v 4

lrreia—

inventeurs du monde numérique

Cours ENSL:
Big Data — Streaming, Sketching, Compression

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr

Introduction

w.r.t. traditional courses on algorithms

e Exact algorithms for polynomial problems

e Approximation algorithms for NP-Complete problems

e Potentially exponential algorithms for difficult problems (going through an
ILP for example)

e Here, we will consider extreme contexts

e not enough space to transmit input data (sketching) or
e not enough space to store the data stream (streaming)
e not enough time to use an algorithm other than a linear complexity one

Compared to the more "classical” context of algorithms:

e we aim at solving simple problems and
e we are looking for approximate solutions only because we have very strong
time or space constraints.

Disclaimer: it is not my research topic, but | like to look at the
sketching/streaming papers and | am happy to teach it to you!

Application Context 1: Internet of Things (loT)

e Connected objects, which take measurements
e The goal is to aggregate data.

e Processing can be done either locally, or on their way (fog computing), or
in a data center (cloud computing).
e \We must be very energy efficient

e because objects are often embedded without power supply.

e E3nergy cost: Communication is the main source of energy consumption,
followed by memory movements (from storage), followed by computations
(which are inexpensive)

e A good solution is to do as many local computations as possible!

e but it is known to be difficult (distributed algorithms)
e especially when the complexity is not linear (e.g. think about quadratic
complexity)

e Solution:

e compress information locally (and on the fly)
e only send the summaries; summaries must contain enough information!

Application Context 2: Datacenters

e Aggregate construction

e except the network (we can have several levels + infiniband), everything is
"linear”

e the distance between certain nodes/data is very large but a strong
proximity with certain data stored on disk

e with 1,000 nodes with 1TB of disk and a link at 400 MB/s, we have 1 PB
and 400 GB/s (higher than with a HPC system)

e provided the data is loaded locally !

e for 25 TF/s (10°25GFs seti@home) in total, ratio 60 (HPC system 40 000)

e in practice, dedicated to linear algorithms and very inefficient for other
classes.

e In both contexts, there is a strong need to have data driven algorithms
(where placement is imposed by data) whose complexity is linear

Sketching — Streaming

Sketching - Streaming — Context

e large volume of data generated in a distributed way
e to be processed locally and compressed before transmission.
e Types of compression?

e |ossless compression

e compression with losses

e compression with losses, but controlled tightly controlled loss for a specific
function (sketching)

e + we are going to do compression on the fly (streaming)

On-the-fly compression dedicated to a function f

e Easy problems?

e examples: min, max, Y, mean value median?
e Constraint: linearize the computations (later on plagiarism detection)

e How?

e The solution is often to switch to randomized approximation algorithms.

Compression associated to a specific function f

e More formally, given f,

e we want to compress the data X but still be able to compute ~ 7(X) .
e Sketching: we are looking for Cr and g such that

e the storage space Cr(X) is small (compression)

e from f(X), we can recover f(X), ie g(Cr(X)) =~ f(X)
e Streaming: additional difficulty, the update is performed on the fly.

e we cannot compute Cr(X U{y}) from X J{y}

e since we cannot store X |J{y}

e so we need another function h such that . h(Cr(X),{y}) = Cr(XU{y})

e and one last difficulty:

e very often, it is impossible to do in deterministic and exact / deterministic
and approximate

e but only with a randomized and approximation algorithm.
e How to write this 7
e We are looking for an estimator Z such that for given o and €
o Pr(|Z — f(X)| > ef(X)) < a. How to read this?
e the probability of making a mistake by a ratio greater than e (as small as you
want)
e is smaller than « (as small as you want)

Example: count the number of visits / packets

e Context
e a sensor/router sees packets / visits passing through,....
e you just want to maintain elementary statistics (number of visits, number of
visits over the last 1 hour, standard deviations)
e Here, we simply want to count the number of visits

e What storage is necessary if we have n visits? log n bits. Why ?
Pigeonhole principle. If we have strictly less than logn bits, then we have
two events (among the n) that will be coded in the same way.

e What happens if we only allow an approximate answer (say, to a factor of
p <2)?7 you need at least loglog n bits. Why 7 sketch of the proof: if we
use t < loglog n bits, then we will be able to distinguish less than log n
different groups and you can estimate how many groups are needed to
count {0},{0,1},{0,1,2},{0,1,...,7}.

e We will look for a randomized and approximated solution

e Let usset o and ¢

e we are looking for an algorithm that computes 7, an approximation of n
e that only uses K loglog n bits storage

e and such that Pr(|fi—n| > en) < «

e K must be a constant...not necessarily a small constant for now!

