Cours ENSL:
Big Data – Streaming, Sketching, Compression

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr
Introduction
• w.r.t. traditional courses on algorithms
 • Exact algorithms for polynomial problems
 • Approximation algorithms for NP-Complete problems
 • Potentially exponential algorithms for difficult problems (going through an ILP for example)

• Here, we will consider extreme contexts
 • not enough space to transmit input data (sketching) or
 • not enough space to store the data stream (streaming)
 • not enough time to use an algorithm other than a linear complexity one

• Compared to the more "classical" context of algorithms:
 • we aim at solving simple problems and
 • we are looking for approximate solutions only because we have very strong time or space constraints.

• Disclaimer: it is not my research topic, but I like to look at the sketching/streaming papers and I am happy to teach it to you!
Application Context 1: Internet of Things (IoT)

- Connected objects, which take measurements
- The goal is to aggregate data.
- Processing can be done either locally, or on their way (fog computing), or in a data center (cloud computing).
- We must be very energy efficient
 - because objects are often embedded without power supply.
- Energy cost: Communication is the main source of energy consumption, followed by memory movements (from storage), followed by computations (which are inexpensive)
- A good solution is to do as many local computations as possible!
 - but it is known to be difficult (distributed algorithms)
 - especially when the complexity is not linear (e.g. think about quadratic complexity)
- Solution:
 - compress information locally (and on the fly)
 - only send the summaries; summaries must contain enough information!
Application Context 2: Datacenters

- Aggregate construction
- except the network (we can have several levels + infiniband), everything is "linear"
- the distance between certain nodes/data is very large but a strong proximity with certain data stored on disk
- with 1,000 nodes with 1TB of disk and a link at 400 MB/s, we have 1 PB and 400 GB/s (higher than with a HPC system)
- provided the data is loaded locally!
- for 25 TF/s \(10^3 25\text{GFs seti@home}\) in total, ratio 60 (HPC system 40 000)
- in practice, dedicated to linear algorithms and very inefficient for other classes.
- In both contexts, there is a strong need to have data driven algorithms (where placement is imposed by data) whose complexity is linear
Outline of the lectures

• Keywords:
 • Compression, Hashing, Randomized Approximation Algorithms

1. Lecture 1: Two basic theoretical problems
 • Lecture 2: with known lower and upper + randomized and deterministic bounds

2. Lecture 3: Big Data example: Plagiarism detection
 • randomized algorithm + Locality Sensitive Hashing

3. Lecture 4: Randomized Linear Algebra
 • compression beyond Singular Value Decompositions for very large matrices

• Shared Problems
 • Not enough space to store input data
 • Not enough space/time to implement something else than low (linear) complexity algorithms
 • Need for very cheap (online) but dedicated compression algorithm
Sketching – Streaming
• large volume of data generated in a distributed way
 • to be processed locally and compressed before transmission.

• Types of compression?
 • lossless compression
 • compression with losses
 • compression with losses, but tightly controlled loss for a specific function (sketching)

• + we are going to do online (on the fly) compression (streaming)
On-the-fly compression dedicated to a function f

- Let X be a stream of numbers (temperatures from a sensor)
- Easy problems?
 - examples: \min, \max, \sum, mean value median?
 - Constraint: compress data and linearize computations
- How?
 - The solution is often to switch to randomized approximation algorithms.
Compression associated to a specific function f

- More formally, given f and a stream X,
- we want to compress the data X but still be able to compute $\simeq f(X)$.
- Sketching: we are looking for C_f and g such that
 - the storage space $C_f(X)$ is small (compression)
 - from $f(X)$, we can recover $f(X)$, ie $g(C_f(X)) \simeq f(X)$
- Streaming: additional difficulty, the update is performed on the fly.
 - we cannot compute $C_f(\{X, y\})$ from $\{X, y\}$
 - because we cannot store $\{X, y\}$
 - so we need another function h such that $h(C_f(X), \{y\}) = C_f(\{X, y\})$
- and one last difficulty:
 - very often, it is impossible to do in deterministic and exact / deterministic and approximate
 - but only with a randomized and approximation algorithm.
- How to write this?
 - We are looking for an estimator Z such that for given α and ϵ
 - $Pr(|Z - f(X)| \geq \epsilon f(X)) \leq \alpha$. How to read this?
 - the probability of making a mistake by a ratio greater than ϵ (as small as you want)
 - is smaller than α (as small as you want)
Count the number of visits
Example: count the number of visits / packets

