
Overview of Scheduling 1/2

Loris MARCHAL

(with the help of Olivier BEAUMONT, Henri CASANOVA,

Arnaud LEGRAND, Yves ROBERT and Frédéric VIVIEN)

GRAAL project,
Laboratoire de l’Informatique du Parallélisme,
École Normale Supérieure de Lyon, France.

loris.marchal@ens-lyon.fr

ACIS Laboratory
September 27, 2006

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Evolution of parallel machines

An ever-increasing demand of computing power
Parallelism is an attempt to answer

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse

Loris Marchal Overview of Scheduling 2/ 56

Outline

1 Background on traditional scheduling

2 Divisible Load Scheduling (or changing the task model)

3 Simulation for Grid Computing (next week)

4 Steady-State Scheduling (next week)

Loris Marchal Overview of Scheduling 3/ 56

Background on traditional scheduling

Outline

1 Background on traditional scheduling

2 Divisible Load Scheduling (or changing the task model)

3 Simulation for Grid Computing (next week)

4 Steady-State Scheduling (next week)

Loris Marchal Overview of Scheduling 4/ 56

Background on traditional scheduling

Traditional scheduling – Framework

Application = DAG G = (T , E, w)

I T = set of tasks

I E = dependence constraints

I w(T) = computational cost of task T
(execution time)

I c(T, T ′) = communication cost (data sent
from T to T ′)

C = A×B

D = C−1

V = DT · YX = D ·X
Platform

I Set of p identical processors

Loris Marchal Overview of Scheduling 5/ 56

Background on traditional scheduling

Traditional scheduling – Framework

Application = DAG G = (T , E, w)

I T = set of tasks

I E = dependence constraints

I w(T) = computational cost of task T
(execution time)

I c(T, T ′) = communication cost (data sent
from T to T ′)

C = A×B

D = C−1

V = DT · YX = D ·X
Platform

I Set of p identical processors

P2 P3 P4P1

Loris Marchal Overview of Scheduling 5/ 56

Background on traditional scheduling

Traditional scheduling – Framework

Schedule
I σ(T) = date to begin execution of task T
I alloc(T) = processor assigned to it

P3

P2

P1

time

Loris Marchal Overview of Scheduling 6/ 56

Background on traditional scheduling

Traditional scheduling – Constraints

Data dependences If (T, T ′) ∈ E then

I if alloc(T) = alloc(T ′) then

σ(T) + w(T) ≤ σ(T ′)

I if alloc(T) 6= alloc(T ′) then

σ(T) + w(T) + c(T, T ′) ≤ σ(T ′)

Resource constraints

alloc(T) = alloc(T ′)⇒
[σ(T), σ(T) + w(T)[

⋂
[σ(T ′), σ(T ′) + w(T ′)[= ∅

Loris Marchal Overview of Scheduling 7/ 56

Background on traditional scheduling

Traditional scheduling – Constraints

Data dependences If (T, T ′) ∈ E then

I if alloc(T) = alloc(T ′) then

σ(T) + w(T) ≤ σ(T ′)

I if alloc(T) 6= alloc(T ′) then

σ(T) + w(T) + c(T, T ′) ≤ σ(T ′)

Resource constraints

alloc(T) = alloc(T ′)⇒
[σ(T), σ(T) + w(T)[

⋂
[σ(T ′), σ(T ′) + w(T ′)[= ∅

Loris Marchal Overview of Scheduling 7/ 56

Background on traditional scheduling

Traditional scheduling – Constraints

Data dependences If (T, T ′) ∈ E then

I if alloc(T) = alloc(T ′) then

σ(T) + w(T) ≤ σ(T ′)

I if alloc(T) 6= alloc(T ′) then

σ(T) + w(T) + c(T, T ′) ≤ σ(T ′)

Resource constraints

alloc(T) = alloc(T ′)⇒
[σ(T), σ(T) + w(T)[

⋂
[σ(T ′), σ(T ′) + w(T ′)[= ∅

Loris Marchal Overview of Scheduling 7/ 56

Background on traditional scheduling

Traditional scheduling – Constraints

Data dependences If (T, T ′) ∈ E then

I if alloc(T) = alloc(T ′) then

σ(T) + w(T) ≤ σ(T ′)

