Homework and Schedule

Second homework (matrix product with asymptotic performance):

- Consider only the square case: A, B and C are of size $N \times N$
- You can assume that N is a multiple of $\sqrt{M} - 1$

NB: Homeworks will be graded (they replace exams) and have to be done by yourself. Similar works will get a 0.

Next week:

- Wednesday course moved to 10h15
Part 2: External Memory and Cache Oblivious Algorithms

CR05: Data Aware Algorithms

September 16, 2020
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
- External Memory Model
- Merge Sort
- Lower Bound on Sorting
- Permuting
- Searching and B-Trees
- Matrix-Matrix Multiplication
Ideal Cache Model

Properties of real cache:

- Memory/cache divided into **blocks** (or lines or pages) of size B
- When requested data not in cache (cache miss), corresponding block automatically loaded
- **Limited associativity:**
 - each block of memory belongs to a cluster (usually computed as $address \mod M$)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
- Trade-off between hit rate and time for searching the cache
- If cache full, blocks have to be evicted:
 - Standard block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:

- **Fully associative**
 - $c = \infty$, blocks can be stored everywhere in the cache
- **Optimal replacement policy**
- Belady's rule:
 - Tall cache: $M/B \gg B$ \quad (M = \Theta(B^2))
Ideal Cache Model

Properties of real cache:
- Memory/cache divided into blocks (or lines or pages) of size B
- When requested data not in cache (cache miss), corresponding block automatically loaded
- Limited associativity:
 - each block of memory belongs to a cluster (usually computed as $address \% M$)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
- Trade-off between hit rate and time for searching the cache
- If cache full, blocks have to be evicted:
 - Standard block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:
- Fully associative
 - $c = \infty$, blocks can be stored everywhere in the cache
- Optimal replacement policy

Belady’s rule:
- Tall cache: $M/B \gg B$ ($M = \Theta(B^2)$)
Ideal Cache Model

Properties of real cache:
- Memory/cache divided into blocks (or lines or pages) of size B
- When requested data not in cache (cache miss), corresponding block automatically loaded
- Limited associativity:
 - each block of memory belongs to a cluster (usually computed as $address \% M$)
 - at most c blocks of a cluster can be stored in cache at once (c-way associative)
- Trade-off between hit rate and time for searching the cache
- If cache full, blocks have to be evicted:
 Standard block replacement policy: LRU (also LFU or FIFO)

Ideal cache model:
- Fully associative
 $c = \infty$, blocks can be stored everywhere in the cache
- Optimal replacement policy
 Belady’s rule: evict block whose next access is furthest
- Tall cache: $M/B \gg B$ \hspace{1cm} ($M = \Theta(B^2)$)
LRU vs. Optimal Replacement Policy

<table>
<thead>
<tr>
<th>replacement policy</th>
<th>cache size</th>
<th>nb of cache misses</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU</td>
<td>k_{LRU}</td>
<td>$T_{LRU}(s)$</td>
</tr>
<tr>
<td>OPT</td>
<td>$k_{OPT} \leq k_{LRU}$</td>
<td>$T_{OPT}(s)$</td>
</tr>
</tbody>
</table>

optimal (offline) replacement policy (Belady’s rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

$$T_{LRU}(s) \leq \frac{k_{LRU}}{k_{LRU} - k_{OPT} + 1} T_{OPT}(s) + k_{OPT}$$

- Also true for FIFO or LFU (minor adaptation in the proof)
- If LRU cache initially contains all pages in OPT cache: remove the additive term

Theorem (Bound on competitive ratio).

Assume there exists a and b such that $T_A(s) \leq a T_{OPT}(s) + b$ for all s, then $a \geq k_A/(k_A - k_{OPT} + 1)$.
LRU vs. Optimal Replacement Policy

<table>
<thead>
<tr>
<th>replacement policy</th>
<th>cache size</th>
<th>nb of cache misses</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU</td>
<td>k_{LRU}</td>
<td>$T_{LRU}(s)$</td>
</tr>
<tr>
<td>OPT</td>
<td>$k_{OPT} \leq k_{LRU}$</td>
<td>$T_{OPT}(s)$</td>
</tr>
</tbody>
</table>

optimal (offline) replacement policy (Belady’s rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

$$T_{LRU}(s) \leq \frac{k_{LRU}}{k_{LRU} - k_{OPT} + 1} T_{OPT}(s) + k_{OPT}$$

- Also true for FIFO or LFU (minor adaptation in the proof)
- If LRU cache initially contains all pages in OPT cache:
 remove the additive term

