Cours ENSL: Big Data – Streaming, Sketching, Compression
Today: Plagiarism Detection

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr
Last time: Sketching – Streaming
Application Context

- Internet of Things (IoT) compress locally, send summaries
- Datacenters: dedicated to linear algorithms, inefficient for other classes
- In both contexts, there is a strong need to have data driven algorithms (where placement is imposed by data) and whose complexity is linear
Positionning

- w.r.t. traditional courses on algorithms
 - Exact algorithms for polynomial problems
 - Approximation algorithms for NP-Complete problems
 - Potentially exponential algorithms for difficult problems (going through an ILP for example)

- Here, we will consider extreme contexts
 - not enough space to transmit input data (sketching) or
 - not enough space to store the data stream (streaming)
 - not enough time to use an algorithm other than a linear complexity one (plagiarism)

- Compared to the more "classical" context of algorithms:
 - we aim at solving simple problems and
 - we are looking for approximate solutions only because we have very strong time or space constraints.
Compression associated to a specific function f

- More formally, given f,
- we want to compress the data X but still be able to compute $\sim f(X)$.
- Sketching: we are looking for C_f and g such that
 - the storage space $C_f(X)$ is small (compression)
 - from $f(X)$, we can recover $f(X)$, ie $g(C_f(X)) \sim f(X)$
- Streaming: additional difficulty, the update is performed on the fly.
 - we cannot compute $C_f(X \cup \{y\})$ from $X \cup \{y\}$
 - since we cannot store $X \cup \{y\}$
 - so we need another function h such that $h(C_f(X), \{y\}) = C_f(X \cup \{y\})$
- and one last difficulty:
- very often, it is impossible to do in deterministic and exact / deterministic and approximate
- but only with a randomized and approximation algorithm.
- How to write this?
 - Given α and ϵ, we are looking for an estimator Z such that
 - $Pr(|Z - f(X)| \geq \epsilon f(X)) \leq \alpha$.

• Z random variable with positive values
• $E(Z)$ is the expectation of Z
• definitions and properties?
 • $E(Z) = \int \lambda P(Z = \lambda) d\lambda$ or $E(Z) = \sum j \cdot P(Z = j)$
 • $E(Z) = \int P(Z \geq \lambda) d\lambda$ or $E(Z) = \sum j \cdot P(Z \geq j)$
 • $E(aX + bY) = aE(X) + bE(Y)$
• To measure the distance from Z to $E(Z)$, we use the variance $V(Z)$
 • Definition?
 • $V(Z) = E((Z - E(Z))^2) = E(Z^2) - E(Z)^2$
• How to measure the difference between Z to $E(Z)$?
 1. Markov: $\Pr(Z \geq \lambda) \leq \frac{E(Z)}{\lambda}$
 2. Chebyshev: $\Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq \frac{V(Z)}{\lambda^2 E(Z)^2}$
 3. Chernoff: If Z_1, \ldots, Z_n are Independent Bernouilli rv with $p_i \in [0,1]$ and $Z = \sum Z_i$, then
 $\Pr(|Z - E(Z)| \geq \lambda E(Z)) \leq 2 \exp(-\frac{\lambda^2 E(Z)}{3})$.
Morris Algorithm: Counting the number of events

- **Step 1: Find an estimator** Z
 - Z must be small (of order of $\log \log n$)
 - we need to define an additional function g
 - such that $E(g(Z)) = n$

- **Morris algorithm**
 - $Z \rightarrow 0$
 - At each event, $Z \rightarrow Z + 1$ with probability $1/2^Z$
 - When queried, return $f(Z) = 2^Z - 1$