I if alloc(T) 6= alloc(T ′) then

σ(T) + w(T) + c(T, T ′) ≤ σ(T ′)

Resource constraints

alloc(T) = alloc(T ′)⇒
[σ(T), σ(T) + w(T)[

⋂
[σ(T ′), σ(T ′) + w(T ′)[= ∅

Loris Marchal Overview of Scheduling 7/ 56

Background on traditional scheduling

Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T) + w(T))

Other classical objectives:

I Sum of completion times
I With arrival times: maximum flow (response time), or sum flow
I More fairness with maximum stretch, or sum stretch

Loris Marchal Overview of Scheduling 8/ 56

Background on traditional scheduling

Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T) + w(T))

Other classical objectives:

I Sum of completion times
I With arrival times: maximum flow (response time), or sum flow
I More fairness with maximum stretch, or sum stretch

Loris Marchal Overview of Scheduling 8/ 56

Background on traditional scheduling

Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T) + w(T))

Other classical objectives:

I Sum of completion times
I With arrival times: maximum flow (response time), or sum flow
I More fairness with maximum stretch, or sum stretch

Loris Marchal Overview of Scheduling 8/ 56

Background on traditional scheduling

Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T) + w(T))

Other classical objectives:

I Sum of completion times
I With arrival times: maximum flow (response time), or sum flow
I More fairness with maximum stretch, or sum stretch

Loris Marchal Overview of Scheduling 8/ 56

Background on traditional scheduling

Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T) + w(T))

Other classical objectives:

I Sum of completion times
I With arrival times: maximum flow (response time), or sum flow
I More fairness with maximum stretch, or sum stretch

Loris Marchal Overview of Scheduling 8/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Traditional scheduling – About the model

Simple but OK for computational resources
I No CPU sharing, even in models with preemption
I At most one task running per processor at any time-step

Very crude for network resources
I Unbounded bandwidth on any link
I Unlimited number of simultaneous sends/receives per processor
I Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity

Loris Marchal Overview of Scheduling 9/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

Makespan minimization

NP-hardness
I Pb(p) NP-complete for independent tasks and no communications

(E = ∅, p = 2 and c = 0)
I Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms
I Without communications, list scheduling is a (2− 1

p)-approximation
I With communications, result extends to coarse-grain graphs
I With communications, no λ-approximation in general

Loris Marchal Overview of Scheduling 10/ 56

Background on traditional scheduling

List scheduling – Without communications (1/2)

Initialization:
1 Compute priority level of all tasks
2 Priority queue = list of free tasks (tasks without predecessors)

sorted by priority
3 t is the current time step: t = 0.

While there remain tasks to execute:
1 Add new free tasks, if any, to the queue. If the execution of a task

terminates at time step t, suppress this task from the predecessor
list of all its successors. Add those tasks whose predecessor list has
become empty.

2 If there are q available processors and r tasks in the queue, remove
first min(q, r) tasks from the queue and execute them; if T is one
of these tasks, let σ(T) = t.

3 Increment t.

Loris Marchal Overview of Scheduling 11/ 56

Background on traditional scheduling

List scheduling – Without communications (2/2)

Priority level
I Use critical path: longest path from the task to an exit node
I Computed recursively by a bottom-up traversal of the graph

Implementation details
I Cannot iterate from t = 0 to t = MS(σ) (exponential in problem

size)
I Use a heap for free tasks valued by priority level
I Use a heap for processors valued by termination time
I Complexity O(|V | log |V |+ |E|)

Loris Marchal Overview of Scheduling 12/ 56

Background on traditional scheduling

List scheduling – With communications (1/2)

Priority level
I Use pessimistic critical path: include all edge costs in the weight
I Computed recursively by a bottom-up traversal of the graph

MCP Modified Critical Path
I Assign free task with highest priority to best processor
I Best processor = finishes execution first, given already taken

scheduling decisions
I Free tasks may not be ready for execution (communication delays)
I May explore inserting the task in empty slots of schedule
I Complexity O(|V | log |V |+ (|E|+ |V |)p)

Loris Marchal Overview of Scheduling 13/ 56

Background on traditional scheduling

List scheduling – With communications (2/2)

