
Cours ENSL:

Big Data – Streaming, Sketching, Compression

Olivier Beaumont, Inria Bordeaux Sud-Ouest

Olivier.Beaumont@inria.fr

1

Introduction

Positionning

• w.r.t. traditional courses on algorithms

• Exact algorithms for polynomial problems

• Approximation algorithms for NP-Complete problems

• Potentially exponential algorithms for difficult problems (going through an

ILP for example)

• Here, we will consider extreme contexts

• not enough space to transmit input data (sketching) or

• not enough space to store the data stream (streaming)

• not enough time to use an algorithm other than a linear complexity one

• Compared to the more ”classical” context of algorithms:

• we aim at solving simple problems and

• we are looking for approximate solutions only because we have very strong

time or space constraints.

• Disclaimer: it is not my research topic, but I like to look at the

sketching/streaming papers and I am happy to teach it to you!

2

Application Context 1: Internet of Things (IoT)

• Connected objects, which take measurements

• The goal is to aggregate data.

• Processing can be done either locally, or on their way (fog computing), or

in a data center (cloud computing).

• We must be very energy efficient

• because objects are often embedded without power supply.

• E3nergy cost: Communication is the main source of energy consumption,

followed by memory movements (from storage), followed by computations

(which are inexpensive)

• A good solution is to do as many local computations as possible!

• but it is known to be difficult (distributed algorithms)

• especially when the complexity is not linear (e.g. think about quadratic

complexity)

• Solution:

• compress information locally (and on the fly)

• only send the summaries; summaries must contain enough information!

3

Application Context 2: Datacenters

• Aggregate construction

• except the network (we can have several levels + infiniband), everything is

”linear”

• the distance between certain nodes/data is very large but a strong

proximity with certain data stored on disk

• with 1,000 nodes with 1TB of disk and a link at 400 MB/s, we have 1 PB

and 400 GB/s (higher than with a HPC system)

• provided the data is loaded locally !

• for 25 TF/s (10325GFs seti@home) in total, ratio 60 (HPC system 40 000)

• in practice, dedicated to linear algorithms and very inefficient for other

classes.

• In both contexts, there is a strong need to have data driven algorithms

(where placement is imposed by data) whose complexity is linear

4

Sketching – Streaming

Sketching - Streaming – Context

• large volume of data generated in a distributed way

• to be processed locally and compressed before transmission.

• Types of compression?

• lossless compression

• compression with losses

• compression with losses, but controlled tightly controlled loss for a specific

function (sketching)

• + we are going to do compression on the fly (streaming)

6

On-the-fly compression dedicated to a function f

• Easy problems?

• examples: min,max,
∑
, mean value median?

• Constraint: linearize the computations (later on plagiarism detection)

• How?

• The solution is often to switch to randomized approximation algorithms.

7

Compression associated to a specific function f

• More formally, given f ,

• we want to compress the data X but still be able to compute ' f (X) .

• Sketching: we are looking for Cf and g such that
• the storage space Cf (X) is small (compression)

• from f (X), we can recover f (X), ie g(Cf (X)) ' f (X)

• Streaming: additional difficulty, the update is performed on the fly.
• we cannot compute Cf (X

⋃
{y}) from X

⋃
{y}

• since we cannot store X
⋃
{y}

• so we need another function h such that . h(Cf (X), {y}) = Cf (X
⋃
{y})

• and one last difficulty:

• very often, it is impossible to do in deterministic and exact / deterministic

and approximate

• but only with a randomized and approximation algorithm.

• How to write this ?
• We are looking for an estimator Z such that for given α and ε
• Pr(|Z − f (X)| ≥ εf (X)) ≤ α. How to read this?

• the probability of making a mistake by a ratio greater than ε (as small as you

want)

• is smaller than α (as small as you want)

8

Example: count the number of visits / packets

• Context
• a sensor/router sees packets / visits passing through,....

• you just want to maintain elementary statistics (number of visits, number of

visits over the last 1 hour, standard deviations)

• Here, we simply want to count the number of visits

• What storage is necessary if we have n visits? log n bits. Why ?

Pigeonhole principle. If we have strictly less than logn bits, then we have

two events (among the n) that will be coded in the same way.

• What happens if we only allow an approximate answer (say, to a factor of

ρ <2)? you need at least log log n bits. Why ? sketch of the proof: if we

use t < log log n bits, then we will be able to distinguish less than log n

different groups and you can estimate how many groups are needed to

count {0}, {0, 1}, {0, 1, 2}, {0, 1, ..., 7}.
• We will look for a randomized and approximated solution

• Let us set α and ε

• we are looking for an algorithm that computes ñ, an approximation of n

• that only uses K log log n bits storage

• and such that Pr(|ñ − n| ≥ εn) ≤ α
• K must be a constant...not necessarily a small constant for now!