10

Crash Course in probabilities

Z random variable with positive values

E(Z) is the expectation of Z
definitions and properties ?
o E(Z) JAP(Z = N)dA or E(Z) = ¥, jP(Z = j)
o E(Z)=[P(Z>\d\or E(Z) =Y, P(Z >)
° E(aX + bY) =aE(X) + bE(Y)
e total probabilities (with conditioning) E(Z) = >_; E(ZIY = j)P(Y =)
e To measure the distance from Z to E(Z), we use the variance V(Z)
Definition?
V(Z) = E(Z - E(2))?) = E(2%) - E(2)?
Properties:
V(aZ) = a?V(2)
In general, V(X + Y) # V(X) + V(Y) (but it is true if X and Y are
independent random variables)
e How to measure the difference between Z to E(Z)?
1. Markov: Pr(Z > X) < E(Z)/X
2. Chebyshev: Pr(1Z — E(Z)| > AE(2)) < 5225
3. Chernoff: If Z1,...,Z, are Independent Bernouilli rv with p; € [0.1] and
Z =57, then
Pr(|Z — E(Z)] > AE(Z)) < 2exp(=XE@)).
= = 3

11

Morris Algorithm: Counting the number of events

e Step 1: Find an estimator Z

e Z must be small (of order of loglog n)
e we need to define an additional function g
e such that E(g(Z2))=n

e Morris algorithm
e Z—0

e At each event, Z — Z + 1 with probability 1/2Z
e When queried, return f(Z) = 2% —1

e What is the space complexity to implement Morris' algorithm?

e What is the time complexity in the worst case? What is the expected
complexity of a step?

e Prove the correctness: E(2%" — 1) = n (note Z, the random variable that
denotes Z after n events) Hint: by induction, assuming that
E(2*") = n + 1 and showing that E(2%»+1) = n 4 2

e How to find a probabilistic guarantee of the type
Pr(|f(X,) = i — n| > en) < a? Hint Prove E(2**") = 3/2n® +3/2n+ 1.

e Conclusion? Is this unexpected ?

12

From Morris to Morris+ and Morris+++

e 2nd step: How to get a useful bound?

e Objective: to reduce the variance (expectation is what we want). How to
do it?
e Classic idea: do the same experience many times and average them
e Morris algorithm +
e Morris is used to compute independent Z,}, an, S ,ZnK
e On demand, compute Y, = >_; Zf return f(Y,) =2" —1
e Questions:

e Which space complexity to implement Morris+'s algorithm?

e What time complexity?

e Establish the correctness: E(2Xn —1) =n

e What is the new guarantee obtained with Chebyshev? How many counters
should be maintained?

e How can we do even better?

e Morris++ = Morris+(1/3) and median

e proof with Chernoff: If Z;,..., Z, are Independent Bernouilli rv with
pi € [0.1] and Z =" Z;, then

Pr(1Z — E(Z)| > AE(2)) < 2exp(“2E2)),

13

2nd example: how to count the number of unique visitors

Context

e It is assumed that visitors are identified by their address (ix € [1, n])
e We observe a flow of m visits i, ..., im with ix € [1, n]

e How many different visitors ?

e Deterministic and trivial algorithms:
e if nis small, if nis big... and in front of what?
e solution in n:n bit array
e solution in mlog n: we keep the whole stream!

e We will see a bit later

e that we cannot do better with exact and deterministic algorithms
e that we cannot do better with approximated and deterministic algorithms

e How to do if you cannot store n bits
e but only O(Iogk n) for a certain k?
e we will see that it is again possible by using both randomization and
approximation.
e and that no deterministic exact or deterministic approximation can do it
with this space constraint.