ETF Earliest Finish Time
I Dynamically recompute priorities of free tasks
I Select free task that finishes execution first (on best processor),

given already taken scheduling decisions
I Higher complexity O(|V |3p)
I May miss “urgent” tasks on critical path

Other approaches
I Two-step: clustering + load balancing

- DSC Dominant Sequence Clustering O((|V |+ |E|) log |V |)
- LLB List-based Load Balancing O(C log C + |V |) (C number of
clusters generated by DSC)

I Low-cost: FCP Fast Critical Path
- Maintain constant-size sorted list of free tasks:
- Best processor = first idle or the one sending last message
- Low complexity O(|V | log p + |E|)

Loris Marchal Overview of Scheduling 14/ 56

Background on traditional scheduling

Extending the model to heterogeneous clusters

Task graph with n tasks T1, . . . , Tn.

Platform with p heterogeneous processors P1, . . . , Pp.

Computation costs:
- wiq = execution time of Ti on Pq

- wi =
Pp

q=1 wiq

p average execution time of Ti

- particular case: consistent tasks wiq = wi × γq

Communication costs:
- data(i, j): data volume for edge eij : Ti → Tj

- vqr: communication time for unit-size message from Pq to Pr

(zero if q = r)
- com(i, j, q, r) = data(i, j)× vqr communication time from Ti

executed on Pq to Pj executed on Pr

- comij = data(i, j)×
P

1≤q,r≤p,q 6=r vqr

p(p−1) average communication
cost for edge eij : Ti → Tj

Loris Marchal Overview of Scheduling 15/ 56

Background on traditional scheduling

Rewriting constraints

Dependences For eij : Ti → Tj , q = alloc(Ti) and r = alloc(Tj):

σ(Ti) + wiq + com(i, j, q, r) ≤ σ(Tj)

Resources If q = alloc(Ti) = alloc(Tj), then

(σ(Ti) + wiq ≤ σ(Tj)) or (σ(Tj) + wjq ≤ σ(Ti))

Makespan
max
1≤i≤n

(
σ(Ti) + wi,alloc(Ti)

)

Loris Marchal Overview of Scheduling 16/ 56

Background on traditional scheduling

HEFT: Heterogeneous Earliest Finishing Time

1 Priority level:
I rank(Ti) = wi + maxTj∈Succ(Ti)(comij + rank(Tj)),

where Succ(T) is the set of successors of T
I Recursive computation by bottom-up traversal of the graph

2 Allocation
I For current task Ti, determine best processor Pq:

minimize σ(Ti) + wiq

I Enforce constraints related to communication costs
I Insertion scheduling: look for t = σ(Ti) s.t. Pq is available during

interval [t, t + wiq[
3 Complexity: similar to MCP

Loris Marchal Overview of Scheduling 17/ 56

Background on traditional scheduling

New platforms, new problems, new solutions

Target platforms: Large-scale heterogeneous platforms
(networks of workstations, clusters, collections of clusters, grids, ...)

New problems

Heterogeneity of processors (CPU power, memory)

Heterogeneity of communication links

Irregularity of interconnection network

Non-dedicated platforms

Need to adapt algorithms and scheduling strategies: new objective
functions, new models

Loris Marchal Overview of Scheduling 18/ 56

Background on traditional scheduling

New platforms, new problems, new solutions

Target platforms: Large-scale heterogeneous platforms
(networks of workstations, clusters, collections of clusters, grids, ...)

New problems

Heterogeneity of processors (CPU power, memory)

Heterogeneity of communication links

Irregularity of interconnection network

Non-dedicated platforms

Need to adapt algorithms and scheduling strategies: new objective
functions, new models

Loris Marchal Overview of Scheduling 18/ 56

Background on traditional scheduling

New approaches

1 Divisible load model Assume work can be arbitrarily divided into
sub-tasks

2 Steady-state throughput Rather than optimizing execution from
the very beginning to the very end, optimize execution core instead

Both approaches are relaxation methods: simplifying model allows to
tackle more complex problems

Loris Marchal Overview of Scheduling 19/ 56

Background on traditional scheduling

Bibliography

Introductory book:
Distributed and parallel computing, H. El-Rewini and T. G. Lewis,
Manning 1997