Theorem (Bound on competitive ratio).
Assume there exists a and b such that $T_A(s) \leq aT_{OPT}(s) + b$ for all s, then $a \geq k_A/(k_A - k_{OPT} + 1)$.
LRU vs. Optimal Replacement Policy

<table>
<thead>
<tr>
<th>replacement policy</th>
<th>cache size</th>
<th>nb of cache misses</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU</td>
<td>k_{LRU}</td>
<td>$T_{LRU}(s)$</td>
</tr>
<tr>
<td>OPT</td>
<td>$k_{OPT} \leq k_{LRU}$</td>
<td>$T_{OPT}(s)$</td>
</tr>
</tbody>
</table>

OPT:
- optimal (offline) replacement policy (Belady’s rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

$$T_{LRU}(s) \leq \frac{k_{LRU}}{k_{LRU} - k_{OPT} + 1} T_{OPT}(s) + k_{OPT}$$

- Also true for FIFO or LFU (minor adaptation in the proof)
- If LRU cache initially contains all pages in OPT cache: remove the additive term

Theorem (Bound on competitive ratio).

Assume there exists a and b such that $T_A(s) \leq a T_{OPT}(s) + b$ for all s, then $a \geq k_A/(k_A - k_{OPT} + 1)$.
LRU competitive ratio – Proof

- Consider any subsequence t of s, such that $C_{LRU}(t) \leq k_{LRU}$ (t should not include first request)
- Let p_i be the block request right before t in s
- If LRU loads twice the same block in s, then $C_{LRU}(t) \geq k_{LRU} + 1$ (contradiction)
- Same if LRU loads p_i during t
- Thus on t, LRU loads $C_{LRU}(t)$ different blocks, different from p_i
- When starting t, OPT has p_i in cache
- On t, OPT must load at least $C_{LRU}(t) - k_{OPT} + 1$
- Partition s into s_0, s_1, \ldots, s_n such that $C_{LRU}(s_0) \leq k_{LRU}$ and $C_{LRU}(s_i) = k_{LRU}$ for $i > 1$
- On s_0, $C_{OPT}(s_0) \geq C_{LRU}(s_0) - k_{OPT}$
- In total for LRU: $C_{LRU} = C_{LRU}(s_0) + nk_{LRU}$
- In total for OPT: $C_{OPT} \geq C_{LRU}(s_0) - k_{OPT} + n(k_{LRU} - k_{OPT} + 1)$
Bound on Competitive Ratio – Proof

- Let S_A^{init} (resp. S_{OPT}^{init}) the set of blocks initially in A’s cache (resp. OPT’s cache)

- Consider the block request sequence made of two steps:

 S_1: $k_A - k_{OPT} + 1$ (new) blocks not in $S_A^{\text{init}} \cup S_{OPT}^{\text{init}}$

 S_2: $k_{OPT} - 1$ blocks s.t. then next block is always in $(S_{OPT}^{\text{init}} \cup S_1) \setminus S_A$

 NB: step 2 is possible since $|S_{OPT}^{\text{init}} \cup S_1| = k_A + 1$

- A loads one block for each request of both steps: k_A loads
- OPT loads one block only in S_1: $k_A - k_{OPT} + 1$ loads

NB: Repeat this process to create arbitrarily long sequences.
Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size $M/2$ with optimal replacement, then it makes at most $2T$ transfers with cache size M with LRU.

Definition (Regularity condition).

Let $T(M)$ be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

$$T(M) = O(T(M/2))$$

Corollary

If an algorithm follows the regularity condition and makes $T(M)$ transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with LRU.
Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).
If an algorithm makes T memory transfers with a cache of size $M/2$ with optimal replacement, then it makes at most $2T$ transfers with cache size M with LRU.

Definition (Regularity condition).
Let $T(M)$ be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

$$T(M) = O(T(M/2))$$

Corollary
If an algorithm follows the regularity condition and makes $T(M)$ transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with LRU.
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
External Memory Model

Model:

- **External Memory (or disk):** storage
- **Internal Memory (or cache):** for computations, size M
- Ideal cache model for transfers: blocks of size B
- Input size: N
- Lower-case letters: in number of blocks $n = N/B$, $m = M/B$

Theorem.

