
Optimizing the steady-state throughput of scatter
and reduce operations on heterogeneous platforms

Arnaud Legrand, Loris Marchal, Yves Robert

Laboratoire de l’Informatique du Parallélisme
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Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Two Problems of Collective Communication

Scatter one processor Psource sends distinct messages to target
processors (

{
Pt0 , . . . , PtN

}
)

I Series of Scatter Psource sends consecutively a large number
of distinct messages to all targets

Reduce Each of the participating processor Pri in Pr0 , . . . , PrN

owns a value vi

⇒ compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN (⊕ is associative, non
commutative)

I Series of Reduce several consecutive reduce operations
from the same set Pr0 , . . . , PrN to the same target Ptarget.
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Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications
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Framework

1. express optimization problem as set of linear constraints
(variables = fraction of time a processor spends sending to
one of its neighbors)

2. solve linear program (in rational numbers)

3. use solution to build periodic schedule reaching best
throughput
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Series of Scatter

I mk: types of the messages with destination Pk

I s(Pi → Pj ,mk): fractional number of messages of type mk

sent on the edge Pi → Pj within on time unit

I t(Pi → Pj): fractional time spent by processor Pi to send
data to its neighbor Pj within one time unit

I bound for this activity:

∀Pi, Pj , 0 6 t(Pi → Pj) 6 1

I on a link Pi → Pj during one time-unit:

t(Pi → Pj) =
∑

k

s(Pi → Pj ,mk)
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Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1
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Throughput and Linear Program

I throughput: total number of messages mk received in Pk

TP =
∑

Pj→Pk

s(Pj → Pk,mk)

(same throughput for every target node Pk)

I summarize this constraints in a linear program:
Steady-State Scatter Problem on a Graph SSSP(G)
Maximize TP,
subject to

∀Pi,∀Pj , 0 6 s(Pi → Pj) 6 1
∀Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj) 6 1

∀Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi) 6 1
∀Pi, Pj , s(Pi → Pj) =

∑
mk

send(Pi → Pj ,mk)× c(i, j)
∀Pi,∀mk, k 6= i,

∑
Pj ,(j,i)∈E send(Pj → Pi,mk)

=
∑

Pj ,(i,j)∈E send(Pi → Pj ,mk)
∀Pk, k ∈ T

∑
Pi,(i,k)∈E send(Pi → Pk,mk) = TP
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Series of Scatter - Toy Example

2/3
4/3 4/3

11

PbPa

Ps

P0 P1

platform graph (edges labeled with c(i, j))
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value of s(Pi → Pj ,mk) in the solution of the linear program
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Series of Scatter - Toy Example
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occupation time of the edge (t(Pi → Pj))
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Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm
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Building a schedule

1
2

1
2

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

1

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages
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Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1
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Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

v0

P0 → P1

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

T0,0,2

P1

v0

P0 → P1

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)
v[0,2]

P1 → P0

T0,0,2

P1

v0

P0 → P1

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Series of Reduce

I each processor Pri owns a set of values vt
i (e.g. produced at

different time-steps t)

I perform a Reduce operation on each set {vt
1, . . . , v

t
N} to

compute V t

I each reduction uses a reduction tree

I two reductions (t1 and t2) may use different trees
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Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m
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Linear Program - Constraints

I occupation of a link Pi → Pj :

t(Pi → Pj) =
∑
v[k,l]

s(Pi → Pj , v[k,l])× size(v[k,l])× c(i, j)

I occupation time of a processor Pi:

α(Pi) =
∑

Tk,l,m

cons(Pi, Tk,l,m)× w(Pi, Tk,l,m)

I “conservation law” for packets of type v[k,m]:∑
Pj→Pi

s(Pj → Pi, v[k,m]) +
∑

k6l<m

cons(Pi, Tk,l,m)

=
∑

Pi→Pj

s(Pi → Pj , v[k,m]) +
∑
n>m

cons(Pi, Tk,m,n) +
∑
n<k

cons(Pi, Tn,k−1,m)
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Linear Program - Constraints

I definition of the throughput:

TP =
∑

Pj→Ptarget

s(Pj → Ptarget, v[0,m])+
∑

06l<N−1

cons(Ptarget, T0,l,N )

I solve the following linear program over the rational numbers:

Steady-State Reduce Problem on a Graph SSRP(G)
Maximize TP,
subject to all previous constraints
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Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication
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Toy Example for Series of Reduce
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Toy Example for Series of Reduce
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Toy Example for Series of Reduce
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Toy Example for Series of Reduce
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Toy Example for Series of Reduce
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Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed
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Conclusion

I new framework to study collective communications in a
heterogeneous environment

I makespan difficult to minimize ⇒ focus on throughput

I relaxation, use of linear programming

I asymptotically optimal algorithm

I can be extended to other communication schemes and
scheduling problems
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