FCP:
On the complexity of list scheduling algorithms for
distributed-memory systems, A. Radulescu and A.J.C. van
Gemund, 13th ACM Int Conf. Supercomputing (1999), 68-75

HEFT:
Performance-effective and low-complexity task scheduling for
heterogeneous computing, H. Topcuoglu and S. Hariri and M.-Y.
Wu, IEEE TPDS 13, 3 (2002), 260-274

Loris Marchal Overview of Scheduling 20/ 56

Divisible Load Scheduling

Outline

1 Background on traditional scheduling

2 Divisible Load Scheduling (or changing the task model)
Bus network – Classical approach
Bus network – Divisible Load Approach
Star network

3 Simulation for Grid Computing (next week)

4 Steady-State Scheduling (next week)

Loris Marchal Overview of Scheduling 21/ 56

Divisible Load Scheduling

Earth seismic tomography

Modeling the internal
structure of earth

Validation by comparing expected propagation time of a wave in a
model against collected experimental data

Set of seismic events during 1999: 817101 events

Original code written for a parallel machine:

if (rank = ROOT)
raydata ← read n lines from data file;

MPI Scatter(raydata, n/P, ..., rbuff, ...,
ROOT, MPI COMM WORLD);

compute work(rbuff);

Loris Marchal Overview of Scheduling 22/ 56

Divisible Load Scheduling

Divisible load applications

Divisible load applications can be divided into any number of
independent pieces

Perfectly parallel job: any sub-task can itself be processed in
parallel, and on any number of workers

Model = good approximation for applications that consist of very
(very) large numbers of identical, low-granularity computations

Large spectrum of scientific problems

Loris Marchal Overview of Scheduling 23/ 56

Divisible Load Scheduling

Divisible load applications

Divisible load applications can be divided into any number of
independent pieces

Perfectly parallel job: any sub-task can itself be processed in
parallel, and on any number of workers

Model = good approximation for applications that consist of very
(very) large numbers of identical, low-granularity computations

Large spectrum of scientific problems

Loris Marchal Overview of Scheduling 23/ 56

Divisible Load Scheduling

Divisible load applications

Divisible load applications can be divided into any number of
independent pieces

Perfectly parallel job: any sub-task can itself be processed in
parallel, and on any number of workers

Model = good approximation for applications that consist of very
(very) large numbers of identical, low-granularity computations

Large spectrum of scientific problems

Loris Marchal Overview of Scheduling 23/ 56

Divisible Load Scheduling

Divisible load applications

Divisible load applications can be divided into any number of
independent pieces

Perfectly parallel job: any sub-task can itself be processed in
parallel, and on any number of workers

Model = good approximation for applications that consist of very
(very) large numbers of identical, low-granularity computations

Large spectrum of scientific problems

Loris Marchal Overview of Scheduling 23/ 56

Divisible Load Scheduling

Divisible Load Scheduling (DLS)

Applications composed of a very (very) large number of
low-granularity computations

Computation time proportional to data volume processed:
linear cost model

Independent computations: neither synchronizations nor
communications

Loris Marchal Overview of Scheduling 24/ 56

Divisible Load Scheduling Bus network – Classical approach

Bus network

Identical links between master and slaves

Slaves have different computing power

Loris Marchal Overview of Scheduling 25/ 56

Divisible Load Scheduling Bus network – Classical approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives ni ∈ N load units, where
∑

i ni = Wtotal

Time for one load unit on Pi: wi

Execution time on Pi: niwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 26/ 56

Divisible Load Scheduling Bus network – Classical approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives ni ∈ N load units, where
∑

i ni = Wtotal

Time for one load unit on Pi: wi

Execution time on Pi: niwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 26/ 56

Divisible Load Scheduling Bus network – Classical approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives ni ∈ N load units, where
∑

i ni = Wtotal

Time for one load unit on Pi: wi

Execution time on Pi: niwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 26/ 56

Divisible Load Scheduling Bus network – Classical approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives ni ∈ N load units, where
∑

i ni = Wtotal

Time for one load unit on Pi: wi

Execution time on Pi: niwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 26/ 56