Scanning N elements stored in a contiguous segment of memory costs at most $\lceil N/B \rceil + 1$ memory transfers.
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

- External Memory Model
- Merge Sort
- Lower Bound on Sorting
- Permuting
- Searching and B-Trees
- Matrix-Matrix Multiplication
Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1
2. Merge two sorted arrays of size L into one of size $2L$ requires $2L$ comparisons

In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N/M chunks of size M
- Sort each chunks independently (\rightarrow runs)
- Block transfers: $2M/B$ per chunk, $2N/B$ in total
- Number of comparisons: $M \log M$ per chunk, $N \log M$ in total
Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1
2. Merge two sorted arrays of size L into one of size $2L$ requires $2L$ comparisons

In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N/M chunks of size M
- Sort each chunks independently (→ runs)
- Block transfers: $2M/B$ per chunk, $2N/B$ in total
- Number of comparisons: $M \log M$ per chunk, $N \log M$ in total
Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size $L \rightarrow$ one run T of size $2L$

1. Load first blocks \hat{R} (and \hat{S}) of R (and S)
2. Allocate first block \hat{T} of T
3. While R and S both not exhausted
 (a) Merge as much \hat{R} and \hat{S} into \hat{T} as possible
 (b) If \hat{R} (or \hat{S}) gets empty, load new block of R (or S)
 (c) If \hat{T} gets full, flush it into T
4. Transfer remaining items of R (or S) in T

- Internal memory usage: 3 blocks
- Block transfers: $2L/B$ reads + $2L/B$ writes = $4L/B$
- Number of comparisons: $2L$
Two-Way Merge in External Memory

Phase 2:
Merge two runs \(R \) and \(S \) of size \(L \) → one run \(T \) of size \(2L \)

1. Load first blocks \(\hat{R} \) (and \(\hat{S} \)) of \(R \) (and \(S \))
2. Allocate first block \(\hat{T} \) of \(T \)
3. While \(R \) and \(S \) both not exhausted
 (a) Merge as much \(\hat{R} \) and \(\hat{S} \) into \(\hat{T} \) as possible
 (b) If \(\hat{R} \) (or \(\hat{S} \)) gets empty, load new block of \(R \) (or \(S \))
 (c) If \(\hat{T} \) gets full, flush it into \(T \)
4. Transfer remaining items of \(R \) (or \(S \)) in \(T \)

- Internal memory usage: 3 blocks
- Block transfers: \(2L/B \) reads + \(2L/B \) writes = \(4L/B \)
- Number of comparisons: \(2L \)
Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k: runs of size $2^k M$ (nb: $N/(2^k M)$)
- Merge to reach levels $k = 1 \ldots \log_2 N/M$
- Block transfers at level k: $2^{k+1} M/B \times N/(2^k M) = 2N/B$
- Number of comparisons: N

Total complexity of phases 1+2:

- Block transfers: $2N/B(1 + \log_2 N/B) = O(N/B \log_2 N/B)$
- Number of comparisons: $N \log M + N \log_2 N/M = N \log N$

- Internal memory used?
Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k: runs of size $2^k M$ (nb: $N/(2^k M)$)
- Merge to reach levels $k = 1 \ldots \log_2 N/M$
- Block transfers at level k: $2^{k+1} M/B \times N/(2^k M) = 2N/B$
- Number of comparisons: N

Total complexity of phases 1+2:

- Block transfers: $2N/B(1 + \log_2 N/B) = O(N/B \log_2 N/B)$
- Number of comparisons: $N \log M + N \log_2 N/M = N \log N$

- Internal memory used ?
Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k: runs of size $2^k M$ (nb: $N/(2^k M)$)
- Merge to reach levels $k = 1 \ldots \log_2 N/M$
- Block transfers at level k: $2^{k+1} M/B \times N/(2^k M) = 2N/B$
- Number of comparisons: N

Total complexity of phases 1+2:

- Block transfers: $2N/B(1 + \log_2 N/B) = O(N/B \log_2 N/B)$
- Number of comparisons: $N \log M + N \log_2 N/M = N \log N$