- **Proof scheme**
 - $E(2^Z) = n + 1$ and $V(2^Z) \leq n^2/2$ and apply Chebychev to obtain $Pr(|f(X_n) = \tilde{n} - n| \geq \epsilon n) \leq \frac{1}{2\epsilon^2}$
 - Do the same experiment plenty of times to obtain $Pr(|f(X_n) = \tilde{n} - n| \geq \epsilon n) \leq \alpha$
 - To obtain a lower constant, use above scheme to get $Pr(|f(X_n) = \tilde{n} - n| \geq \epsilon n) \leq 1/3$ and then use the median of several experiments to conclude
2nd example: how to count the number of unique visitors

Context

- We assume that visitors are identified by their address \((i_k \in [1, n])\)
- We observe a flow of \(m\) visits \(i_1, \ldots, i_m\) with \(i_k \in [1, n]\)
- How many different visitors?
- Deterministic and trivial algorithms:
 - solution in \(n: n\) bit array
 - solution in \(m \log n\): keep the whole stream!
- We have proved (when \(m = \Theta(n)\)) that
 - we cannot do better with exact and deterministic algorithms
 - we cannot do better with approximated and deterministic algorithms
- With only \(O(\log^k n)\) (for some \(k\)), it is possible by using both randomization and approximation.
We start with an idealized algorithm (one that cannot be implemented in practice).

- Let us choose a random h function from $[1, n]$ to $[0, 1]$
- Why idealized?
 - Problem 1: to store such a random function, you must define the images for in each of the n points... at least $\Omega(n)$ bits
 - Problem 2: and in addition we would have to store real values!
 - Let us assume for now that storing such a function costs $\Theta(1)$
- How to keep track of the number of unique visitors?
 - We keep $Z \rightarrow \min_{i \in \text{stream}} h(i)$. Intuition?
 - If you see the same visitor k times, it won’t change Z
 - If we see t different visitors, then the values taken by h split $[0, 1]$ in $t + 1$ intervals... and all should have the same size in expectation... and this size is $\frac{1}{t+1}$ including the first!
 - so we should return $\frac{1}{Z} - 1$!
Non Idealized algorithm – Hash functions

- To make it practical, we will consider a large (but not too large) family of functions \mathcal{H} from $[1, p] \rightarrow [1, p]$.
- Notion of k-wise independence
 - $\forall i_1, \ldots, i_k, \forall j_1, \ldots, j_k, i_k \neq i_l$, and if we pick a random h function in \mathcal{H}, then
 - $P(h(i_1) = j_1$ and $h(i_k) = j_k) = 1/p^k$
 - A larger value for k provides a "better" family.
- Example: the set of polynomials $\mathcal{H}^k_{\text{poly}}$ of degree k in F_p
 - Evaluation cost? For degree k, k mult & and adds
 - Independence? How many polynomials such that $(h(i_1) = j_1$ and $h(i_k) = j_k$)
 - Exactly one, Lagrange polynomial: $P = \sum_{r=1}^{k} \prod_{l \neq r} (X-i_l) \times j_r$
 - Choice? Picking a function at random in $\mathcal{H}^k_{\text{poly}} \rightarrow$ picking $k + 1$ coefficients.
 - And thus the family $\mathcal{H}^k_{\text{poly}}$ is k-independent.
- Can be easily generalized to different sizes $F_p \rightarrow F_q$.

Finding Similar Itemsets
General Idea

- 2 type of difficulties related to
 - the number of objects: N objects $\rightarrow N^2$ comparisons
 - the objects themselves: large texts,...

- Applications
 - pages with a lot of text in common (mirror sites, approximate mirror)
 - plagiarism (today)
 - group news that deal with the same event
 - Amazon, Netflix: users with the same taste
 - dual: Amazon, Netflix: products with the same fans

- we will concentrate on texts, the first step only is application specific
 - Order of magnitude: 10^6 documents, size a few MB not huge (a few TB)
 - Distributed over a datacenter: large number of nodes $10^3 - 10^6$ nodes

- Two goals:
 - avoid moving data between the nodes (small and shared bandwidth)
 - avoid performing 10^{12} comparisons: both for time and data movements
Techniques

- 3 steps
 1. Shingling: conversion of a large text into a (large) set
 2. Min-hashing: assign to each text a (small) similarity-preserving signature
 3. Locality Sensitive Hashing: detect suspect pairs by collision detection

- randomized approximation algorithm \(\rightarrow\) errors: false positive and false negative

- what is crucial in our context? Complexity: we want to deal with linear complexity algorithms only!