Divisible Load Scheduling Bus network – Classical approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives ni ∈ N load units, where
∑

i ni = Wtotal

Time for one load unit on Pi: wi

Execution time on Pi: niwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 26/ 56

Divisible Load Scheduling Bus network – Classical approach

Assessing the model

One-port hypothesis is realistic ,
Linear cost model is simple / but acceptable , for
- large problems
- one-round scenarios

Loris Marchal Overview of Scheduling 27/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Scheduling example

Communication

P2

P3

P4

P1

0

Computation Idle

time

end

Loris Marchal Overview of Scheduling 28/ 56

Divisible Load Scheduling Bus network – Classical approach

Problem specification

Master sends ni data items to Pi within a single message

Master sequentially sends messages to slaves in the order

P2, P3, ..., Pp

Simultaneously, master processes its own n1 data items

A slave cannot start computing before reception of its message is
complete

Question: compute best allocation and corresponding schedule

Loris Marchal Overview of Scheduling 29/ 56

Divisible Load Scheduling Bus network – Classical approach

Problem specification

Master sends ni data items to Pi within a single message

Master sequentially sends messages to slaves in the order

P2, P3, ..., Pp

Simultaneously, master processes its own n1 data items

A slave cannot start computing before reception of its message is
complete

Question: compute best allocation and corresponding schedule

Loris Marchal Overview of Scheduling 29/ 56

Divisible Load Scheduling Bus network – Classical approach

Problem specification

Master sends ni data items to Pi within a single message

Master sequentially sends messages to slaves in the order

P2, P3, ..., Pp

Simultaneously, master processes its own n1 data items

A slave cannot start computing before reception of its message is
complete

Question: compute best allocation and corresponding schedule

Loris Marchal Overview of Scheduling 29/ 56

Divisible Load Scheduling Bus network – Classical approach

Problem specification

Master sends ni data items to Pi within a single message

Master sequentially sends messages to slaves in the order

P2, P3, ..., Pp

Simultaneously, master processes its own n1 data items

A slave cannot start computing before reception of its message is
complete

Question: compute best allocation and corresponding schedule

Loris Marchal Overview of Scheduling 29/ 56

Divisible Load Scheduling Bus network – Classical approach

Problem specification

Master sends ni data items to Pi within a single message

Master sequentially sends messages to slaves in the order

P2, P3, ..., Pp

Simultaneously, master processes its own n1 data items

A slave cannot start computing before reception of its message is
complete

Question: compute best allocation and corresponding schedule

Loris Marchal Overview of Scheduling 29/ 56

Divisible Load Scheduling Bus network – Classical approach

Equations

P1: T1 = n1.w1

P2: T2 = n2.c + n2.w2

P3: T3 = (n2.c + n3.c) + n3.w3

Pi: Ti =
∑i

j=2 nj .c + ni.wi for i ≥ 2

Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1
where c1 = 0 and cj = c if j 6= 1

Loris Marchal Overview of Scheduling 30/ 56

Divisible Load Scheduling Bus network – Classical approach

Equations

P1: T1 = n1.w1

P2: T2 = n2.c + n2.w2

P3: T3 = (n2.c + n3.c) + n3.w3

Pi: Ti =
∑i

j=2 nj .c + ni.wi for i ≥ 2

Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1
where c1 = 0 and cj = c if j 6= 1

Loris Marchal Overview of Scheduling 30/ 56

Divisible Load Scheduling Bus network – Classical approach

Equations

P1: T1 = n1.w1

P2: T2 = n2.c + n2.w2

P3: T3 = (n2.c + n3.c) + n3.w3

Pi: Ti =
∑i

j=2 nj .c + ni.wi for i ≥ 2

Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1
where c1 = 0 and cj = c if j 6= 1

Loris Marchal Overview of Scheduling 30/ 56

Divisible Load Scheduling Bus network – Classical approach

Equations

P1: T1 = n1.w1

P2: T2 = n2.c + n2.w2

P3: T3 = (n2.c + n3.c) + n3.w3

Pi: Ti =
∑i

j=2 nj .c + ni.wi for i ≥ 2

Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1
where c1 = 0 and cj = c if j 6= 1