10

Crash Course in probabilities

• Z random variable with positive values

• E(Z) is the expectation of Z
• definitions and properties ?

• E(Z) =
∫
λP(Z = λ)dλ or E(Z) =

∑
j jP(Z = j)

• E(Z) =
∫
P(Z ≥ λ)dλ or E(Z) =

∑
j P(Z ≥ j)

• E(aX + bY) =aE(X) + bE(Y)

• total probabilities (with conditioning) E(Z) =
∑

j E(ZIY = j)P(Y = j)

• To measure the distance from Z to E(Z), we use the variance V (Z)
• Definition?

• V (Z) = E((Z − E(Z))2) = E(Z2)− E(Z)2

• Properties:

• V (aZ) = a2V (Z)

• In general, V (X + Y) 6= V (X) + V (Y) (but it is true if X and Y are

independent random variables)

• How to measure the difference between Z to E(Z)?
1. Markov: Pr(Z ≥ λ) ≤ E(Z)/λ

2. Chebyshev: Pr(|Z − E(Z)| ≥ λE(Z)) ≤ V (Z)

λ2E(Z)2

3. Chernoff: If Z1, . . . ,Zn are Independent Bernouilli rv with pi ∈ [0.1] and

Z =
∑

Zi , then

Pr(|Z − E(Z)| ≥ λE(Z)) ≤ 2 exp(−λ
2E(Z)
3

).

11

Morris Algorithm: Counting the number of events

• Step 1: Find an estimator Z

• Z must be small (of order of log log n)

• we need to define an additional function g

• such that E(g(Z)) = n

• Morris algorithm

• Z → 0

• At each event, Z → Z + 1 with probability 1/2Z

• When queried, return f (Z) = 2Z − 1

• What is the space complexity to implement Morris’ algorithm?

• What is the time complexity in the worst case? What is the expected

complexity of a step?

• Prove the correctness: E(2Zn − 1) = n (note Zn the random variable that

denotes Z after n events) Hint: by induction, assuming that

E(2Xn) = n + 1 and showing that E(2Xn+1) = n + 2

• How to find a probabilistic guarantee of the type

Pr(|f (Xn) = ñ − n| ≥ εn) ≤ α? Hint Prove E(22Xn) = 3/2n2 + 3/2n + 1.

• Conclusion? Is this unexpected ?

12

From Morris to Morris+ and Morris+++

• 2nd step: How to get a useful bound?

• Objective: to reduce the variance (expectation is what we want). How to
do it?

• Classic idea: do the same experience many times and average them

• Morris algorithm +

• Morris is used to compute independent Z1
n ,Z

2
n , . . . ,Z

K
n

• On demand, compute Yn =
∑

i Z
i
n return f (Yn) = 2Yn − 1

• Questions:

• Which space complexity to implement Morris+’s algorithm?

• What time complexity?

• Establish the correctness: E(2Xn − 1) = n

• What is the new guarantee obtained with Chebyshev? How many counters

should be maintained?

• How can we do even better?

• Morris++ = Morris+(1/3) and median

• proof with Chernoff: If Z1, . . . ,Zn are Independent Bernouilli rv with

pi ∈ [0.1] and Z =
∑

Zi , then

Pr(|Z − E(Z)| ≥ λE(Z)) ≤ 2 exp(−λ
2E(Z)
3

).

13

2nd example: how to count the number of unique visitors

Context

• It is assumed that visitors are identified by their address (ik ∈ [1, n])

• We observe a flow of m visits i1, . . . , im with ik ∈ [1, n]

• How many different visitors ?

• Deterministic and trivial algorithms:

• if n is small, if n is big... and in front of what?

• solution in n:n bit array

• solution in m log n: we keep the whole stream!

• We will see a bit later

• that we cannot do better with exact and deterministic algorithms

• that we cannot do better with approximated and deterministic algorithms

• How to do if you cannot store n bits

• but only O(logk n) for a certain k?

• we will see that it is again possible by using both randomization and

approximation.

• and that no deterministic exact or deterministic approximation can do it

with this space constraint.

15

Idealized algorithm (1) – Flajolet Martin

We will start with an idealized algorithm (which cannot be implemented in

practice).

• Let us choose a random h function from [1, n] to [0, 1]

• Why idealized?

• Problem 1: to store such a random function, you must define the images for

in each of the n points... at least Ω(n) bits

• Problem 2: and in addition we would have to store real values!

