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Introduction

• multicast = broadcast to a strict subset of targets in the platform nodes

• lots of studies of multicast:

• Steiner trees (minimize the cost of a single multicast tree, NP hard

problem)

• for a wide variety of particular architectures and technologies

(wormhole-routed, wireless, ad-hoc, optical netwworks)

• focus on pipelined multicast:

maximize the throughput of a series of multicast

• same framework as in previous work for other collective communica-

tions:

scatter, reduce, broadcast⇒

 optimal throughput,

asymptotically optimal algorithms

• surprisingly, multicast turned out to be more challenging
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Outline

1. Framework and Model

2. Some theoretical results: Multicast is hard !

3. Heuristics based on linear programming

4. Tree-based heuristics

5. Experimental results

6. Further on complexity study ?
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Framework and Model



Framework of the platform

• G = (V,E, c)

• Let P1, P2, . . . , Pn be the n processors

• Psource: processor initiating the multicast

• Ptarget: set of target processors

• (j, k) ∈ E: communication link between

Pi and Pj

• c(j, k): time to transfer one unit message

from Pj to Pk

• one-port for incoming communications

• one-port for outgoing communications
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Steady-state approach

• Focus on the average quantities, over one time-unit:

• ti,j average occupation time of edge Pi → Pj

• ni,j average number of messages going through edge Pi → Pj

• xk
i,j average number of messages targeting Pk going through Pi → Pj

• Some relations between these quantities:

• clearly, 0 ≤ ti,j ≤ 1

• a node Pi has a limited sending capacity (one port):∑
j such that (i,j)∈E

ti,j ≤ 1

• a node Pi has a limited receiving capacity (one port):∑
j such that (j,i)∈E

tj,i ≤ 1

• link between number of messages and occupation time:

ti,j = ni,j · ci,j
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Steady-state approach

If we consider the message sent to the target node Pk:

• Psource sends TP such messages:∑
j/(source,j)∈E

xk
source,j = TP

• Pk receives TP such messages:∑
j/(j,k)∈E

xk
j,k = TP

• On another node Pi, these messages are conserved:∑
j/(j,i)∈E

xk
j,i =

∑
j/(i,j)∈E

xk
i,j

5mk

2mk

3mk

4mk

Pi
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Introduction of linear programming

• Objective function: maximize throughput TP

• Which relation between xk
i,j and ni,j ?

1. Pessimistic view: ni,j =
∑

k

xk
i,j

• may be too pessimistic since xk1
i,j and xk2

i,j de-

notes the same messages

• as if the source sends differents messages to

each target

• provides a lower bound on the throughput

2. Optimistic view: ni,j = max
k

xk
i,j

• may be too optimistic, if xk1
i,j and xk2

i,j count dif-

ferents set of messages

• provides an upper bound on the throughput

...

Pi

Pj

ni,j

x1
i,j

x2
i,j

xn
i,j
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Why solution 2 is not always feasible

Consider the following plat-

form, where the multicast set

consists in the colored nodes:

The linear program provides

the following solution with

throughput 1:
P0

P1 P2

P3

P4P5 P6
1

1

1

1

1

1

1

1

2
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Why solution 2 is not always feasible

Nevertheless, the obtained throughput is not feasible:

P0

P1 P2

P3

P4P5 P6

a

a

a

a

ab

b

b

b

b
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Theoretical results



Theoretical results

• Neither linear programs can compute the true optimal throughput

• theorem : computing the best throughput for a multicast operation on a

given platform is NP-hard

• definition multicast tree:

a tree, rooted in Psource, spanning all the nodes of Ptarget, and made up

valid edges from E
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NP-Completeness

• reduction from MINIMUM-SET-COVER:

C is a collection of subsets of X, a B is a bound

does C contain a cover of X of size at most B ?

X1 X2 X3 X4 X5 X6 X7 X8

C1

C2

C3

C4
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Heuristic based on linear
programming



Straightforward heuristics

• lower bound on the throughput→ scatter heuristic

|Ptarget|: cardinal of the target set

scatter has a guarantee factor of |Ptarget|:

throughput(scatter) ≥ upper bound
|Ptarget|

• broadcast on the whole platform

the optimistic view (ni,j = max
k

xk
i,j) leads to a feasible schedule in this

case
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Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Reduced Broadcast:

1. compute the solution of the broadcast

2. choose the node Pmin not in the original Ptarget which forwards the

minimum of messages:

MIN
∑

i∈Ptarget

∑
Pj∈N in(Pm)

xj,m
i

3. set V = V \{Pmin} and start again until the throughput is not improved

• Augmented Multicast:

1. compute the solution of the scatter

2. choose the node Pmax not in the original Ptarget which forwards the

maximum of messages

3. add this node to Ptarget if it improves the throughput of a broadcast on

the set of nodes {Psource} ∪ Ptarget

Loris Marchal 2 mars 2004 slide 13/ 30



Refined heuristics

• Multisource Multicast

1. start from the solution of a scatter

2. compute the node which forwards the maximum of messages

3. add this node as secondary source:

it receives all the messages from the previous sources

it sends part of the messages to the target nodes
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Tree-based heuristic