Loris Marchal Overview of Scheduling 30/ 56

Divisible Load Scheduling Bus network – Classical approach

Equations

P1: T1 = n1.w1

P2: T2 = n2.c + n2.w2

P3: T3 = (n2.c + n3.c) + n3.w3

Pi: Ti =
∑i

j=2 nj .c + ni.wi for i ≥ 2

Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i ≥ 1
where c1 = 0 and cj = c if j 6= 1

Loris Marchal Overview of Scheduling 30/ 56

Divisible Load Scheduling Bus network – Classical approach

Execution time (1/2)

T = max
1≤i≤p

 i∑
j=1

nj .cj + ni.wi



Goal: find distribution n1, ..., np to minimize T

Loris Marchal Overview of Scheduling 31/ 56

Divisible Load Scheduling Bus network – Classical approach

Execution time (2/2)

T = max

n1.c1 + n1.w1, max
2≤i≤p

 i∑
j=1

nj .cj + ni.wi



T = n1.c1 + max

n1.w1, max
2≤i≤p

 i∑
j=2

nj .cj + ni.wi


Optimal distribution of Wtotal data among p processors:
- assign n1 data items to P1

- use optimal distribution of Wtotal − n1 data items among p− 1
remaining processors

Loris Marchal Overview of Scheduling 32/ 56

Divisible Load Scheduling Bus network – Classical approach

Dynamic Programming Algorithm

1: solution[0, p]← cons(0,NIL); cost[0, p]← 0
2: for d← 1 to Wtotal do
3: solution[d, p]← cons(d,NIL)
4: cost[d, p]← d · cp + d · wp

5: for i← p− 1 downto 1 do
6: solution[0, i]← cons(0, solution[0, i + 1])
7: cost[0, i]← 0
8: for d← 1 to Wtotal do
9: (sol ,min)← (0, cost[d, i + 1])

10: for e← 1 to d do
11: m← e · ci + max(e · wi, cost[d− e, i + 1])
12: if m < min then
13: (sol ,min)← (e, m)

14: solution[d, i]← cons(sol , solution[d− sol , i + 1])
15: cost[d, i]← min
16: return (solution[Wtotal, 1], cost[Wtotal, 1])

Loris Marchal Overview of Scheduling 33/ 56

Divisible Load Scheduling Bus network – Classical approach

Complexity

Theoretical
O(W 2

total · p)

In practice
With Wtotal = 817101 and p = 16, using a 933MHz Pentium III:
over two days ...
(Optimized version: 6 minutes)

Do we really need such an exact integer solution?
No! ,

Loris Marchal Overview of Scheduling 34/ 56

Divisible Load Scheduling Bus network – Classical approach

Complexity

Theoretical
O(W 2

total · p)

In practice
With Wtotal = 817101 and p = 16, using a 933MHz Pentium III:
over two days ...
(Optimized version: 6 minutes)

Do we really need such an exact integer solution?
No! ,

Loris Marchal Overview of Scheduling 34/ 56

Divisible Load Scheduling Bus network – Classical approach

Complexity

Theoretical
O(W 2

total · p)

In practice
With Wtotal = 817101 and p = 16, using a 933MHz Pentium III:
over two days ...
(Optimized version: 6 minutes)

Do we really need such an exact integer solution?
No! ,

Loris Marchal Overview of Scheduling 34/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 35/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 35/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 35/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 35/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: c
One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 35/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Equations

For processor Pi (where c1 = 0 et cj = c if j 6= 1):

Ti =
i∑

j=1

αjWtotal.cj + αiWtotal.wi

T = max
1≤i≤p

 i∑
j=1

αjWtotal.cj + αiWtotal.wi



Goal: find distribution α1, ..., αp to minimize T

Loris Marchal Overview of Scheduling 36/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Load balancing property

Lemma

In any optimal solution, all processors terminate execution
simultaneously

Loris Marchal Overview of Scheduling 37/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

0

P2

P3

P4

P1

time

end

Decrease αi+1 by ε

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

0

P2

P3

P4

P1

time

end

Decrease αi+1 by ε

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

0

P2

P3

P4

P1

time

end

Decrease αi+1 by ε

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

0

P2

P3

P4

P1

time

end

Increase αi by ε

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

0

P2

P3

P4

P1

time

end

Increase αi by ε

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

0

P2

P3

P4

P1

time

end

Communication time for following processors does not change

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (1/2)

Two slaves i and i + 1 with Ti < Ti+1

Get better solution!