15

Idealized algorithm (1) — Flajolet Martin

We will start with an idealized algorithm (which cannot be implemented in
practice).

e Let us choose a random h function from [1, n] to [0, 1]
e Why idealized?
e Problem 1: to store such a random function, you must define the images for
in each of the n points... at least Q(n) bits
e Problem 2: and in addition we would have to store real values!
e We will come back to these two problems in a moment....
e Let us assume for now that storing such a function costs ©(1)

e How do you keep track of the number of unique visitors?

We will keep Z — min;cstream h(i). Intuition?
e If you see the same visitor k times, it won't change Z
o If we see t different visitors, then the values taken by h split [0,1] in t + 1
intervals...and all should have the same size in expectation... and this size is

i1 g q 5
=) including the first !

e so you should return % -1

16

Idealized algorithm (2) — Flajolet Martin

Proof of correctness

o Let's prove that E(Z) = ﬁ

o £(2)=[;"™ P(Z>N)oA

° Show that E(Z) = m

e How to continue? by calculating the variance and applying Chebychev

e Prove that E(Z2) = m

e There is still one foolishness not to be said . E(1/Z) #1/E(2)

e Intuition: if we can control closely Z and 1/Z — 1 will be close to t
e FM+

e Let us maintain g = FM instances.

e Z; is the value produceg by FM;

H»l’

e What to return? Y = (Zqz)/ !
XizZiy_ 1
L] E(#) —t+1
21Ziy _ t E2)?
° V(:) q(t+1)2(t+2) < q
e Claim 1: P(IY — 251> :5) <n
e Claim2: P(I3 —1—t/ > ©(e)t) < n
e FM++
e choose n = %adapt €, instantiate K copies of Y Yi,..., Yk

e output median{%} Ok for K = [36 Iog(%)]
17

Toward a Non Idealized Version. A crucial tool: hashing functions

e We used the set of all possible functions (too large set, to large. storage
for one function)

To make it practical, we will consider a large (not too large) family of
functions H from [1, p] — [1, p]

How to define the quality of a family H?
Notion of k-wise independence
o Vir,...,ik,Vj1,...,jk, ix # i, and if we pick a random h function in H, then
o P(h(i1) = j1 and h(ix) = jx) 1/p*
e a larger k provides a "better” family
Examples:
1. the set of all functions from [1, p] — [1, p] is Ok.
e What k, what storage cost?
e f(1) — p choices,..., f(p) — p choices
e Problem: expensive, plog p bits are necessary for one function
2. with the polynomials H";Oly of degree k in Fp,
e evaluation cost? for degree k, k mult & and adds

e independence? how many polynomials such that (h(i1) = ji and h(ix) = jk
bk g X=ip

e exactly one, Lagrange polynomial: P = >_7 | by =] X jr

k

poly

is k—-independent

e choice? picking a function at random in H — choose k + 1 coefficients.

e and thus the family Hy,

18

Non Idealized FM (1)

e Stepl: find a O(1)-approximation £ of t in O(log n) bits, ie a constant C
such that & < t < Ct with constant probability (say %)
1. Pick h from a 2-wise family from [n] to [n] (works Vn but complicated,
otherwise round to 2K, or assume that n is a prime).
2. Maintain X = max;estream /Sb(h(i)) (Isb: least significant bit)
3. Output 2%
e Intuition:
o P(Isb(h(i)) =j) = 21% so E({i lsb(() =4} = ﬁ and
E({I7 ISb(h(’)) >J}) 21+2 + 2J+3 + L= t
e What happens when j is of order log t..
e there is ~ 1 visitor such that Isb(h(i)) :j
e there is ~~ 1 visitor such that Isb(h(i)) > j
e Thus, if j is of order (logt) — 5 it is very unlikely (1/2%) that there is no i
s.t. Isb(h(i)) >
e Thus, if j is of order (logt) + 5 it is very unlikely (1/2%) that there is a i s.t.
Isb(h(i)) > j
e with good probability, £ = 2% is in [&, Ct]
e The proof is very similar to what we have done, with one tricky issue
e how to use 2-wise independence ?
o fix j, define Y; = 1 iff Isb(h(i)) = j so that Z; =3, Y;, then E(Z;) =
e as usual we need V/(Z;) to control probab|l|t|es and V(Z;) =
E((S, Vi) — E(, ViR = S V(Yi) + i EOYY)) = E(V)E(Y) =
>~ V(Y;) because 2—wise independence says that E(Y;Y;) — E(Y;)E(

