Part 2: External Memory
and Cache Oblivious Algorithms

CR10: Data Aware Algorithms

September 25, 2019

Qutline

Ideal Cache Model

Ideal Cache Model

Properties of real cache:
» Memory/cache divided into blocks (or lines) of size B
» Limited associativity:

» each block of memory belongs to a cluster
(usually computed as address % M)

» at most ¢ blocks of a cluster can be stored in cache at once
(c-way associative)

» Trade-off between hit rate and time for searching the cache

» Block replacement policy: LRU (also LFU or FIFO)

Ideal Cache Model

Properties of real cache:
» Memory/cache divided into blocks (or lines) of size B

» Limited associativity:

» each block of memory belongs to a cluster
(usually computed as address % M)

» at most ¢ blocks of a cluster can be stored in cache at once
(c-way associative)

» Trade-off between hit rate and time for searching the cache

» Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

» Fully associative
¢ = 00, blocks can be store everywhere in the cache

» Optimal replacement policy
Belady's rule: evict block whose next access is furthest

> Tall cache: M/B>B (M = 0(B?))

LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985).
For any sequence s:

kLru

< TopT(s) + k
S UL Koot opT(s) + kopT

Tiru(S)

Ta(s): nb of cache miss for the optimal replacement policy A
with cache size ka

OPT: optimal (offline) replacement policy (Belady's rule)
LRU, A: online algorithms (no knowledge on future requests)

v

v

v

v

ka, kLru > kopT

LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985).
For any sequence s:

kLru

< T k
S o1 Fort opT(s) + kopT

Tiru(S)

Ta(s): nb of cache miss for the optimal replacement policy A
with cache size ka

OPT: optimal (offline) replacement policy (Belady's rule)
» LRU, A: online algorithms (no knowledge on future requests)

v

v

v

ka, kLru > kopT

Theorem (Bound on competitive ratio).

Assume there exists a and b such that Ta(s) < aTopT(s) + b for
all s, then a > kA/(kA +1-— kopT).

LRU competitive ratio — Proof

>

Consider any subsequence t of s, such that C ry(t) < kLru
(t should not include first request)

Let p be the block request right after t in s

If LRU loads twice the same block in s, then C ry(t) > kru + 1
(contradiction)

Same if LRU loads p during t

Thus on t, LRU loads C ry(t) different blocks, different from p
When starting t, OPT has p in cache

On t, OPT must load at least C ry(t) — kopT + 1

Partition s into sg, s1,...,5Ss S.t.

Ciru(so) < kiry and Crru(si) = kLru for i >1

On s, Copt(s0) > Crru(S0) — kopT

In total for LRU: Cry = CLRU(SO) + nk_ru

In total for OPT: Copt > Ciru(S0) — kopT + n(kLru — kopT + 1)

Bound on Competitive Ratio — Proof

v

Let SNt (resp. SIIL) the set of blocks initially in A'cache

(resp. OPT's cache)

Consider the block request sequence made of two steps:

Si: ka — kopT + 1 (new) blocks not in Sinit U Sinit.

So: kopt — 1 blocks s.t. then next block is always in
(S8 U 51)\Sa

NB: step 2 is possible since]56‘3-,- USi|=ka+1

v

v

A loads one block for each request of both steps: k4 loads
OPT loads one block only in S1: kg — kopt + 1 loads

v

Justification of the ldeal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M /2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Justification of the ldeal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M /2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Definition (Regularity condition).

Let T(M) be the number of memory transfers for an algorithm
with cache of size M and an optimal replacement policy. The
regularity condition of the algorithm writes

T(M) = O(T(M/2))

Corollary

If an algorithm follows the regularity condition and makes T (M)
transfers with cache size M and an optimal replacement policy, it
makes ©(T(M)) memory transfers with LRU.

