Part 2: External Memory and Cache Oblivious Algorithms

CR10: Data Aware Algorithms

September 25, 2019

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model Merge Sort Lower Bound on Sorting Permuting Searching and B-Trees Matrix-Matrix Multiplication

Ideal Cache Model

Properties of real cache:

- ► Memory/cache divided into blocks (or lines) of size B
- Limited associativity:
 - each block of memory belongs to a cluster (usually computed as *address* % *M*)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
 - ► Trade-off between hit rate and time for searching the cache
- Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

Fully associative

 $c=\infty$, blocks can be store everywhere in the cache

Optimal replacement policy

Belady's rule: evict block whose next access is furthest

► Tall cache: $M/B \gg B$ $(M = \Theta(B^2))$

Ideal Cache Model

Properties of real cache:

- ► Memory/cache divided into blocks (or lines) of size B
- Limited associativity:
 - each block of memory belongs to a cluster (usually computed as *address* % *M*)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
 - Trade-off between hit rate and time for searching the cache
- Block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

Fully associative

 $c=\infty$, blocks can be store everywhere in the cache

 Optimal replacement policy Belady's rule: evict block whose next access is furthest

• Tall cache: $M/B \gg B$ $(M = \Theta(B^2))$

LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985). For any sequence *s*:

$$T_{\text{LRU}}(s) \leq rac{k_{\text{LRU}}}{k_{\text{LRU}} + 1 - k_{\text{OPT}}} T_{\text{OPT}}(s) + k_{\text{OPT}}$$

- ► T_A(s): nb of cache miss for the optimal replacement policy A with cache size k_A
- ► OPT: optimal (offline) replacement policy (Belady's rule)
- LRU, A: online algorithms (no knowledge on future requests)
- $k_A, k_{LRU} \ge k_{OPT}$

Theorem (Bound on competitive ratio).

Assume there exists a and b such that $T_A(s) \le aT_{OPT}(s) + b$ for all s, then $a \ge k_A/(k_A + 1 - k_{OPT})$.

LRU vs. Optimal Replacement Policy

Lemma (Sleator and Tarjan, 1985). For any sequence *s*:

$$T_{\mathsf{LRU}}(s) \leq rac{k_{\mathsf{LRU}}}{k_{\mathsf{LRU}} + 1 - k_{\mathsf{OPT}}} T_{\mathsf{OPT}}(s) + k_{\mathsf{OPT}}$$

- ► T_A(s): nb of cache miss for the optimal replacement policy A with cache size k_A
- ► OPT: optimal (offline) replacement policy (Belady's rule)
- LRU, A: online algorithms (no knowledge on future requests)
- $k_A, k_{LRU} \ge k_{OPT}$

Theorem (Bound on competitive ratio).

Assume there exists a and b such that $T_A(s) \le aT_{OPT}(s) + b$ for all s, then $a \ge k_A/(k_A + 1 - k_{OPT})$.

LRU competitive ratio – Proof

- ► Consider any subsequence t of s, such that C_{LRU}(t) ≤ k_{LRU} (t should not include first request)
- Let p be the block request right after t in s
- ► If LRU loads twice the same block in s, then C_{LRU}(t) ≥ k_{LRU} + 1 (contradiction)
- Same if LRU loads p during t
- ▶ Thus on t, LRU loads $C_{LRU}(t)$ different blocks, different from p
- When starting t, OPT has p in cache
- On t, OPT must load at least $C_{LRU}(t) k_{OPT} + 1$
- ▶ Partition s into $s_0, s_1, ..., s_n$ s.t. $C_{LRU}(s_0) \le k_{LRU}$ and $C_{LRU}(s_i) = k_{LRU}$ for i > 1
- ▶ On s_0 , $C_{\mathsf{OPT}}(s_0) \ge C_{\mathsf{LRU}}(s_0) k_{\mathsf{OPT}}$
- ▶ In total for LRU: $C_{LRU} = C_{LRU}(s_0) + nk_{LRU}$
- ▶ In total for OPT: $C_{OPT} \ge C_{LRU}(s_0) k_{OPT} + n(k_{LRU} k_{OPT} + 1)$

Bound on Competitive Ratio – Proof

- Let S^{init}_A (resp. S^{init}_{OPT}) the set of blocks initially in A'cache (resp. OPT's cache)
- Consider the block request sequence made of two steps:
 S₁: k_A − k_{OPT} + 1 (new) blocks not in S^{init}_A ∪ S^{init}_{OPT}
 S₂: k_{OPT} − 1 blocks s.t. then next block is always in (S^{init}_{OPT} ∪ S₁)\S_A

NB: step 2 is possible since $|S_{OPT}^{init} \cup S_1| = k_A + 1$

- A loads one block for each request of both steps: k_A loads
- OPT loads one block only in S_1 : $k_A k_{OPT} + 1$ loads

Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size M/2 with optimal replacement, then it makes at most 2T transfers with cache size M with LRU.