- Internal memory used?
Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k: runs of size $2^k M$ (nb: $N/(2^k M)$)
- Merge to reach levels $k = 1 \ldots \log_2 N/M$
- Block transfers at level k: $2^{k+1} M/B \times N/(2^k M) = 2N/B$
- Number of comparisons: N

Total complexity of phases 1+2:

- Block transfers: $2N/B(1 + \log_2 N/B) = O(N/B \log_2 N/B)$
- Number of comparisons: $N \log M + N \log_2 N/M = N \log N$

- Internal memory used? only 3 blocks 😊
Optimization: \(K\)-Way Merge Sort

- Consider \(K\) \textbf{input runs} at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: \(O(\log K)\)
- Complexity of merging \(K\) runs of length \(L\): \(KL \log K\)
- Block transfers: no change \((2KL/B)\)

Total complexity of merging:

- Block transfers: \(\log_K N/M\) steps \(\rightarrow 2N/B \log_K N/M\)
- Computations: \(N \log K\) per step \(\rightarrow N \log K \times \log_K N/M\)
 \(= N \log_2 N/M\) (id.)

\textbf{Maximize} \(K\) \textbf{to reduce transfers:}

- \((K + 1)B = M\) (\(K\) \textit{input blocks} + 1 \textit{output block})
- Block transfers: \(O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{M}\right)\)
- \(\text{NB: } \log_{M/B} N/M = \log_{M/B} N/B - 1\)
- Block transfers: \(O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right) = O(n \log_m n)\)
Optimization: \(K\)-Way Merge Sort

- Consider \(K\) input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: \(O(\log K)\)
- Complexity of merging \(K\) runs of length \(L\): \(KL \log K\)
- Block transfers: no change \((2KL/B)\)

Total complexity of merging:

- Block transfers: \(\log_K N/M\) steps \(\rightarrow 2N/B \log_K N/M\)
- Computations: \(N \log K\) per step \(\rightarrow N \log K \times \log_K N/M\)
 \[= N \log_2 N/M\] (id.)

Maximize \(K\) to reduce transfers:

- \((K + 1)B = M\) (\(K\) input blocks + 1 output block)
- Block transfers: \(O\left(\frac{N}{B} \log_{M/B} \frac{N}{M}\right)\)
- NB: \(\log_{M/B} N/M = \log_{M/B} N/B - 1\)
- Block transfers: \(O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right) = O(n \log_m n)\)
Optimization: K-Way Merge Sort

- Consider K input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: $O(\log K)$
- Complexity of merging K runs of length L: $KL \log K$
- Block transfers: no change ($2KL/B$)

Total complexity of merging:
- Block transfers: $\log_K N/M$ steps $\rightarrow 2N/B \log_K N/M$
- Computations: $N \log K$ per step $\rightarrow N \log K \times \log_K N/M$
 $= N \log_2 N/M$ (id.)

Maximize K to reduce transfers:
- $(K + 1)B = M$ (K input blocks + 1 output block)
- Block transfers: $O \left(\frac{N}{B} \log_{M/B} \frac{N}{M} \right)$
- NB: $\log_{M/B} N/M = \log_{M/B} N/B - 1$
- Block transfers: $O \left(\frac{N}{B} \log_{M/B} \frac{N}{B} \right) = O(n \log_m n)$
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
Lower Bound on Sorting

Theorem.

Sorting N elements in external memory requires $\Theta \left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B} \right)$ block transfers.

Corollary: K-Way Merge Sort is asymptotically optimal
Comparison based model:
- elements compared when in internal memory
- Inputs of new blocks give new information (but not outputs)
- S_t: number of permutations consistent with knowledge after reading t blocks of inputs
- At the beginning: $S_0 = N!$ possible orderings (no information)
- After reading one block: new information (answer)
 how the elements read are ordered among themselves and among the M elements in memory?
- Assume X possible answers after one read, then

$$S_{t+1} \geq S_t / X$$

- Partition of the S_t orderings into X parts
- There exists a part of size at least S_t / X, that is an answer with at least S_t / X compatible orderings
Bound the number of possible orderings:

(i) When reading a block already seen: \(X = \binom{M}{B} \)

(ii) When reading a new block (never seen): \(X = \binom{M}{B} B! \)

