Cours ENSL: Big Data – Streaming, Sketching, Compression

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr
Introduction
Positionning

- w.r.t. traditional courses on algorithms
 - Exact algorithms for polynomial problems
 - Approximation algorithms for NP-Complete problems
 - Potentially exponential algorithms for difficult problems (going through an ILP for example)

- Here, we will consider extreme contexts
 - not enough space to transmit input data (sketching) or
 - not enough space to store the data stream (streaming)
 - not enough time to use an algorithm other than a linear complexity one

- Compared to the more "classical" context of algorithms:
 - we aim at solving simple problems and
 - we are looking for approximate solutions only because we have very strong time or space constraints.

- Disclaimer: it is not my research topic, but I like to look at the sketching/streaming papers and I am happy to teach it to you!
Application Context 1: Internet of Things (IoT)

- Connected objects, which take measurements
- The goal is to aggregate data.
- Processing can be done either locally, or on their way (fog computing), or in a data center (cloud computing).
- We must be very energy efficient
 - because objects are often embedded without power supply.
- E3nergy cost: Communication is the main source of energy consumption, followed by memory movements (from storage), followed by computations (which are inexpensive)
- A good solution is to do as many local computations as possible!
 - but it is known to be difficult (distributed algorithms)
 - especially when the complexity is not linear (e.g. think about quadratic complexity)
- Solution:
 - compress information locally (and on the fly)
 - only send the summaries; summaries must contain enough information!
Application Context 2: Datacenters

- Aggregate construction
- except the network (we can have several levels + infiniband), everything is "linear"
- the distance between certain nodes/data is very large but a strong proximity with certain data stored on disk
- with 1,000 nodes with 1TB of disk and a link at 400 MB/s, we have 1 PB and 400 GB/s (higher than with a HPC system)
- provided the data is loaded locally!
- for 25 TF/s ($10^3$25GFs seti@home) in total, ratio 60 (HPC system 40 000)
- in practice, dedicated to linear algorithms and very inefficient for other classes.
- In both contexts, there is a strong need to have data driven algorithms (where placement is imposed by data) whose complexity is linear
Sketching – Streaming
• large volume of data generated in a distributed way
 • to be processed locally and compressed before transmission.

• Types of compression?
 • lossless compression
 • compression with losses
 • compression with losses, but controlled tightly controlled loss for a specific function (sketching)

• + we are going to do compression on the fly (streaming)
On-the-fly compression dedicated to a function \(f \)

- Easy problems?
 - examples: \(\min, \max, \sum, \) mean value median?
 - Constraint: linearize the computations (later on plagiarism detection)

- How?
 - The solution is often to switch to \textit{randomized approximation algorithms}.
Compression associated to a specific function f

- More formally, given f, we want to compress the data X but still be able to compute $\approx f(X)$.
- Sketching: we are looking for C_f and g such that
 - the storage space $C_f(X)$ is small (compression)
 - from $f(X)$, we can recover $f(X)$, i.e., $g(C_f(X)) \approx f(X)$
- Streaming: additional difficulty, the update is performed on the fly.
 - we cannot compute $C_f(X \cup \{y\})$ from $X \cup \{y\}$
 - since we cannot store $X \cup \{y\}$
 - so we need another function h such that $h(C_f(X), \{y\}) = C_f(X \cup \{y\})$
- and one last difficulty:
 - very often, it is impossible to do in deterministic and exact / deterministic and approximate
 - but only with a randomized and approximation algorithm.
- How to write this?
 - We are looking for an estimator Z such that for given α and ϵ
 - $Pr(|Z - f(X)| \geq \epsilon f(X)) \leq \alpha$. How to read this?
 - the probability of making a mistake by a ratio greater than ϵ (as small as you want)
 - is smaller than α (as small as you want)
Example: count the number of visits / packets

- **Context**
 - a sensor/router sees packets / visits passing through,....
 - you just want to maintain elementary statistics (number of visits, number of visits over the last 1 hour, standard deviations)
 - Here, we simply want to count the number of visits

- What storage is necessary if we have \(n \) visits? \(\log n \) bits. Why ? Pigeonhole principle. If we have strictly less than \(\log n \) bits, then we have two events (among the \(n \)) that will be coded in the same way.