- Context
 - a sensor/router sees packets / visits passing through,
 - you just want to maintain elementary statistics (number of visits, number of visits over the last 1 hour, standard deviations)
 - Here, we simply want to count the number of visits

- What storage is necessary if we have n visits? $\log n$ bits. Why?
 Pigeonhole principle. If we have strictly less than $\log n$ bits, then we have two events (among the n) that will be coded in the same way.

- What happens if we only allow an approximate answer (say, to a factor of $\rho < 2$)? you need at least $\log \log n$ bits. Why? sketch of the proof: if we use $t < \log \log n$ bits, then we will be able to distinguish less than $\log n$ different groups and you can estimate how many groups are needed to count $\{0\}$, $\{0, 1\}$, $\{0, 1, 2\}$, $\{0, 1, ..., 7\}$.

- We will look for a randomized and approximated solution
 - Let us set α and ϵ
 - we are looking for an algorithm that computes \tilde{n}, an approximation of n
 - that only uses $K \log \log n$ bits storage
 - and such that $Pr(|\tilde{n} - n| \geq \epsilon n) \leq \alpha$
 - K must be a constant...not necessarily a small constant for now!
Crash Course in probabilities

- Z random variable with positive values
- $E(Z)$ is the expectation of Z
- definitions and properties?
 - $E(Z) = \int \lambda P(Z = \lambda) d\lambda$ or $E(Z) = \sum_j jP(Z = j)$
 - $E(Z) = \int P(Z \geq \lambda) d\lambda$ or $E(Z) = \sum_j P(Z \geq j)$
 - $E(aX + bY) = aE(X) + bE(Y)$
 - total probabilities (with conditioning) $E(Z) = \sum_j E(Z|Y = j)P(Y = j)$
- To measure the distance from Z to $E(Z)$, we use the variance $V(Z)$
 - Definition?
 - $V(Z) = E((Z - E(Z))^2) = E(Z^2) - E(Z)^2$
 - Properties:
 - $V(aZ) = a^2V(Z)$
 - In general, $V(X + Y) \neq V(X) + V(Y)$ (but it is true if X and Y are independent random variables)
- How to measure the difference between Z to $E(Z)$?
 1. Markov: $Pr(Z \geq \lambda) \leq E(Z)/\lambda$
 2. Chebyshev: $Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq \frac{V(Z)}{\lambda^2 E(Z)^2}$
 3. Chernoff: If Z_1, \ldots, Z_n are Independent Bernouilli rv with $p_i \in [0,1]$ and $Z = \sum Z_i$, then
 $Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq 2 \exp\left(\frac{-\lambda^2 E(Z)}{3}\right)$.
Morris Algorithm: Counting the number of events

- Step 1: Find an estimator Z
 - Z must be small (of order of $\log \log n$)
 - we need to define an additional function g
 - such that $E(g(Z)) = n$

- Morris algorithm
 - $Z \to 0$
 - At each event, $Z \to Z + 1$ with probability $1/2^Z$
 - When queried, return $g(Z) = 2^Z - 1$

- What is the space complexity to implement Morris’ algorithm?
- What is the time complexity in the worst case? What is the expected complexity of a step?

- Prove the correctness: $E(2^{Z_n} - 1) = n$ (note Z_n the random variable that denotes Z after n events) Hint: by induction, assuming that $E(2^{Z_n}) = n + 1$ and showing that $E(2^{Z_{n+1}}) = n + 2$

- How to find a probabilistic guarantee of the type $Pr(|f(Z_n) = \tilde{n} - n| \geq \epsilon n) \leq \alpha$? Hint Prove $E(2^{Z_n}) = 3/2n^2 + 3/2n + 1$.