2/+

2}+1

19

<
~

Non ldealized FM (2)

Playing with constants, let us assume that Stepl provides a
32-approximation with probability %, then perform K experiments and take
the median to have 32-approx with large probability

To obtain a stronger approximation, we rely on the following technique
let us chose g in a 2 wise family from [n] to [n].
1. Imagine that we consider log n sets, with S; contains the elements i of the
stream s.t. Isb(g(i)) = j.
2. we know f (close to t), let us denote by Z the size of S; when 2/+1 ~ f¢?
3. and let consider U = 2717 in this case
E(U) =2"E(Z)=t, V(U) =27 Var(Z) < t2!
j+1 j+1 7
so that (Chebychev) P(IU — tl > et) < 2 = 2 & < ¢’
Then, we use several hashing functions and take the average value to

obtain an error with arbitrarily small probability

Not completely finished ! Is this algorithm implementable this time with
small space ?

No, because Sy is very large for instance ! But the maximum value we are
expecting in "interesting” S; is 557 = 21%% <5

Thus, we can "only” remember the first E% is each set !

Overall space complexity 7?7
20

Note on Non lIdealized FM (3)

e Technique called Geometric sampling

e n elements in the stream, k < n distinct elements (with respect to some
property)

e Store log n sub-streams, where Sy stores 1/2 of the elements (distinct wrt

the property), S stores 1/4 of the elements,... Siog « stores (close to) 1
element, Siogn a priori stores nothing if k << n

e Suppose that when there are | elements in one of the sets, we can find a

good estimation of k where typically / is of order }2

e Then, we bound all the sets to store less than 10/ elements (they are
useless after that)

e if we have a constant approximation of k (obtained elsewhere), then we
know in which set we should look at.

21

Why do we need randomization and approximation?

e Because a deterministic algorithm needs at least Q(n) bits

e How to prove this? We assume n = ©(m)

Let us consider the state of the memory of the algorithm after seeing
Myeonyim

We need to prove that there is enough information in what is stored
so as to differentiate 27 distinct elements

Remark: you can add as many computations as you want !

Input X, let us denote by Cr(X) the state on the memory

What can be computed using C¢(X) (and only C¢(X))?

we can compute h(Cr(X)) and h(Cr(X), {y}) = CG/(XU{y})

do it for all possible y values (visitors)...

If y was in the stream, then h(C¢(X),{y}) = h(Cr(X)) otherwise
B(Cr(X), {y}) = h(CF(X) + 1!

In C¢(X), there is enough information to distinguish 2" possible vectors (all
visitors vectors)

and thus n bits are needed!

22

Why do we need randomization and approximation?

e Because a deterministic approximation algorithm (say 1.1-approx) needs at

least Q(n) bits
e Let us suppose that there exists a collection C of subsets of n such that
e |C| is large (> exp(n/10%))
e VS €C,|S| =n/100 (sets are large)
o V51,5, €C?,1S1 N S2| < n/2000 (intersections are small)
e General idea
e Let us assume that we have presented to the algorithm
one of the sequences of C
e Then, we can find back which one! u
e just by trying exhaustively all #C sequences with C¢(X) B,
e Since we know how to differentiate exponentially many j

[(gg
(exp(n/10%)) elements, we need Q(n) bits “:'”j‘~~~

& TEEE
¥ D

L_hEUY L

e We still need to prove that such a set C exists ! &
e n visitors numbered from 1 to n split into n/100 packets of 100 visitors
In S;,Vi we randomly choose one visitor per packet
we build exp(n/10%) such sets S;.
easy: What is their size? n/100
we need to check that Vi, j, i # j,[Si(1S;j| < n/2000
How to do this ?it is enough to prove that the P(it works) is > 0
Why does it work ? Y; ; number of collisions between S; and S;
E(Yij) ? Pr(Y;j > n/2000) ? Pr(3i,jt.q.Y;; > n/2000) ? 23

	Introduction
	Sketching – Streaming
	Introduction
	Count the number of visits
	How to count the number of unique visitors

	Comparison between HPC supercomputers and Datacenters
	Architecture
	Filesystem
	Programming

