
CR10, course 2: Pebble Games 2/2

Summary on the (black) pebble game

Red-Blue Pebble Game for I/Os

Hong-Kung Lower Bound Method

Tight Lower Bound for Matrix Product

Extensions and Performance Bounds

Outline

Summary on the (black) pebble game

Red-Blue Pebble Game for I/Os

Hong-Kung Lower Bound Method

Tight Lower Bound for Matrix Product

Extensions and Performance Bounds

Pebble game – summary 1/2

Input: Directed Acyclic Graph (=computation)

Rules:

I A pebble may be removed from a vertex at any time.

I A pebble may be placed on a source node at any time.

I If all predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v .

Objective: put a pebble on each target (not necessary
simultaneously) using a minimum number of pebbles

Number of pebbles:

I Number of registers in a processor

I Size of the (fast) memory (together with a large/slow disk)

Pebble game – summary 2/2

Results:

I Hard to find optimal pebbling scheme for general DAGs
(NP-hard without recomputation, PSPACE-hard otherwise)

I Recursive formula for trees

Space-Time Tradeoffs:

I Definition of flow and independent function

I (α, n,m, p)-independent function: dα(S + 1)eT ≥ mp/4

I Product of two N × N matrices:

(S + 1)T ≥ N3/4

(bound reached by the standard algorithm)

Outline

Summary on the (black) pebble game

Red-Blue Pebble Game for I/Os

Hong-Kung Lower Bound Method

Tight Lower Bound for Matrix Product

Extensions and Performance Bounds

What about I/Os

(Black) Pebble game: limit the memory footprint

But usually:

I Memory size fixed

I Possible to write temporary data to the slower storage (disk)

I Data movements take time (Input/Output, or I/O)

NB: same study for any two-memory system:

I (fast, bounded) memory and (slow, large) disk

I (fast, bounded) cache and (slow, large) memory

I (fast, bounded) L1 cache and (slow, large) L2 cache

Red-Blue pebble game (Hong and Kung, 1981)

Two types of pebbles:

I Red pebbles: limited number S (slots in fast memory)

I Blue pebbles: unlimited number, only for storage (disk)

Rules:

(1) A red pebble may be placed on a vertex that has a blue
pebble.

(2) A blue pebble may be placed on a vertex that has a red
pebble.

(3) If all predecessors of a vertex v have a red pebble, a red
pebble may be placed on v .

(4) A pebble (red or blue) may be removed at any time.

(5) No more than S red pebbles may be used at any time.

(6) A blue pebble can be placed on an input vertex at any time

Objective: put a red pebble on each target (not necessary
simultaneously) using a minimum rules 1 and 2 (I/O operations)

Example: FFT graphc⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

k levels,n = 2k vertices at each level

Minimum number S of red pebbles ?
How many I/Os for this minimum number S ?

Outline

Summary on the (black) pebble game

Red-Blue Pebble Game for I/Os

Hong-Kung Lower Bound Method

Tight Lower Bound for Matrix Product

Extensions and Performance Bounds

Hong-Kung Lower Bound Method

Objective: Given a number of red pebbles, give a lower bound on
the number of I/Os for any pebbling scheme of a graph.

Definition (span).

Given a DAG G , its S-span ρ(S ,G), is the maximum number of
vertices of G that can be pebbled with S pebbles in the black
pebble game without the initialization rule, maximized over all
initial placements of the S pebbles on G .

Rationale: with large ρ(S ,G), you can compute a lot of G with S
pebbles (for a given starting point)

A

B

C D

E

F

G

Find ρ(2,G)

Span of the matrix product

Definition (span).

Given a DAG G , its S-span ρ(S ,G), is the maximum number of
vertices of G that can be pebbled with S pebbles in the black
pebble game without the initialization rule, maximized over all
initial placements of the S pebbles on G .

Theorem.

For every DAG G to compute the product of two N × N matrices
in a regular manner (performing the N3 products), the span is
bounded by ρ(S ,G) ≤ 2S

√
S for S ≤ N2.

Lemma.

Let T be a binary (in-)tree representing a computation, with p
black pebbles on some vertices and an unlimited number of
available pebbles. At most p − 1 vertices can be pebbled in the
tree without pebbling new inputs.

(proofs on the board, available in the notes)

From Span to I/O Lower Bound

TI/O(S ,G): number of I/O steps (red ↔ blue)

Theorem (Hong & Kung, 1981).

For every pebbling scheme S of a DAG G = (V ,E) in the red-blue
pebble-game using at most S red pebbles, the number of I/O steps
satisfies the following lower bound:

dTI/O(S ,G)/Seρ(2S ,G) ≥ |V | − |Inputs(G)|

Recall that for matrix product ρ(S ,G) ≤ 2S
√
S , hence:

TI/O ≥
N3 − N2

4
√

2S
= Θ

(
N3

√
S

)

Outline

Summary on the (black) pebble game

Red-Blue Pebble Game for I/Os

Hong-Kung Lower Bound Method

Tight Lower Bound for Matrix Product

Extensions and Performance Bounds

Tight Lower Bound for Matrix Product

b ←
√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

I Blocked algorithm: 3
√

3N3/
√
M

I Previous bound on I/Os ∼ N3/4
√

2M

I Many improvements needed to close the gap

I Presented here for C ← C + AB, square matrices

New operation: Fused Multiply Add

I Perform c ← c + a× b in a single step

I No temporary storage needed (3 inputs, 1 output)

Step 1: Use Only FMAs (Fused Multiply Add)

Theorem.