Qutline

External Memory Algorithms and Data Structures

Qutline

External Memory Algorithms and Data Structures
External Memory Model

External Memory Model

Model:
» External Memory (or disk): storage
» Internal Memory (or cache): for computations, size M
> Ideal cache model for transfers: blocks of size B
> Input size: N

» Lower-case letters: in number of blocks
n=N/B, m=M/B

Theorem.

Scanning N elements stored in a contiguous segment of memory
costs at most [N/B] + 1 memory transfers.

Qutline

External Memory Algorithms and Data Structures

Merge Sort

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer
1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: log N levels, N comparisons in each level

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer
1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: log N levels, N comparisons in each level

Adaptation for External Memory: Phase 1
» Partition the array in N/M chunks of size M
» Sort each chunks independently (— runs)
» Block transfers: 2M/B per chunk, 2N/B in total
» Number of comparisons: M log M per chunk, Nlog M in total

Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size L — one run T of size 2L

1. Load first blocks R (and §) of R (and §)

2. Allocate first block T of T

3. While R and S both not exhausted
(a) Merge as much R and S into T as possible
(b) If R (or S) gets empty, load new block of R (or S)
(c) If T gets full, flush it into T

4. Transfer remaining items of R (or S) in T

> Internal memory usage: 3 blocks
» Block transfers: 2L/B reads + 2L/B writes = 4L/B

» Number of comparisons: 2L

Total complexity of Two-Way Merge Sort

Analysis at each level:
» At level k: runs of size 25M (nb: N/(2KM))
» Merge to reach levels k =1...log, N/M
» Block transfers at level k: 2K¥1M/B x N/(2KM) = 2N /B
» Number of comparisons: N

Total complexity of phases 1+2:
» Block transfers: 2N /B(1 + log, N/B) = O(N/Blog, N/B)
» Number of comparisons: Nlog M + Nlog, N/M = Nlog N

but we use only 3 blocks of internal memory &

Optimization: K-Way Merge Sort

» Consider K input runs at each merge step
» Efficient merging, e.g.: MinHeap data structure
insert, extract: O(log K)
» Complexity of merging K runs of length L: KLlog K
» Block transfers: no change (2KL/B)
Total complexity of merging:
» Block transfers: logx N/M steps — 2N/Blog, N/M
» Computations: Nlog K per step — Nlog K x log, N/M
= Nlog, N/M (id.)
Maximize K to reduce transfers:
» (K+1)B =M (K input blocks + 1 output block)
» Block transfers: O (g Iog% AI\/II)
> NB: logy /g N/M = logp g N/B —1

N N
» Block transfers: O (B Iog% B> = O(nlog,, n)

Qutline

External Memory Algorithms and Data Structures

Lower Bound on Sorting

Lower Bound on Sorting

>

Comparison based model:
elements compared when in internal memory

» Inputs of new blocks give new information (but not outputs)

S¢: number of permutations consistent with knowledge after
reading t blocks of inputs
At the beginning: So = N! possible orderings (no information)

After reading one block: new information (answer)
how the elements read are ordered among themselves
and among the M elements in memory ?

Assume X possible answers after one read, then

Sty1 > S/ X

Proof:
» Partition of the S; orderings into X parts
» There exists a part of size at least S;/X, that is an answer
with at least S;/X compatible orderings

Lower Bound on Sorting

Bound the number of possible orderings:
(i) When reading a block already seen: X = (%)
(i) When reading a new block (never seen): X = (’\é’)B!
NB: at most N/B new blocks (case (i))
From Sop = N! and S;41 > S;:/X, we get:
N!

