(B)$

Lemma.

Searching in a B-Tree requires $O(\log_d N)$ I/Os.

Insertion algorithm:

1. If root node is full ($2d$ children), split it:
 (a) Find median key, send it to the father f
 (if any, otherwise it becomes the new root)
 (b) Keys and subtrees $<\text{median key}$ → new left subtree of f
 (c) Keys and subtrees $>\text{median key}$ → new right subtree f

2. If root node = leaf, insert new key

3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split → balanced tree

Number of transfers: $O(h)$
Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

- If tree=leaf, straightforward
- If $k =$ key of root node:
 - If subtree s immediately left of k has d keys, remove maximum element k' of s, replace k by k'
 - Same on right subtree (with minimum element)
 - Otherwise (both neighbor subtrees have $d-1$ keys): remove k and merge these neighbor subtrees
- If k is in a subtree, find the correct subtree T
- If T has only $d-1$ keys:
 - Try to steal one key from a neighbor of T with at least d keys
 - Otherwise merge T with one of its neighbors
- Call recursively on the correct subtree

Number of block transfers: $O(h)$
Usage of B-Trees

Widely used in large database and filesystems (SQL, ext4, Apple File System, NTFS)

Variants:

- **B+ Trees**: store data only on leaves
 increase degree → reduce height
 add pointer from leaf to next one to speedup sequential access

- **B* Trees**: better balance of internal node
 (max size: \(2b \rightarrow 3b/2\), nodes at least 2/3 full)
 - When 2 siblings full: split into 3 nodes
 - Pospone splitting: shift keys to neighbors if possible
Searching Lower Bound

Theorem.
Searching for an element among \(N \) elements in external memory requires \(\Theta(\log_{B+1} N) \) block transfers.

Proof:
- Adversary argument
- Total order of \(N \) elements known to the algorithm
- Let \(C_t \) be the number of candidates after \(t \) reads \((C_0 = N) \)
- When a block of size \(B \) is read, the \(C_t - B \) remaining elements are distributed into \(B + 1 \) parts, one of them has at least \((C_t - B)/(B + 1) \) elements.
- By induction, \(C_t \geq N/(B + 1)^t - (B + 1)/B \)

If memory initially full, \(C_0 = (N - M)/(M + 1) \), lower bound: \(\Theta(\log_{B+1} N/M) \)
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
Matrix-Matrix Multiplication

The I/O bound on matrix multiplication seen previously is extended:

Theorem.
The number of block transfers for multiplying two $N \times N$ matrices is $\Theta(N^3/(B\sqrt{M}))$ when $M < N^2$.

Blocked algorithms naturally reduces block transfers.
Summary: External Memory Bounds

<table>
<thead>
<tr>
<th></th>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning</td>
<td>N</td>
<td>N/B</td>
</tr>
<tr>
<td>Sorting</td>
<td>$N \log_2 N$</td>
<td>$N/B \log_{M/B} N/B$</td>
</tr>
<tr>
<td>Permuting</td>
<td>N</td>
<td>$\min(N, N/B \log_{M/B} N/B)$</td>
</tr>
<tr>
<td>Searching</td>
<td>$\log_2 N$</td>
<td>$\log_B N$</td>
</tr>
<tr>
<td>Matrix Mult.</td>
<td>N^3</td>
<td>$N^3/(B\sqrt{M})$</td>
</tr>
</tbody>
</table>

Notes:
- Linear I/O: $O(N/B)$
- Permuting is not linear
- B is an important factor: $N/B < N/B \log_{M/B} N/B \ll N$
- Search tree cannot lead to optimal sort