NB: at most \(N/B \) new blocks (case (i))

From \(S_0 = N! \) and \(S_{t+1} \geq S_t/X \), we get:

\[
S_t \geq \frac{N!}{\binom{M}{B}^t (B!)^{N/B}}
\]

\(S_t = 1 \) for final step

Stirling’s formula gives: \(\log x! \approx x \log x \) and \(\log \binom{x}{y} \approx y \log x/y \) (when \(y \ll x \))

\[
t = \Omega \left(\frac{N}{B} \log \frac{M}{B} \frac{N}{B} \right)
\]
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 External Memory Model
 Merge Sort
 Lower Bound on Sorting
 Permuting
 Searching and B-Trees
 Matrix-Matrix Multiplication
Permuting

Inputs:

- N elements together with their final position:

 $(a,3) (b,2) (c,1) (d,4) \rightarrow c,b,a,d$
Permuting

Inputs:
- N elements together with their final position:
 $(a,3) (b,2) (c,1) (d,4) \rightarrow c,b,a,d$

Two simple strategies:
- Place each element at its final position, one after the other
 I/O cost: $\Theta(N)$ (cmp cost: $O(N)$)
- Sort elements based on final position
 I/O cost: $\Theta(SORT(N)) = \Theta(N/B \log_{M/B} N/B)$
 (cmp cost: $O(N \log N)$)

Lower-bound:
- Using similar argument, one may prove that the I/O complexity is bounded by $\Theta(\min(SORT(N), N))$
- NB: generally, $SORT(N) \ll N$
Permuting

Inputs:
- \(N \) elements together with their final position:
 \((a,3)\) \((b,2)\) \((c,1)\) \((d,4)\) \(\rightarrow c,b,a,d\)

Two simple strategies:
- Place each element at its final position, one after the other

 I/O cost: \(\Theta(N) \) (cmp cost: \(O(N) \))
- Sort elements based on final position

 I/O cost: \(\Theta(SORT(N)) = \Theta(N/B \log_{M/B} N/B) \)
 (cmp cost: \(O(N \log N) \))

Lower-bound:
- Using similar argument, one may prove that the
 I/O complexity is bounded by \(\Theta(\min(SORT(N), N)) \)
- NB: generally, \(SORT(N) \ll N \)
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures

External Memory Model
Merge Sort
Lower Bound on Sorting
Permuting
Searching and B-Trees
Matrix-Matrix Multiplication
Problem: Search for a particular element in a huge dataset
Solution: Search tree with large degree ($\approx B$)

Definition (B-tree with minimum degree d).
Search tree such that:
- Each node (except the root) has at least d children
- Each node has at most $2d - 1$ children
- Node with k children has $k - 1$ keys separating the children
- All leaves have the same depth

Proposed by Bayer and McCreigh (1972)
Search and Insertion in B-Trees

Usually, we require that $d = O(B)$

Lemma.

Searching in a B-Tree requires $O(\log_d N)$ I/Os.

Recursive algorithm for insertion of new key:
1. If root node of current subtree is full ($2d$ children), split it:
 (a) Find median key, send it to the father f
 (if any, otherwise it becomes the new root)
 (b) Keys and subtrees $< \text{median key}$ → new left subtree of f
 (c) Keys and subtrees $> \text{median key}$ → new right subtree f
2. If root node of current subtree = leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split \rightarrow balanced tree
Number of transfers: $O(h)$
Search and Insertion in B-Trees

Usually, we require that \(d = O(B) \)

Lemma.

Searching in a B-Tree requires \(O(\log_d N) \) I/Os.

Recursive algorithm for insertion of new key:

1. If root node of current subtree is full (\(2d \) children), split it:
 (a) Find median key, send it to the father \(f \)
 (if any, otherwise it becomes the new root)
 (b) Keys and subtrees \(<\) median key \(\rightarrow\) new left subtree of \(f\)
 (c) Keys and subtrees \(>\) median key \(\rightarrow\) new right subtree \(f\)
2. If root node of current subtree = leaf, insert new key
3. Otherwise, find correct subtree \(s\), insert recursively in \(s\)

NB: height changes only when root is split \(\rightarrow\) balanced tree

Number of transfers: \(O(h) \)
Search and Insertion in B-Trees

Usually, we require that \(d = O(B) \)

Lemma.