Steiner tree

• problem: find a low-cost multicast tree

• cost: sum of the weights of the edges in the tree

• Minimum Steiner Tree: NP-complete

• some heuristics exist, among other the Minimum Cost Path Heuristic:

• grow a tree until it spans all the target nodes

• at each step, find the target which could be added with minimum cost

to the current tree
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Minimum Cost Path Heuristic

• we adapt the previous heuristic to our metric:

max
i

(
∑

cost of all edges Pi → Pj in the tree T )

1. T = (Psource, ∅)

2. choose the target node Pt wich minimizes

max(cost of the edges on the path Psource  Pt)

3. add the path Psource  Pt to the tree T

4. update the cost of the edges: if (i, j) is a new edge of the tree,

• ∀ edge (i, k) c(i, k)← c(i, k) + c(i, j)

• c(i, j)← 0
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Experimental results



Experimental results

• we perform experiments on platforms generated by Tiers

• two types of platforms:

• one “big”: 65 nodes

• one “small”: 30 nodes

• results: comparison of the throughput of our heuristics over the two

bounds:

• over the lower bound (scatter operation)

• over the theoretical upper bound
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Small platform - comparison over scatter
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Small platform - comparison the lower bound
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Big platform - comparison scatter
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Big platform - comparison the lower bound
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More on complexity ?



Does Multicast belong to NP?

• we have shown that multicast is NP-hard, but multicast ∈ NP?

• problem: check that a set of multicast trees is a valid solution

→ time linear in the size of the set, potentially in 2|V |

→ check if all communications can be orchestrated

• we prove that at most 2× |V | of those trees are useful

(with throughput 6= 0)

• suppose the solution is made of weighted trees (Ti, yi)

• write the one-port constraints for all the communications involved in

these trees
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Does Multicast belong to NP?

• we get the following linear program:

Maximize
∑

k yk,

subject to

(1) ∀Pi,
∑

Pj∈N in(Pi)

∑
tk3(Pj ,Pi)

yk · c(j, i) ≤ 1

(2) ∀Pi,
∑

Pj∈N out(Pi)

∑
tk3(Pi,Pj)

yk · c(i, j) ≤ 1

(3) ∀tk ∈ T , yk ≥ 0

• one vertex V of the polyhedron is an optimal solution

• V is the solution of a |T | × |T | linear system such that at V , at least T
inequalities (among T + 2|V |) are tight

• at most 2|V | tree Tk such that yk > 0

• these weights are solution of the linear system:

log(ai) and log(bi) ≤ 2|E|(log(|E|) + log(max c(i, j)))
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Does Multicast belong to NP?

• how to orchestrate communications?

• for now:

• one-port constraints are satisfied

• weights are polynomial in the size of the platform

• is this enough to build a valid schedule?

• use of a bipartite graph
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Use of a bipartite graph - example
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Use of a bipartite graph - example

2

3
6

3

4 8

P send
a P send

b P recv
b

P send
s
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Use of a bipartite graph - example
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Use of a bipartite graph - example
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Use of a bipartite graph - example
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Use of a bipartite graph - example
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Does multicast belong to NP?

• if we restrict the solution to have:

• a polynomial number of tree

• a description polynomial in G

then the problem (COMPACT-WEIGHTED-MULTICAST) is in NP

• this restriction does not affect the optimality of a solution
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new linear program

•
Maximize

∑
k yk,

subject to

(1) ∀Pi,
∑

Pj∈N in(Pi)

∑
tk3(Pj ,Pi)

yk · c(j, i) ≤ 1

(2) ∀Pi,
∑

Pj∈N out(Pi)

∑
tk3(Pi,Pj)

yk · c(i, j) ≤ 1

(3) ∀tk ∈ T , yk ≥ 0
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new linear program

• dual:

Minimize
∑

i w
in
i +

∑
i w

out
i ,

subject to{
(tree) ∀Tk,

∑
(i,j)∈Tk

c(i, j) · (win
j + wout

i ) ≥ 1

• given an allocation (win
i , wout

i ),
find a constraint that is not fulfilled

⇔ find a tree, spanning the targets, with minimum weight (aka Steiner)
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new linear program

Grötschel, Lavasz, Schrijver:

• There exists an oracle-polynomial time algorithm that solves the weak

violation problem for every circumscribed convex body (K, n,R) given

by a weak separation oracle

(using the ellipsoid method)

• There exists an oracle-polynomial time algorithm that solves the weak

separation problem for every convex body given by a weak optimization

oracle

• optimal throughput for multicast⇔ Minimum Steiner Tree (NP)

• optimal throughput for broadcast⇔ Minimum Spanning Tree (P)
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