- What happens if we only allow an approximate answer (say, to a factor of \(\rho < 2 \))? you need at least \(\log \log n \) bits. Why ? sketch of the proof: if we use \(t < \log \log n \) bits, then we will be able to distinguish less than \(\log n \) different groups and you can estimate how many groups are needed to count \{0\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, ..., 7\}.

- We will look for a randomized and approximated solution
 - Let us set \(\alpha \) and \(\epsilon \)
 - we are looking for an algorithm that computes \(\hat{n} \), an approximation of \(n \)
 - that only uses \(K \log \log n \) bits storage
 - and such that \(Pr(|\hat{n} - n| \geq \epsilon n) \leq \alpha \)
 - \(K \) must be a constant...not necessarily a small constant for now!
Crash Course in probabilities

- Z random variable with positive values
- $E(Z)$ is the expectation of Z
- definitions and properties?
 - $E(Z) = \int \lambda P(Z = \lambda) d\lambda$ or $E(Z) = \sum_j jP(Z = j)$
 - $E(Z) = \int P(Z \geq \lambda) d\lambda$ or $E(Z) = \sum_j P(Z \geq j)$
 - $E(aX + bY) = aE(X) + bE(Y)$
 - total probabilities (with conditioning) $E(Z) = \sum_j E(Z|Y = j)P(Y = j)$
- To measure the distance from Z to $E(Z)$, we use the variance $V(Z)$
 - Definition?
 - $V(Z) = E((Z - E(Z))^2) = E(Z^2) - E(Z)^2$
 - Properties:
 - $V(aZ) = a^2V(Z)$
 - In general, $V(X + Y) \neq V(X) + V(Y)$ (but it is true if X and Y are independent random variables)
- How to measure the difference between Z to $E(Z)$?
 1. Markov: $Pr(Z \geq \lambda) \leq E(Z)/\lambda$
 2. Chebyshev: $Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq \frac{V(Z)}{\lambda^2 E(Z)^2}$
 3. Chernoff: If Z_1, \ldots, Z_n are Independent Bernouilli rv with $p_i \in [0,1]$ and $Z = \sum Z_i$, then $Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq 2 \exp\left(\frac{-\lambda^2 E(Z)}{3}\right)$.
Morris Algorithm: Counting the number of events

- Step 1: Find an estimator Z
 - Z must be small (of order of $\log \log n$)
 - we need to define an additional function g
 - such that $E(g(Z)) = n$

- Morris algorithm
 - $Z \rightarrow 0$
 - At each event, $Z \rightarrow Z + 1$ with probability $1/2^Z$
 - When queried, return $f(Z) = 2^Z - 1$

- What is the space complexity to implement Morris’ algorithm?
- What is the time complexity in the worst case? What is the expected complexity of a step?
- Prove the correctness: $E(2^{Z_n} - 1) = n$ (note Z_n the random variable that denotes Z after n events) Hint: by induction, assuming that $E(2^{X_n}) = n + 1$ and showing that $E(2^{X_{n+1}}) = n + 2$
- How to find a probabilistic guarantee of the type $Pr(|f(X_n) = \bar{n} - n| \geq \epsilon n) \leq \alpha$? Hint Prove $E(2^{2X_n}) = 3/2n^2 + 3/2n + 1$.
- Conclusion? Is this unexpected?
From Morris to Morris+ and Morris+++

- 2nd step: How to get a useful bound?
- Objective: to reduce the variance (expectation is what we want). How to do it?
 - Classic idea: do the same experience many times and average them
- Morris algorithm +
 - Morris is used to compute independent $Z^1_n, Z^2_n, \ldots, Z^K_n$
 - On demand, compute $Y_n = \sum_i Z^i_n$ return $f(Y_n) = 2^{Y_n} - 1$
- Questions:
 - Which space complexity to implement Morris+'s algorithm?
 - What time complexity?
 - Establish the correctness: $E(2^{X_n} - 1) = n$
 - What is the new guarantee obtained with Chebyshev? How many counters should be maintained?
- How can we do even better?
 - Morris+++ = Morris+(1/3) and median
 - proof with Chernoff: If Z_1, \ldots, Z_n are Independent Bernouilli rv with $p_i \in [0,1]$ and $Z = \sum Z_i$, then
 $Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq 2 \exp(-\lambda^2 E(Z)/3)$.