Searching in a B-Tree requires \(O(\log_d N) \) I/Os.

Recursive algorithm for insertion of new key:

1. If root node of current subtree is full (2d children), split it:
 (a) Find median key, send it to the father \(f \) (if any, otherwise it becomes the new root)
 (b) Keys and subtrees \(<\) median key → new left subtree of \(f \)
 (c) Keys and subtrees \(>\) median key → new right subtree \(f \)
2. If root node of current subtree = leaf, insert new key
3. Otherwise, find correct subtree \(s \), insert recursively in \(s \)

NB: height changes only when root is split → balanced tree
Number of transfers: \(O(h) \)
Suppression in B-Trees

Suppression algorithm of \(k \) from a tree with at least \(d \) keys:

- If tree=leaf, straightforward
- If \(k = \) key of root node:
 - If subtree \(s \) immediately left of \(k \) has \(\geq d \) keys, remove maximum element \(k' \) of \(s \), replace \(k \) by \(k' \)
 - Same on right subtree (with minimum element)
 - Otherwise (both neighbor subtrees have \(d - 1 \) keys): remove \(k \) and merge these neighbor subtrees
- If \(k \) is in a subtree \(s \), suppress recursively in \(s \)
- If \(T \) has only \(d - 1 \) keys:
 - Try to steal one key from a neighbor of \(T \) with at least \(d \) keys
 - Otherwise merge \(T \) with one of its neighbors

Number of block transfers: \(O(h) \)
Usage of B-Trees

Widely used in large database and filesystems (SQL, ext4, Apple File System, NTFS)

Variants:

- **B+ Trees**: store data only on leaves
 increase degree \rightarrow reduce height
 add pointer from leaf to next one to speedup sequential access

- **B* Trees**: better balance of internal node
 (max size: $2b \rightarrow 3b/2$, nodes at least $2/3$ full)
 - When 2 siblings full: split into 3 nodes
 - Postpone splitting: shift keys to neighbors if possible
Searching Lower Bound

Theorem.
Searching for an element among \(N \) elements in external memory requires \(\Theta(\log_{B+1} N) \) block transfers.

Proof:

- Adversary argument
- Total order of \(N \) elements known to the algorithm
- Let \(C_t \) be the number of candidates after \(t \) reads (\(C_0 = N \))
- When a block of size \(B \) is read, the \(C_t - B \) remaining elements are distributed into \(B + 1 \) parts, one of them has at least \((C_t - B)/(B + 1) \) elements.
- By induction, \(C_t \geq N/(B + 1)^t - (B + 1)/B \)

If memory initially full, \(C_0 = (N - M)/(M + 1) \), lower bound: \(\Theta(\log_{B+1} N/M) \)
Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
 - External Memory Model
 - Merge Sort
 - Lower Bound on Sorting
 - Permuting
 - Searching and B-Trees
 - Matrix-Matrix Multiplication
The I/O bound on matrix multiplication seen previously is extended:

Theorem.

The number of block transfers for multiplying two $N \times N$ matrices is $\Theta(N^3/(B\sqrt{M}))$ when $M < N^2$.

Blocked algorithms naturally reduces block transfers.
Summary: External Memory Bounds

<table>
<thead>
<tr>
<th></th>
<th>Internal Memory (computational complexity)</th>
<th>External Memory (I/O complexity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning</td>
<td>N</td>
<td>N/B</td>
</tr>
<tr>
<td>Sorting</td>
<td>$N \log_2 N$</td>
<td>$N/B \log_{M/B} N/B$</td>
</tr>
<tr>
<td>Permuting</td>
<td>N</td>
<td>$\min(N, N/B \log_{M/B} N/B)$</td>
</tr>
<tr>
<td>Searching</td>
<td>$\log_2 N$</td>
<td>$\log_B N$</td>
</tr>
<tr>
<td>Matrix Mult.</td>
<td>N^3</td>
<td>$N^3/(B\sqrt{M})$</td>
</tr>
</tbody>
</table>

Notes:
- Linear I/O: $O(N/B)$
- Permuting is not linear
- B is an important factor: $\frac{N}{B} < \frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B} \ll N$
- Search tree cannot lead to optimal sort