St > 7(",;’)t(8!)"’/3

S; = 1 for final step
Stirling's formula gives: log x! ~ xlog x and Iog() ~ xlogx/y

y
N N

Qutline

External Memory Algorithms and Data Structures

Permuting

Permuting

Inputs:

» N elements together with their final position:
(a,3) (b,2) (c,1) (d,4) — ¢,b,a,d
Two simple strategies:
» Place each element at its final position, one after the other
[/O cost: ©(N) (cmp cost: O(N))
» Sort elements based on final position
1/O cost: ©(SORT(N)) = ©(N/Blogyg N/B)
(cmp cost: O(N log V))
Lower-bound:

» Using similar argument, one may prove that the
[/O complexity is bounded by ©(min(SORT(N), N))
» NB: generally, SORT(N) < N

Qutline

External Memory Algorithms and Data Structures

Searching and B-Trees

B-Trees

» Problem: Search for a particular element in a huge dataset

» Solution: Search tree with large degree (=~ B)

Definition (B-tree with minimum degree d).
Search tree such that:
» Each node (except the root) has at least d children

Each node has at most 2d children

v

v

Node with k children has k — 1 keys separating the children

v

All leaves have the same depth

Proposed by Bayer and McCreigh (1972)

Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.
Searching in a B-Tree requires O(log, N) 1/Os.

Insertion algorithm:
1. If root node is full (2d children), split it:
(a) Find median key, send it to the father £
(if any, otherwise it becomes the new root)
(b) Keys and subtrees < median key — new left subtree of f
(c) Keys and subtrees > median key — new right subtree f
2. If root node = leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s
NB: height changes only when root is split — balanced tree
Number of transfers: O(h)

Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

> If tree=leaf, straightforward

» If k = key of root node:

> If subtree s immediately left of k has d keys,
remove maximum element k' of s, replace k by k’

» Same on right subtree (with minimum element)

» Otherwise (both neighbor subtrees have d — 1 keys): remove k
and merge these neighbor subtrees

» If k is in a subtree, find the correct subtree T

» If T has only d — 1 keys:
» Try to steal one key from a neighbor of T with at least d keys
» Otherwise merge T with one of its neighbors

» Call recursively on the correct subtree
Number of block transfers: O(h)

Usage of B-Trees

Widely used in large database and filesystems
(SQL, ext4, Apple File System, NTFS)

Variants:

> B+ Trees: store data only on leaves

increase degree — reduce height

add pointer from leaf to next one to speedup sequential access
» B* Trees: better balance of internal node

(max size: 2b — 3b/2, nodes at least 2/3 full)

» When 2 siblings full: split into 3 nodes
» Pospone splitting: shift keys to neighbors if possible

Searching Lower Bound

Theorem.
Searching for an element among N elements in external memory
requires ©(logg,; N) block transfers.
Proof:
» Adversary argument
» Total order of N elements known to the algorithm
» Let C; be the number of candidates after t reads (Co = N)

» When a block of size B is read, the C; — B remaining
elements are distributed into B + 1 parts, one of them has at
least (C: — B)/(B + 1) elements.

» By induction, ¢; > N/(B+ 1) —(B+1)/B

If memory initially full, Co = (N — M)/(M + 1), lower bound:
O(logp1 N/M)

Qutline

External Memory Algorithms and Data Structures

Matrix-Matrix Multiplication

Matrix-Matrix Multiplication

The 1/0O bound on matrix multiplication seen previously is
extended:

Theorem.

The number of block transfers for multiplying two N x N matrices
is O(N3/(BVM)) when M < N2

Blocked algorithms naturally reduces block transfers.

Summary: External Memory Bounds

Internal External
Scanning N N/B
Sorting Nlog, N N/Blogy g N/B
Permuting N min(N, N/Blogy,g N/B)
Searching log, N logg N
Matrix Mult. N3 N3 /(B M)

Notes:

» Linear I/O: O(N/B)

v

Permuting is not linear
B is an important factor: N/B < N/Blogy,g N/B < N

Search tree cannot lead to optimal sort

v

v

	Ideal Cache Model
	External Memory Algorithms and Data Structures
	External Memory Model
	Merge Sort
	Lower Bound on Sorting
	Permuting
	Searching and B-Trees
	Matrix-Matrix Multiplication