- Remark: we assume that the output is (at most) of linear size (otherwise, we have no chance!)
• k-shingle
 • sequence of k successive characters in the text
 • $\{abcab\}$ et $k = 2$?

• Observation (admitted) close texts \rightarrow a lot of shingles in common

• A text: represented by the set of shingles it contains

• How many shingles ? with $k = 10$

• The data structure should enable to perform comparisons easily...
 • 30^{10} shingles $= 2^{49}$
 • size if stored as a vector of bits 70 TB
 • what happens in practice? Solution? shingles \rightarrow tokens
 • first use of hashing functions: adapt the size, control collisions
• Each text is associated to a set of items
• We need to define a similarity between sets.
• Jaccard Similarity: $Sim(C_1, C_2) = \frac{C_1 \cap C_2}{C_1 \cup C_2}$
• $d(C_1, C_2) = 1 - Sim(C_1, C_2)$ is a distance (proof later)
 • one vector per document
 • one row per token
• How to compute the similarity between two documents?
• Problems:
 • we do not want to deal with N^2 pairs
 • we cannot centralize all N pairs at a single node
Minhashing

- Let us suppose that \((C_1, C_2)\) are stored at the same place
- Goal: build a small similarity preserving signature for each document.
- General Idea: build a random game whose expected value (to win) is \(Sim(C_1, C_2)\)
- Do we really need to have \((C_1, C_2)\) at the same place to play the game?
- Do we really need permutations?
- How many hash functions do we need in order to obtain a good precision?
Locality Sensitive Hashing

- So far: we have a very compact summary of each document (250 × 4B integers = 1kB)
- Last step: given a suspicion threshold $s \in [0, 1]$, return all pairs (C_1, C_2) such that $\text{Sim}(C_1, C_2) > s$
- Without doing all comparisons!
- Order of magnitude:
 - 10^6 documents $\rightarrow 1GO$, Ok en mémoire
 - 10^{12} comparisons with 10^{-6}s per comparison 12 days)-;
- Goal: go from quadratic to linear complexity
- using hash functions again and collision detection
- now, we want close vectors to collide, and distant vectors not to collide
locally sensitive hashing

- split the summary (250 integers) into b blocks of size r ($rb = 250$)
- let h_k be the hash function associated to the k-th block
- collision: (almost) only if both vectors coincide on this block. Solution: use a large number of buckets (with respect to 10^6) $\rightarrow 10^9$ is Ok in practice, very few false positive.
- a pair (C_1, C_2) is suspicious if $\exists k, h_k(B^1_k) = h_k(B^2_k)$ where B^i_k is the k-th block of C_i
- what happens ?
 - if r is too small ? too many false positive
 - if r is too big ? we will miss similar itemsets and get false negative
- Given r (and thus b) and $s = Sim(C_1, C_2)$, what is the probability that a collision occurs ?
with $N = 100$ and $r = 3, 4, 5$

false positive? false negative?
with $N = 1000$ and $r = 3, 4, 5$
• distributed documents.
• keep everything local (until the computation of signatures)
• keep everything local (compute the hashing of each block) 1 document + 1 block \rightarrow 4B !
• gather all information related to one block number to the same node (4B + 1B for the index) \rightarrow 5MB
• detect all suspicious pairs (very few and send them to a specific node)...
• very few communications !
Locality Sensitive Hashing and Nearest Neighbors Search
(k-) nearest neighbors