Definition (Regularity condition).

Let T(M) be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

T(M) = O(T(M/2))

Corollary

If an algorithm follows the regularity condition and makes T(M) transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with LRU.

Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size M/2 with optimal replacement, then it makes at most 2T transfers with cache size M with LRU.

Definition (Regularity condition).

Let T(M) be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

T(M) = O(T(M/2))

Corollary

If an algorithm follows the regularity condition and makes T(M) transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with LRU.

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model Merge Sort Lower Bound on Sorting Permuting Searching and B-Trees Matrix-Matrix Multiplication

Ideal Cache Model

External Memory Algorithms and Data Structures External Memory Model

Merge Sort Lower Bound on Sorting Permuting Searching and B-Trees Matrix-Matrix Multiplication

External Memory Model

Model:

- External Memory (or disk): storage
- ► Internal Memory (or cache): for computations, size M
- Ideal cache model for transfers: blocks of size B
- Input size: N
- Lower-case letters: in number of blocks n = N/B, m = M/B

Theorem.

Scanning N elements stored in a contiguous segment of memory costs at most $\lceil N/B \rceil + 1$ memory transfers.

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model

Merge Sort

Lower Bound on Sorting Permuting Searching and B-Trees Matrix-Matrix Multiplication

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

- 1. Recursively split the array (size N) in two, until reaching size 1
- Merge two sorted arrays of size L into one of size 2L requires 2L comparisons

In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N/M chunks of size M
- Sort each chunks independently (\rightarrow runs)
- ▶ Block transfers: 2M/B per chunk, 2N/B in total
- ▶ Number of comparisons: *M* log *M* per chunk, *N* log *M* in total

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

- 1. Recursively split the array (size N) in two, until reaching size 1
- Merge two sorted arrays of size L into one of size 2L requires 2L comparisons

In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N/M chunks of size M
- ► Sort each chunks independently (→ runs)
- Block transfers: 2M/B per chunk, 2N/B in total
- ▶ Number of comparisons: *M* log *M* per chunk, *N* log *M* in total

Two-Way Merge in External Memory

Phase 2:

Merge two runs R and S of size $L \rightarrow$ one run T of size 2L

- 1. Load first blocks \widehat{R} (and \widehat{S}) of R (and S)
- 2. Allocate first block \hat{T} of T
- 3. While R and S both not exhausted
 - (a) Merge as much \widehat{R} and \widehat{S} into \widehat{T} as possible
 - (b) If \widehat{R} (or \widehat{S}) gets empty, load new block of R (or S)
 - (c) If \widehat{T} gets full, flush it into T
- 4. Transfer remaining items of R (or S) in T
- Internal memory usage: 3 blocks
- Block transfers: 2L/B reads + 2L/B writes = 4L/B
- Number of comparisons: 2L

Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k: runs of size $2^k M$ (nb: $N/(2^k M)$)
- Merge to reach levels $k = 1 \dots \log_2 N/M$
- ► Block transfers at level k: $2^{k+1}M/B \times N/(2^kM) = 2N/B$
- Number of comparisons: N

Total complexity of phases 1+2:

- Block transfers: $2N/B(1 + \log_2 N/B) = O(N/B \log_2 N/B)$
- Number of comparisons: $N \log M + N \log_2 N/M = N \log N$

but we use only 3 blocks of internal memory 😕

Optimization: *K*-Way Merge Sort

- Consider K input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: O(log K)
- ► Complexity of merging K runs of length L: KL log K
- Block transfers: no change (2KL/B)

Total complexity of merging:

- ▶ Block transfers: $\log_K N/M$ steps $\rightarrow 2N/B \log_K N/M$
- Computations: $N \log K$ per step $\rightarrow N \log K \times \log_K N/M$ = $N \log_2 N/M$ (id.)

Maximize K to reduce transfers:

- (K+1)B = M (K input blocks + 1 output block)
- Block transfers: $O\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{M}\right)$
- $\blacktriangleright \text{ NB: } \log_{M/B} N/M = \log_{M/B} N/B 1$
- Block transfers: $O\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B}\right) = O(n\log_{m}n)$

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model Merge Sort

Lower Bound on Sorting

Permuting Searching and B-Trees Matrix-Matrix Multiplication

Lower Bound on Sorting

- Comparison based model: elements compared when in internal memory
- Inputs of new blocks give new information (but not outputs)
- S_t: number of permutations consistent with knowledge after reading t blocks of inputs
- At the beginning: $S_0 = N!$ possible orderings (no information)
- ► After reading one block: new information (answer) how the elements read are ordered among themselves and among the M elements in memory ?
- Assume X possible answers after one read, then

$$S_{t+1} \geq S_t/X$$

Proof:

- Partition of the S_t orderings into X parts
- ► There exists a part of size at least S_t/X, that is an answer with at least S_t/X compatible orderings

Lower Bound on Sorting

Bound the number of possible orderings:

(i) When reading a block already seen: $X = \begin{pmatrix} M \\ B \end{pmatrix}$