• We will come back to these two problems in a moment....

• Let us assume for now that storing such a function costs Θ(1)

• How do you keep track of the number of unique visitors?

• We will keep Z −→ mini∈stream h(i). Intuition?

• If you see the same visitor k times, it won’t change Z

• If we see t different visitors, then the values taken by h split [0, 1] in t + 1

intervals...and all should have the same size in expectation... and this size is
1

t+1
including the first !

• so you should return 1
Z
− 1 !

16

Idealized algorithm (2) – Flajolet Martin

Proof of correctness

• Let’s prove that E(Z) = 1
t+1

.

• E(Z) =
∫ +∞

0
P(Z ≥ λ)dλ.

• Show that E(Z) = 1
t+1

• How to continue? by calculating the variance and applying Chebychev

• Prove that E(Z2) = 2
(t+1)(t+2)

• There is still one foolishness not to be said.... E(1/Z) 6= 1/E(Z)

• Intuition: if we can control closely Z and 1
t+1

, 1/Z − 1 will be close to t

• FM+
• Let us maintain q = 1

ε2η
FM instances.

• Zi is the value produced by FMi

• What to return? Y = 1
(
∑q

1 Zi)/q
− 1

• E(
∑q

1 Zi

q
) = 1

t+1

• V (
∑q

1 Zi

q
) = t

q(t+1)2(t+2)
<

E(Z))2

q

• Claim 1: P(IY − 1
t+1

I ≥ ε
t+1

) ≤ η
• Claim 2: P(I 1

Y
− 1− tI ≥ Θ(ε)t) ≤ η

• FM++
• choose η = 1

3
adapt ε, instantiate K copies of Y Y1, . . . ,YK

• output median{ 1
Yi
} Ok for K = d36 log(1

δ
)e

17

Toward a Non Idealized Version. A crucial tool: hashing functions

• We used the set of all possible functions (too large set, to large. storage

for one function)

• To make it practical, we will consider a large (not too large) family of

functions H from [1, p]→ [1, p]

• How to define the quality of a family H?
• Notion of k-wise independence

• ∀i1, . . . , ik ,∀j1, . . . , jk , ik 6= il , and if we pick a random h function in H, then

• P(h(i1) = j1 and h(ik) = jk) 1/pk

• a larger k provides a ”better” family

• Examples:
1. the set of all functions from [1, p]→ [1, p] is Ok.

• What k, what storage cost?

• f (1)→ p choices,..., f (p)→ p choices

• Problem: expensive, p log p bits are necessary for one function

2. with the polynomials Hk
poly of degree k in Fp

• evaluation cost? for degree k, k mult & and adds

• independence? how many polynomials such that (h(i1) = j1 and h(ik) = jk

• exactly one, Lagrange polynomial: P =
∑k

r=1

∏
l 6=r (X−il)∏
l 6=r (ir−il) × jr

• choice? picking a function at random in Hk
poly → choose k + 1 coefficients.

• and thus the family Hk
poly is k−-independent

18

Non Idealized FM (1)

• Step1: find a O(1)-approximation t̃ of t in O(log n) bits, ie a constant C
such that t

C
≤ t̃ ≤ Ct with constant probability (say 2

3
)

1. Pick h from a 2-wise family from [n] to [n] (works ∀n but complicated,

otherwise round to 2k , or assume that n is a prime).

2. Maintain X = maxi∈stream lsb(h(i)) (lsb: least significant bit)

3. Output 2X

• Intuition:
• P(lsb(h(i)) = j) = 1

2j+1 , so E({i , lsb(h(i)) = j}) = t
2j+1 and

E({i , lsb(h(i)) > j}) ' t
2j+2 + t

2j+3 + . . . ' t
2j+1 .

• What happens when j is of order log t...
• there is ' 1 visitor such that lsb(h(i)) = j

• there is ' 1 visitor such that lsb(h(i)) > j

• Thus, if j is of order (log t)− 5 it is very unlikely (1/25) that there is no i

s.t. lsb(h(i)) ≥ j

• Thus, if j is of order (log t) + 5 it is very unlikely (1/25) that there is a i s.t.

lsb(h(i)) ≥ j

• with good probability, t̃ = 2X is in [t
C
,Ct]

• The proof is very similar to what we have done, with one tricky issue
• how to use 2-wise independence ?