- Metric space with distance, set P of points
- preprocessing allowed on P
- Query: given a point, find its (k) closest neighbor(s)
 - example for spam classification: start with a huge annotated emails
 - one word = one item
 - return the k closest emails, majority vote to determine if it is spam or not
- Approach # 1: no preprocessing, just look through all possible items
 - space $O(dn)$
 - query $O(dn)$
- Approach # 2: if $d=1$
 - space $O(n)$ just keep the boundaries
 - query $O(\log n)$ just a basic binary search
- Approach # 3: if $d=2$
 - Voronoï diagrams: space $O(n)$ and computing cost $O(n \log n)$
 - query time easy (locate the cell)
 - As dimension increase, the description increases exponentially with d
- all exact (known) approaches in high dimension either have
 - exponential space $O(n^d)$
 - or exponential query time !
 - (same for kd-trees)
 - in very. large dimension, the naive algorithm is not that bad !
Given a set of P points, construct a data structure such that
- on query q, we return p in P such that $d(p, q) \leq c \min_{p' \in P} d(p', q)$

(r_1, r_2)PLEB problem: point location in equal balls
- given a set P of points and r_1, r_2
- construct a data structure to answer as follows
- If $\exists p \in P$ st $d(p, q) \leq r_1$, return YES and any $p' \in P$ s.t. $d(p', q) \leq r_2$
- If there is no $p \in P$ st $d(p, q) \leq r_2$, return NO
- elif don't care what algorithm returns
Locality Sensitive Hashing (Indyk, Motwani)

- Usually, we want hashing functions to "shuffle" items as much as possible
 - When writing $P(h(i_1) = j_1 \& h(i_2) = j_1) = 1/p^2$, we say that the distance between images should not depend on the distance between initial points.

- Here, we want to detect "collisions"
 - we want close points to have a high probability to collide
 - we want distant points to have a low probability to collide
 - just as in the context of plagiarism.

- General idea
 - hash items into many different buckets (with different functions)
 - declare that there is a collision if two items fall into the buckets

- Formal definition \mathcal{H} a family of hash function $U \rightarrow S$
 - (where U is the set of points, S the set of buckets)
 - is said to be (r_1, r_2, p_1, p_2) locality sensitive if
 - If $d(p, q) \leq r_1$, then $P_{h \in \mathcal{H}}(h(p) == h(q)) \geq p_1$ and
 - If $d(p, q) \geq r_2$, then $P_{h \in \mathcal{H}}(h(p) == h(q)) \leq p_2$
 - of course $r_1 < r_2$, $p_1 > p_2$
Example

- Let $H^d = \{0, 1\}^d$ equipped with Hamming distance (number of different coordinates)
- Let $H = \{h_i, \forall i, \text{ where } h_i(b_1, \ldots, b_d) = b_i\}$
- H is $(r, cr, 1 - r/d, 1 - cr/d)$ locality sensitive
 - if p, q are at distance at most r, they have at least $(d - r)$ coordinates in common and thus a probability at least $1 - r/d$ to be hashed similarly,
 - if p, q are at distance at least cr, they have at most $(d - cr)$ coordinates in common and thus a probability at most $1 - cr/d$ to be hashed similarly.
Master Theorem of LSH

Theorem

Suppose $\exists (r_1, r_2, p_1, p_2)$-LSH family, then there is an algorithm for (r_1, r_2)-PLEB with answer queries with constant probability (it might be wrong), and that uses space $O(dn + n^{1+\rho})$ and query time $O(n^\rho)$ (evaluation of hash functions), where $\rho = \frac{\log(1/p_1)}{\log(1/p_2)}$ (complexity decreases when ρ decreases, i.e., when $p_2 << p_1$).

Sketch of the proof — Algorithm

- let (k, l) be parameters (t.b.d. later), let G be a family of hash functions from U to S^k (new buckets), $g(p) = (h_{g_1}(p), \ldots, h_{g_k}(p))$ each h_{g_i} being randomly chosen in H.

