
Laboratoire de l’Informatique du Parallélisme ROMA team

(UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668)

internship proposal - Master 2

Memory-aware scheduling fot the StarPU runtime

Loris Marchal, Samuel Thibault

Keywords: Parallel computing, scheduling, algorithms.

Advisors:
Loris Marchal: researcher, CNRS & Univ. de lyon,
(http://perso.ens-lyon.fr/loris.marchal/, loris.marchal@ens-lyon.fr)

Samuel Thibault: associate professor, Université de Bordeaux & INRIA,
on leave in the ROMA team in february–july 2019,
(http://dept-info.labri.fr/∼thibault/index.html,samuel.thibault@inria.fr)

Research team

The internship will take place in the ROMA team, of the “Laboratoire de l’Informatique du
Parallélisme”. The ROMA team focuses on designing parallel algorithms and schedules for High
Performance Computing platforms, in particular for scientific applications.

Context of the internship

Parallel computing platforms are used, among others, to perform large-scale numerical simulations
and are becoming increasingly complex, as they now include computing accelerators, deep memory
hierarchies, and the combination of shared and distributed memories. On way to take advantage
of their raw power despite this complexity is to rely on lightweight scheduling runtimes, such as
the StarPU runtime [1] (whose development is led by Samuel Thibault). A scientific computing
application is then described as a directed graph of tasks, where arcs represent dependencies
between tasks. The scheduler allocates available tasks on the various computing resources of the
platform. One of the problem to efficiently solve such a scheduling problem is linked to memory:
we have to avoid the scenario where the platform runs out of memory, otherwise the application
would crash (or experienced very bad performance because of swapping).

Solutions to this problem have been proposed. First, schedulers taking into account the amount
of available memory have been proposed for the case of a single computing resource [5] or for
specific task graphs on parallel resources [2]. More recently, we have proposed a method to
add new dependencies to the task graph such that any valid schedule of the resulting graph is
guaranteed not to exceed a given amount of memory [6]. The benefit of this method is to treat
memory bottlenecks before the execution, and to allow for runtime schedulers, which are able
to dynamically adapt to changing conditions in the computing platforms. Unfortunately, the
complexity of the algorithm and the large number of added dependencies make this method hard
to use in practice.

Objective of the internship

The goal of this internship is to improve this method, by limiting the needed guarantees: instead of
proving that all execution will not exceed the memory (the actual guarantee), it is indeed enough
to make sure that no memory bottlenecks will happen, as runtime schedulers such as StarPU are
able to block tasks requesting memories before some other tasks release enough memory. This
way, we would be able to dramatically limit the number of new dependencies to add to the graph.

The internship will consist of the following steps.



1. Model the problem in graph concepts, by selecting the most appropriate memory model and
by expressing the objective as a graph property.

2. Propose algorithmic solutions to solve the problem, with a special care on the complexity of
the solutions.

3. Test the proposed solution first by simulation, on actual application graphs.

4. Implement some of these solutions on the StarPU runtime.

The distribution of the work between theory (designing algorithms and proving them) and
practice (simulations and real implementation) is flexible and will depend on the skills and will of
the candidate.

Required skills

The candidate need a good skill in algorithms, to be confident with programming in C or other
common programming languages.

Added value for the intern

The intern will have the opportunity to join a dynamic research group, to acquire knowledges in
scheduling and parallel computing, to increase his/her skills in programming and in the develop-
ment of in the most recent tools for parallel computing.

Bibliography

[1] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU:
a unified platform for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):187–198, 2011.

[2] Lionel Eyraud-Dubois, Loris Marchal, Oliver Sinnen, and Frédéric Vivien. Parallel scheduling
of task trees with limited memory. TOPC, 2(2):13:1–13:37, 2015.

[3] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for
Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–321, January 2002.

[4] Joseph Y.-T. Leung, editor. Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC, 2004.

[5] Joseph W. H. Liu. An application of generalized tree pebbling to sparse matrix factorization.
SIAM J. Algebraic Discrete Methods, 8(3):375–395, 1987.

[6] Loris Marchal, Hanna Nagy, Bertrand Simon, and Frédéric Vivien. Parallel scheduling of
dags under memory constraints. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 204–213, 2018.

[7] Alex Pothen and Chunguang Sun. A mapping algorithm for parallel sparse cholesky factoriza-
tion. SIAM Journal on Scientific Computing, 14(5):1253–1257, 1993.

[8] Yves Robert. Task graph scheduling. In Encyclopedia of Parallel Computing, pages 2013–2025.
Springer, 2011.

2