2nd example: how to count the number of unique visitors

Context

• It is assumed that visitors are identified by their address \((i_k \in [1, n])\)
• We observe a flow of \(m\) visits \(i_1, \ldots, i_m\) with \(i_k \in [1, n]\)
• How many different visitors ?
• Deterministic and trivial algorithms:
 • if \(n\) is small, if \(n\) is big… and in front of what?
 • solution in \(n: n\) bit array
 • solution in \(m \log n\): we keep the whole stream!
• We will see a bit later
 • that we cannot do better with exact and deterministic algorithms
 • that we cannot do better with approximated and deterministic algorithms
• How to do if you cannot store \(n\) bits
 • but only \(O(\log^k n)\) for a certain \(k\)?
• we will see that it is again possible by using both randomization and approximation.
• and that no deterministic exact or deterministic approximation can do it with this space constraint.
We will start with an idealized algorithm (which cannot be implemented in practice).

- Let us choose a random h function from $[1, n]$ to $[0, 1]$
- Why idealized?
 - Problem 1: to store such a random function, you must define the images for in each of the n points... at least $\Omega(n)$ bits
 - Problem 2: and in addition we would have to store real values!
 - We will come back to these two problems in a moment....
 - Let us assume for now that storing such a function costs $\Theta(1)$
- How do you keep track of the number of unique visitors?
- We will keep $Z \longrightarrow \min_{i \in \text{stream}} h(i)$. Intuition?
 - If you see the same visitor k times, it won’t change Z
 - If we see t different visitors, then the values taken by h split $[0, 1]$ in $t + 1$ intervals...and all should have the same size in expectation... and this size is $\frac{1}{t+1}$ including the first !
- so you should return $\frac{1}{Z} - 1$!
Proof of correctness

- Let’s prove that \(E(Z) = \frac{1}{t+1} \).
- \(E(Z) = \int_{0}^{+\infty} P(Z \geq \lambda) d\lambda \).
 - Show that \(E(Z) = \frac{1}{t+1} \)
 - How to continue? by calculating the variance and applying Chebychev
 - Prove that \(E(Z^2) = \frac{2}{(t+1)(t+2)} \)
 - There is still one foolishness not to be said.... \(E(1/Z) \neq 1/E(Z) \)
 - Intuition: if we can control closely \(Z \) and \(\frac{1}{t+1} \), \(1/Z - 1 \) will be close to \(t \)

- FM+
 - Let us maintain \(q = \frac{1}{\epsilon^2 \eta} \) FM instances.
 - \(Z_i \) is the value produced by \(FM_i \)
 - What to return? \(Y = \frac{1}{(\sum_1^q Z_i)/q} - 1 \)
 - \(E(\frac{\sum_1^q Z_i}{q}) = \frac{1}{t+1} \)
 - \(V(\frac{\sum_1^q Z_i}{q}) = \frac{t}{q(t+1)^2(t+2)} < \frac{E(Z)^2}{q} \)
 - Claim 1: \(P(lY - \frac{1}{t+1} l \geq \frac{\epsilon}{t+1}) \leq \eta \)
 - Claim 2: \(P(l 1/Y - 1 - tl \geq \Theta(\epsilon)t) \leq \eta \)

- FM++
 - choose \(\eta = \frac{1}{3} \) adapt \(\epsilon \), instantiate \(K \) copies of \(Y Y_1, \ldots, Y_K \)
 - output median\{ \frac{1}{Y_i} \} Ok for \(K = \lceil 36 \log(\frac{1}{\delta}) \rceil \)
Toward a Non Idealized Version. A crucial tool: hashing functions