- **Preprocessing:**
 - (1) choose g_1, \ldots, g_l (other parameter) independently from G
 - (2) for each $p \in P$, store $g_1(p), \ldots, g_l(p)$

- **On query**
 - (1) search the points of P in $g_1(q), \ldots, g_l(q)$, but stop after the first $2l$ points in (the unlikely) case there are more than $2l$.
 - (2) If there is one point p such that $d(p, q) \leq r_2$ return it and return YES, otherwise return NO
Proof (continued)

• Intuition (1): if \(q \) and \(p \) are "close", then one the \(g_i \) will send them into the same \(k \)-bin.
• Intuition (2): it is unlikely that they are \(2l \) distant (useless) points in the set (that would prevent to find the useful point)
• (2) There are at most \(2l - 1 \) points st \(d(p, q) > r_2 \) and \(\exists j, g_j(p) = g_j(q) \) with constant probability
 • Let \(k = \log_{1/p_2} n \), what is the expected number of points st (2) holds ?
 • If \(d(p, q) > r_2 \) then for each \(h \), the probability of collision is at most \(p_2 \)
 • so the expected number of times \(p \) is written in any \(g_j \) is \(p_2^k \), and the expected number of times it is written for a given \(g \) is \(lp_2^k \)
 • and the number of "bad points" written for \(g \) is therefore at most \(nlp_2^k = l \)
 • Markov says \(P(X > \lambda) < E(X)/\lambda \) so \(P(\text{more than } 2l \text{ bad points}) \leq 1/2 \)
• (1) If \(p \in P \) with \(d(p, q) \leq r_1 \), then \(\exists j, g_j(p) = g_j(q) \) with constant probability
 • If \(d(p, q) \leq r_1 \) then for each \(h \), the prob of collision for \(h \) is at least \(p_1 \)
 • the probability of collisions in one bucket is \(p_1^k \)
 • the probability of a collision in at least one of the \(l \) buckets is \(1 - (1 - p_1^k)^l \)
 • choice of \(l \) ? if we set \(l = n^p \) then the probability is at least \(1 - 1/e \approx 0.63 \).
• to increase the probability, use the classical and tricks
• Check space and time complexities
Conclusion on sketching/streaming/compression

- Goal: data flow \(X \) and a function to evaluate \(f \)
- Streaming: maintain a summary \(C_f(X) \) enough to compute \(f(X) \approx g(C_f(X)) \)
 - Solution: Use approximation randomized algorithms
 - \(\forall \epsilon, \delta \), \(Pr(\text{relative error} \geq \epsilon) \leq \delta \)
 - enough (and often necessary) to change space complexities (from \(\log n \rightarrow \log \log n \), \(n \rightarrow \log n \), from \(n^d \) to \(n^\rho d \))
 - at the price of sometimes large constants
 - but constants are pessimistic
 - and very small \(\epsilon \) and \(\alpha \) are not always required (plagiarism)
- General Idea:
 - Do less communications (same a lot of energy, time)
 - But more local computations (cheap)
 - crucial for IoT and datacenters
- Method:
 - Find an estimator \(Z \) tel que \(E(Z) = \) what we want to estimate
 - go for + and ++ versions to control the probability
 - hash functions are a very powerful and versatile tool:
 - to shuffle potentially correlated entries (Unique Visitors)
 - to adapt the size of sets (Plagiarism)
 - to create short summaries (Min-Hashing)
 - to detect close items (Locality Sensitive Hashing)
A few resources on the web

- Algorithms for Big Data (CS 229r), Jelani Nelson (Harvard, now MIT)
- Algorithms for Big Data (CS 598) Chandra Chekuri (Urbana Champaign)
- Data Streams Algorithms (CS711) Andrew McGregor (UMass Amherst).
- Dealing with Massive Data (COMS 6998) Sergei Vassilvitskii (Columbia).