(ii) When reading a new block (never seen): $X = {\binom{M}{B}B!}$ NB: at most N/B new blocks (case (i))

From $S_0 = N!$ and $S_{t+1} \ge S_t/X$, we get:

$$S_t \geq rac{N!}{{\binom{M}{B}}^t (B!)^{N/B}}$$

 $S_t = 1$ for final step Stirling's formula gives: $\log x! \approx x \log x$ and $\log {\binom{x}{y}} \approx x \log x/y$

$$t = \Omega\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B}\right)$$

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model Merge Sort Lower Bound on Sorting

Permuting

Searching and B-Trees Matrix-Matrix Multiplication

Permuting

Inputs:

N elements together with their final position:
 (a,3) (b,2) (c,1) (d,4) → c,b,a,d

Two simple strategies:

- ► Place each element at its final position, one after the other $I/O \text{ cost: } \Theta(N)$ (cmp cost: O(N))
- ► Sort elements based on final position I/O cost: Θ(SORT(N)) = Θ(N/B log_{M/B} N/B) (cmp cost: O(N log N))

Lower-bound:

- ► Using similar argument, one may prove that the I/O complexity is bounded by Θ(min(SORT(N), N))
- NB: generally, $SORT(N) \ll N$

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model Merge Sort Lower Bound on Sorting Permuting

Searching and B-Trees

Matrix-Matrix Multiplication

B-Trees

- Problem: Search for a particular element in a huge dataset
- Solution: Search tree with large degree ($\approx B$)

Definition (B-tree with minimum degree d).

Search tree such that:

- ▶ Each node (except the root) has at least *d* children
- Each node has at most 2*d* children
- Node with k children has k 1 keys separating the children
- All leaves have the same depth

Proposed by Bayer and McCreigh (1972)

Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.

Searching in a B-Tree requires $O(\log_d N)$ I/Os.

Insertion algorithm:

- 1. If root node is full (2d children), split it:
 - (a) Find median key, send it to the father *f* (if any, otherwise it becomes the new root)
 - (b) Keys and subtrees < median key \rightarrow new left subtree of f
 - (c) Keys and subtrees > median key \rightarrow new right subtree f
- 2. If root node = leaf, insert new key
- 3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split \rightarrow balanced tree Number of transfers: O(h) Suppression algorithm of k from a tree with at least d keys:

- ► If tree=leaf, straightforward
- If k = key of root node:
 - If subtree s immediately left of k has d keys, remove maximum element k' of s, replace k by k'
 - Same on right subtree (with minimum element)
 - ► Otherwise (both neighbor subtrees have d 1 keys): remove k and merge these neighbor subtrees
- ▶ If k is in a subtree, find the correct subtree T
- If T has only d-1 keys:
 - Try to steal one key from a neighbor of T with at least d keys
 - Otherwise merge T with one of its neighbors
- Call recursively on the correct subtree

Number of block transfers: O(h)

Widely used in large database and filesystems (SQL, ext4, Apple File System, NTFS)

Variants:

 B+ Trees: store data only on leaves increase degree → reduce height add pointer from leaf to next one to speedup sequential access

B* Trees: better balance of internal node (max size: 2b → 3b/2, nodes at least 2/3 full)

- When 2 siblings full: split into 3 nodes
- Pospone splitting: shift keys to neighbors if possible

Searching Lower Bound

Theorem.

Searching for an element among N elements in external memory requires $\Theta(\log_{B+1} N)$ block transfers.

Proof:

- Adversary argument
- ► Total order of *N* elements known to the algorithm
- Let C_t be the number of candidates after t reads ($C_0 = N$)
- When a block of size B is read, the C_t − B remaining elements are distributed into B + 1 parts, one of them has at least (C_t − B)/(B + 1) elements.
- By induction, $C_t \ge N/(B+1)^t (B+1)/B$

If memory initially full, $C_0 = (N - M)/(M + 1)$, lower bound: $\Theta(\log_{B+1} N/M)$

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model Merge Sort Lower Bound on Sorting Permuting Searching and B-Trees Matrix-Matrix Multiplication The I/O bound on matrix multiplication seen previously is extended:

Theorem.

The number of block transfers for multiplying two $N \times N$ matrices is $\Theta(N^3/(B\sqrt{M}))$ when $M < N^2$.

Blocked algorithms naturally reduces block transfers.

Summary: External Memory Bounds

	Internal	External
Scanning	N	N/B
Sorting	$N \log_2 N$	$N/B \log_{M/B} N/B$
Permuting	N	$\min(N, N/B \log_{M/B} N/B)$
Searching	log ₂ N	log _B N
Matrix Mult.	N ³	$N^3/(B\sqrt{M})$

Notes:

- Linear I/O: O(N/B)
- Permuting is not linear
- ▶ B is an important factor: $N/B < N/B \log_{M/B} N/B \ll N$
- Search tree cannot lead to optimal sort