• fix j , define Yi = 1 iff lsb(h(i)) = j so that Zj =
∑

i Yi , then E(Zj) = 1
2j+1

• as usual we need V (Zj) to control probabilities and V (Zj) =

E((
∑

i Yi)
2)− E(

∑
i Yi)

2 =
∑

V (Yi) +
∑

i 6=k E(YiYj)− E(Yi)E(Yj) =∑
V (Yi) because 2−wise independence says that E(YiYj)− E(Yi)E(Yj) ! 19

Non Idealized FM (2)

• Playing with constants, let us assume that Step1 provides a

32-approximation with probability 2
3
, then perform K experiments and take

the median to have 32-approx with large probability

• To obtain a stronger approximation, we rely on the following technique
• let us chose g in a 2 wise family from [n] to [n].

1. Imagine that we consider log n sets, with Sj contains the elements i of the

stream s.t. lsb(g(i)) = j .

2. we know t̃ (close to t), let us denote by Z the size of Sj when 2j+1 ' t̃ε2

3. and let consider U = 2j+1Z in this case

• E(U) =2j+1E(Z) = t , V (Ui) =22j+2Var(Z) ≤ t2j+1

• so that (Chebychev) P(IU − tI ≥ εt) ≤ t2j+1

ε2t2 = 2j+1

ε2 t̃
t̃
t
≤ C ′

• Then, we use several hashing functions and take the average value to

obtain an error with arbitrarily small probability

• Not completely finished ! Is this algorithm implementable this time with

small space ?

• No, because S0 is very large for instance ! But the maximum value we are

expecting in ”interesting” Sj is t
2j+1 = t̃

2j+1
t
t̃
≤ C

ε2

• Thus, we can ”only” remember the first C
ε2 is each set !

• Overall space complexity ???
20

Note on Non Idealized FM (3)

• Technique called Geometric sampling

• n elements in the stream, k ≤ n distinct elements (with respect to some

property)

• Store log n sub-streams, where S0 stores 1/2 of the elements (distinct wrt

the property), S1 stores 1/4 of the elements,... Slog k stores (close to) 1

element, Slog n a priori stores nothing if k << n

• Suppose that when there are l elements in one of the sets, we can find a

good estimation of k where typically l is of order 1
ε2

• Then, we bound all the sets to store less than 10l elements (they are

useless after that)

• if we have a constant approximation of k (obtained elsewhere), then we

know in which set we should look at.

21

Why do we need randomization and approximation?

• Because a deterministic algorithm needs at least Ω(n) bits

• How to prove this? We assume n = Θ(m)

• Let us consider the state of the memory of the algorithm after seeing

i1, . . . , im
• We need to prove that there is enough information in what is stored

• so as to differentiate 2n distinct elements

• Remark: you can add as many computations as you want !

• Input X , let us denote by Cf (X) the state on the memory

• What can be computed using Cf (X) (and only Cf (X))?

• we can compute h(Cf (X)) and h(Cf (X), {y}) = Cf (X
⋃
{y})

• do it for all possible y values (visitors)...

• If y was in the stream, then h(Cf (X), {y}) = h(Cf (X)) otherwise

h(Cf (X), {y}) = h(Cf (X) + 1!

• In Cf (X), there is enough information to distinguish 2n possible vectors (all

visitors vectors)

• and thus n bits are needed!

22

Why do we need randomization and approximation?

• Because a deterministic approximation algorithm (say 1.1-approx) needs at

least Ω(n) bits
• Let us suppose that there exists a collection C of subsets of n such that

• |C| is large (≥ exp(n/104))

• ∀S ∈ C, |S| = n/100 (sets are large)

• ∀S1, S2 ∈ C2, |S1
⋂

S2| ≤ n/2000 (intersections are small)

• General idea
• Let us assume that we have presented to the algorithm

one of the sequences of C
• Then, we can find back which one!

• just by trying exhaustively all #C sequences with Cf (X)

• Since we know how to differentiate exponentially many

(exp(n/104)) elements, we need Ω(n) bits

• We still need to prove that such a set C exists !
• n visitors numbered from 1 to n split into n/100 packets of 100 visitors

• In Si , ∀i we randomly choose one visitor per packet

• we build exp(n/104) such sets Si .

• easy: What is their size? n/100

• we need to check that ∀i , j , i 6= j , |Si
⋂

Sj | ≤ n/2000

• How to do this ?it is enough to prove that the P(it works) is > 0

• Why does it work ? Yi,j number of collisions between Si and Sj
• E(Yi,j) ? Pr(Yi,j > n/2000) ? Pr(∃i , jt.q.Yi,j > n/2000) ? 23

	Introduction
	Sketching – Streaming
	Introduction
	Count the number of visits
	How to count the number of unique visitors

	Comparison between HPC supercomputers and Datacenters
	Architecture
	Filesystem
	Programming