- We used the set of all possible functions (too large set, to large. storage for one function)
- To make it practical, we will consider a large (not too large) family of functions H from $[1, p] \rightarrow [1, p]$
- How to define the quality of a family H?
- Notion of k-wise independence
 - $\forall i_1, \ldots, i_k, \forall j_1, \ldots, j_k, i_k \neq i_l$, and if we pick a random h function in H, then
 - $P(h(i_1) = j_1$ and $h(i_k) = j_k) = 1/p^k$
 - a larger k provides a "better" family
- Examples:
 1. the set of all functions from $[1, p] \rightarrow [1, p]$ is Ok.
 - What k, what storage cost?
 - $f(1) \rightarrow p$ choices, $f(p) \rightarrow p$ choices
 - Problem: expensive, $p \log p$ bits are necessary for one function
 2. with the polynomials H^k_{poly} of degree k in F_p
 - evaluation cost? for degree k, k mult & and adds
 - independence? how many polynomials such that $(h(i_1) = j_1$ and $h(i_k) = j_k$
 - exactly one, Lagrange polynomial: $P = \sum_{r=1}^{k} \prod_{l\neq r} (X-i_l) \times j_r$
 - choice? picking a function at random in $H^k_{\text{poly}} \rightarrow$ choose $k + 1$ coefficients.
 - and thus the family H^k_{poly} is k--independent
Non Idealized FM (1)

- **Step 1:** find a $O(1)$-approximation \tilde{t} of t in $O(\log n)$ bits, i.e. a constant C such that $\frac{t}{C} \leq \tilde{t} \leq Ct$ with constant probability (say $\frac{2}{3}$)
 1. Pick h from a 2-wise family from $[n]$ to $[n]$ (works $\forall n$ but complicated, otherwise round to 2^k, or assume that n is a prime).
 2. Maintain $X = \max_{i \in \text{stream}} \text{lsb}(h(i))$ (lsb: least significant bit)
 3. Output 2^X

- **Intuition:**
 - $P(\text{lsb}(h(i)) = j) = \frac{1}{2^{j+1}}$, so $E(\{i, \text{lsb}(h(i)) = j\}) = \frac{t}{2^{j+1}}$ and $E(\{i, \text{lsb}(h(i)) > j\}) \approx \frac{t}{2^{j+2}} + \frac{t}{2^{j+3}} + \ldots \approx \frac{t}{2^{j+1}}$.
 - What happens when j is of order $\log t$...
 - there is $\simeq 1$ visitor such that $\text{lsb}(h(i)) = j$
 - there is $\simeq 1$ visitor such that $\text{lsb}(h(i)) > j$
 - Thus, if j is of order $(\log t) - 5$ it is very unlikely ($1/2^5$) that there is no i s.t. $\text{lsb}(h(i)) \geq j$
 - Thus, if j is of order $(\log t) + 5$ it is very unlikely ($1/2^5$) that there is a i s.t. $\text{lsb}(h(i)) \geq j$
 - with good probability, $\tilde{t} = 2^X$ is in $[\frac{t}{C}, Ct]$

- **The proof is very similar to what we have done, with one tricky issue**
 - how to use 2-wise independence?
 - fix j, define $Y_i = 1$ iff $\text{lsb}(h(i)) = j$ so that $Z_j = \sum_i Y_i$, then $E(Z_j) = \frac{1}{2^{j+1}}$
 - as usual we need $V(Z_j)$ to control probabilities and $V(Z_j) = E((\sum_i Y_i)^2) - E(\sum_i Y_i)^2 = \sum V(Y_i) + \sum_{i \neq k} E(Y_i Y_j) - E(Y_i)E(Y_j) = \sum V(Y_i)$ because 2-wise independence says that $E(Y_i Y_j) = E(Y_i)E(Y_j)$!
Non Idealized FM (2)