- Conclusion? Is this unexpected?
From Morris to Morris+ and Morris+++

• 2nd step: How to get a useful bound?
• Objective: to reduce the variance (the expectation is already what we want). How to do it?
 • Classic idea: do the same experience many times and average them
• Morris algorithm +
 • Morris is used to compute independent \(Z_n^{(1)}, Z_n^{(2)}, \ldots, Z_n^{(K)} \)
 • On demand, compute
 \[
 Y_n = \frac{\sum_{i=1}^{K} (2Z_n^{(i)})^K - 1}{K}.
 \]
• Questions:
 • Which space complexity to implement Morris+'s algorithm?
 • What time complexity?
 • Establish the correctness: \(E(2Y_n - 1) = n \)
 • What is the new guarantee obtained with Chebyshev? How many counters should be maintained?
• How can we do even better?
 • Morris+++ = Morris+(1/3) and median
 • proof with Chernoff: If \(Z_1, \ldots, Z_n \) are Independent Bernouilli rv with \(p_i \in [0,1] \) and \(Z = \sum Z_i \), then
 \[
 Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq 2 \exp\left(-\frac{\lambda^2 E(Z)}{3}\right).
 \]
How to count the number of unique visitors
2nd example: how to count the number of unique visitors

Context

- It is assumed that visitors are identified by their address \((i_k \in [1, n])\)
- We observe a flow of \(m\) visits \(i_1, \ldots, i_m\) with \(i_k \in [1, n]\)
- How many different visitors?
- Deterministic and trivial algorithms:
 - if \(n\) is small, if \(n\) is big... and in front of what?
 - solution in \(n: n\) bit array
 - solution in \(m \log n\): we keep the whole stream!
- We will see a bit later
 - that we cannot do better with exact and deterministic algorithms
 - that we cannot do better with approximated and deterministic algorithms
- How to do if you cannot store \(n\) bits
 - but only \(O(\log^k n)\) for a certain \(k\)?
- we will see that it is again possible by using both randomization and approximation.
- and that no deterministic exact or deterministic approximation can do it with this space constraint.
We will start with an idealized algorithm (which cannot be implemented in practice).

- Let us choose a random h function from $[1, n]$ to $[0, 1]$
- Why idealized?
 - Problem 1: to store such a random function, you must define the images for in each of the n points... at least $\Omega(n)$ bits
 - Problem 2: and in addition we would have to store real values!
 - We will come back to these two problems in a moment.....
 - Let us assume for now that storing such a function costs $\Theta(1)$
- How do you keep track of the number of unique visitors?
- We will keep $Z \rightarrow \min_{i \in \text{stream}} h(i)$. Intuition?
 - If you see the same visitor k times, it won’t change Z
 - If we see t different visitors, then the values taken by h split $[0, 1]$ in $t + 1$ intervals...and all should have the same size in expectation... and this size is $\frac{1}{t+1}$ including the first !
- so you should return $\frac{1}{Z} - 1$!
Proof of correctness

- Let’s prove that \(E(Z) = \frac{1}{t+1} \).
- \(E(Z) = \int_0^{+\infty} P(Z \geq \lambda)d\lambda \).
- Homework (optional):
 - Prove that \(E(Z^2) = \frac{2}{(t+1)(t+2)} \)
 - What is the guarantee obtained when applying Chebychev?
 - Let us maintain \(q = \frac{1}{\epsilon^2 \alpha} \) FM instances
 - How to define the new estimator? (be careful not saying that \(E(1/Z) \neq 1/E(Z) \), but rather end the calculations by hand when you have an estimator very close to \(\frac{1}{t+1} \) !)
 - In order to lower the number of required copies of FM, use the 2 step approach: first obtain a guarantee with failure probability \(\frac{1}{3} \) and then use the median of several such experiments to lower the number of copies.
 - You should be able to replace \(\frac{1}{\alpha} \) by \(\log \frac{1}{\alpha} \).