Any algorithm for the matrix product can be transformed into
using only FMA without increasing the required memory or the
number of I/Os.

Transformation:

I If some ci ,j ,k is computed while ci ,j is not in memory, insert a
read before the multiplication

I Replace the multiplication by a FMA

I Remove the read that must occur before the addition
ci ,j ← ci ,j + ci ,j ,k , remove the addition

I Transform occurrences of ci ,j ,k into ci ,j
I If ci ,j ,k and ci ,j were both in memory in some time-interval,

remove operations with ci ,j ,k in this interval

Step 2: Concentrate on Read Operations

Theorem (Irony, Toledo, Tiskin, 2008).

Using NA elements of A, NB elements of B and NC elements of C ,
we can perform at most

√
NANBNC distinct FMAs.

V2
V

V3

k

i

j

V1

V1

V2

V

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of ZD and V1,V2,V3 denotes the
orthogonal projections of V on each coordinate planes, we have

|V |2 ≤ |V1| · |V2| · |V3|,

Step 3: Use Phases of R Reads (6= M)

Theorem.

During a phase with R reads with memory M, the number of
FMAs is bounded by

FM+R ≤
(

1

3
(M + R)

)3/2

Number FM+R of FMAs constrained by:
FM+R ≤

√
NANBNC

0 ≤ NA,NB ,NC

NA + NB + NC ≤ M + R

Using Lagrange multipliers, maximal value obtained when
NA = NB = NC

Step 4: Choose R and add write operations

in one phase, nb of computations: FM+R ≤
(

1

3
(M + R)

)3/2

Total volume of reads:

Vread ≥
⌊

N3

FM+R

⌋
× R ≥

(
N3

FM+R
− 1

)
× R

Valid for all values of R, maximized when R = 2M:

Vread ≥ 2N3/
√
M − 2M

Each element of C written at least once: Vwrite ≥ N2

Theorem.

The total volume of I/Os is bounded by:

VI/O ≥
2N3

√
M

+ N2 − 2M

Outline

Summary on the (black) pebble game

Red-Blue Pebble Game for I/Os

Hong-Kung Lower Bound Method

Tight Lower Bound for Matrix Product

Extensions and Performance Bounds

Extension to the Memory Hierarchy Pebble Game

Generalization for a memory/cache hierarchy of L levels:

I Level 1: fastest/most limited memory

I Level L: slow/unlimited memory

I pl available pebbles at level l < L:

I Computation steps only with level-1 pebbles

I Initialization only with level-L pebbles

I Input from level l : if level-l pebble, put level-(l − 1) pebble

I Output to level l : if level-(l − 1) pebble, put level-l pebble

Cumulated number of pebbles up to level l : sl =
∑l

i=1 pi .
Number of inputs from/outputs to level l :

Tl =

{
Θ(N3/

√
sl−1) if sl−1 < 3N2

Θ(N2) otherwise

Recent Developments of Pebble Games

Restrict to pebbling without recomputation:

I Add white pebbles with red pebbles when computing

I White pebbles stay on vertices

I No computation possible if white pebble already present

I All nodes must be white-pebbled at the end

This restriction increases the number of red pebbles and I/Os by at
most a log3/2n factor

Towards automatic derivation of lower bounds:

I Extend bounds for composite graphs

I Use special min-cuts instead of span

Parallel Red-Blue-White Pebble Game (cf. memory hierarchies)

Still an inspiring model!

Why so much fuss about matrix product?

BLAS: Basic Linear Algebra Subprograms

I Introduced in the 80s as a standard for LA computations

I Written first in FORTRAN

I Library provided by the vendor to ease use of new machines
I Organized by levels:

I Level 1: vector/vector operations (x · y)
I Level 2: vector/matrix (Ax)
I Level 3: matrix/matrix (ABT , blocked algorithms)

I Implementations:
I Vendors (MKL from Intel, CuBLAS from NVidia, etc.)
I Automatic Tuning: ATLAS
I GotoBLAS

I Matrix product: still a large share of LA computations

1:10 • Tyler Michael Smith, Bradley Lowery, Julien Langou, and Robert A. van de Geijn

+=

+=

+=

+=

+=

+=

Partition n with blocksize nc

Partition k with blocksize kc

Partition m with blocksize mc

Partition n with blocksize nr

Partition m with blocksize mr

Micro-kernel

Pack
B̃

Pack
Ã

Matrix partition is reused in L3 cache.

Matrix partition is reused in L2 cache.

Matrix partition is reused in L1 cache.

Matrix partition is reused in registers.

Fig. 2. Diagram of Goto’s Algorithm implemented in BLIS.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Summary: Performance Bounds & Rooftop Model

Source: wikipedia, CC-BY-SA-4.0Computation ceilings:
I Theoretical peak,
I Matrix-Matrix product (DGEMM)
I LINPACK (Top 500 ranking)

Bandwidth ceilings:
I Cache bandwidth
I Memory bandwidth
I NUMA (Non Uniform Memory Access)

	Summary on the (black) pebble game
	Red-Blue Pebble Game for I/Os
	Hong-Kung Lower Bound Method
	Tight Lower Bound for Matrix Product
	Extensions and Performance Bounds