- Playing with constants, let us assume that Step1 provides a 32-approximation with probability $\frac{2}{3}$, then perform K experiments and take the median to have 32-approx with large probability
- To obtain a stronger approximation, we rely on the following technique
 - let us chose g in a 2 wise family from $[n]$ to $[n]$.
 1. Imagine that we consider $\log n$ sets, with S_j contains the elements i of the stream s.t. $\text{lsb}(g(i)) = j$.
 2. we know \tilde{t} (close to t), let us denote by Z the size of S_j when $2^{j+1} \approx \tilde{t}\epsilon^2$
 3. and let consider $U = 2^{j+1}Z$ in this case
- $E(U) = 2^{j+1}E(Z) = t$, $V(U_i) = 2^{2j+2} \text{Var}(Z) \leq t2^{2j+1}$
- so that (Chebychev) $P(|U - t| \geq \epsilon t) \leq \frac{t2^{j+1}}{\epsilon^2 t^2} = \frac{2^{j+1} \tilde{t}}{\epsilon^2 \tilde{t} t} \leq C'$
- Then, we use several hashing functions and take the average value to obtain an error with arbitrarily small probability
- Not completely finished ! Is this algorithm implementable this time with small space ?
- No, because S_0 is very large for instance ! But the maximum value we are expecting in "interesting" S_j is $\frac{t}{2^{j+1}} = \frac{\tilde{t}}{2^{j+1}} \frac{t}{\tilde{t}} \leq \frac{C}{\epsilon^2}$
- Thus, we can "only" remember the first $\frac{C}{\epsilon^2}$ is each set !
- Overall space complexity ???
• Technique called Geometric sampling

• n elements in the stream, $k \leq n$ distinct elements (with respect to some property)

• Store $\log n$ sub-streams, where S_0 stores $1/2$ of the elements (distinct wrt the property), S_1 stores $1/4$ of the elements, ... $S_{\log k}$ stores (close to) 1 element, $S_{\log n}$ a priori stores nothing if $k \ll n$

• Suppose that when there are l elements in one of the sets, we can find a good estimation of k where typically l is of order $\frac{1}{\epsilon^2}$

• Then, we bound all the sets to store less than $10l$ elements (they are useless after that)

• if we have a constant approximation of k (obtained elsewhere), then we know in which set we should look at.
Why do we need randomization and approximation?

- Because a deterministic algorithm needs at least $\Omega(n)$ bits
- How to prove this? We assume $n = \Theta(m)$
- Let us consider the state of the memory of the algorithm after seeing i_1, \ldots, i_m
- We need to prove that there is enough information in what is stored
- so as to differentiate 2^n distinct elements
- Remark: you can add as many computations as you want!
- Input X, let us denote by $C_f(X)$ the state on the memory
- What can be computed using $C_f(X)$ (and only $C_f(X)$)?
- we can compute $h(C_f(X))$ and $h(C_f(X), \{y\}) = C_f(X \cup \{y\})$
- do it for all possible y values (visitors)...
- If y was in the stream, then $h(C_f(X), \{y\}) = h(C_f(X))$ otherwise $h(C_f(X), \{y\}) = h(C_f(X)) + 1$
- In $C_f(X)$, there is enough information to distinguish 2^n possible vectors (all visitors vectors)
- and thus n bits are needed!
Why do we need randomization and approximation?

- Because a deterministic approximation algorithm (say 1.1-approx) needs at least $\Omega(n)$ bits
- Let us suppose that there exists a collection C of subsets of n such that
 - $|C|$ is large ($\geq \exp(n/10^4)$)
 - $\forall S \in C, |S| = n/100$ (sets are large)
 - $\forall S_1, S_2 \in C^2, |S_1 \cap S_2| \leq n/2000$ (intersections are small)
- General idea
 - Let us assume that we have presented to the algorithm one of the sequences of C
 - Then, we can find back which one!
 - just by trying exhaustively all $\#C$ sequences with $C_f(X)$
 - Since we know how to differentiate exponentially many $(\exp(n/10^4))$ elements, we need $\Omega(n)$ bits
- We still need to prove that such a set C exists!
 - n visitors numbered from 1 to n split into $n/100$ packets of 100 visitors
 - In $S_i, \forall i$ we randomly choose one visitor per packet
 - we build $\exp(n/10^4)$ such sets S_i.
 - easy: What is their size? $n/100$
 - we need to check that $\forall i, j, i \neq j, |S_i \cap S_j| \leq n/2000$
 - How to do this ?it is enough to prove that the $P(it\ works)$ is > 0
 - Why does it work ? $Y_{i,j}$ number of collisions between S_i and S_j
 - $E(Y_{i,j})$? $Pr(Y_{i,j} > n/2000)$? $Pr(\exists i, j t.q. Y_{i,j} > n/2000)$?