Loris Marchal Overview of Scheduling 38/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Proof of Lemma (2/2)

Ideally: T ′
i = T ′

i+1

Choose ε such that:
(αi+ε)Wtotal(c+wi) = (αi+ε)Wtotalc+(αi+1−ε)Wtotal(c+wi+1)
If master finishes earlier: absurd

If master finishes later: similar, decrease its load by ε

Loris Marchal Overview of Scheduling 39/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Resource selection

Lemma

In any optimal solution, all processors are enrolled

Proof: simple follow-up of previous Lemma

Loris Marchal Overview of Scheduling 40/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Resource selection

Lemma

In any optimal solution, all processors are enrolled

Proof: simple follow-up of previous Lemma

Loris Marchal Overview of Scheduling 40/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Compute the allocation

T = α1Wtotalw1

T = α2(c + w2)Wtotal. Hence α2 = w1
c+w2

α1

T = (α2c + α3(c + w3))Wtotal. Hence α3 = w2
c+w3

α2

αi = wi−1

c+wi
αi−1 for i ≥ 2∑n

i=1 αi = 1

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1

Loris Marchal Overview of Scheduling 41/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Compute the allocation

T = α1Wtotalw1

T = α2(c + w2)Wtotal. Hence α2 = w1
c+w2

α1

T = (α2c + α3(c + w3))Wtotal. Hence α3 = w2
c+w3

α2

αi = wi−1

c+wi
αi−1 for i ≥ 2∑n

i=1 αi = 1

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1

Loris Marchal Overview of Scheduling 41/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Compute the allocation

T = α1Wtotalw1

T = α2(c + w2)Wtotal. Hence α2 = w1
c+w2

α1

T = (α2c + α3(c + w3))Wtotal. Hence α3 = w2
c+w3

α2

αi = wi−1

c+wi
αi−1 for i ≥ 2∑n

i=1 αi = 1

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1

Loris Marchal Overview of Scheduling 41/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Compute the allocation

T = α1Wtotalw1

T = α2(c + w2)Wtotal. Hence α2 = w1
c+w2

α1

T = (α2c + α3(c + w3))Wtotal. Hence α3 = w2
c+w3

α2

αi = wi−1

c+wi
αi−1 for i ≥ 2∑n

i=1 αi = 1

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1

Loris Marchal Overview of Scheduling 41/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Compute the allocation

T = α1Wtotalw1

T = α2(c + w2)Wtotal. Hence α2 = w1
c+w2

α1

T = (α2c + α3(c + w3))Wtotal. Hence α3 = w2
c+w3

α2

αi = wi−1

c+wi
αi−1 for i ≥ 2∑n

i=1 αi = 1

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1

Loris Marchal Overview of Scheduling 41/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Compute the allocation

T = α1Wtotalw1

T = α2(c + w2)Wtotal. Hence α2 = w1
c+w2

α1

T = (α2c + α3(c + w3))Wtotal. Hence α3 = w2
c+w3

α2

αi = wi−1

c+wi
αi−1 for i ≥ 2∑n

i=1 αi = 1

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1

Loris Marchal Overview of Scheduling 41/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering

?

Loris Marchal Overview of Scheduling 42/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering ?

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(c + wi)Wtotal = T . Hence αi = 1
c+wi

T
Wtotal

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T

Hence αi+1 = 1
c+wi+1

(T
Wtotal

− αic) = wi
(c+wi)(c+wi+1)

T
Wtotal

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)

No Impact!

Loris Marchal Overview of Scheduling 43/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering ?

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(c + wi)Wtotal = T . Hence αi = 1
c+wi

T
Wtotal

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T

Hence αi+1 = 1
c+wi+1

(T
Wtotal

− αic) = wi
(c+wi)(c+wi+1)

T
Wtotal

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)

No Impact!

Loris Marchal Overview of Scheduling 43/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering ?

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(c + wi)Wtotal = T . Hence αi = 1
c+wi

T
Wtotal

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T

Hence αi+1 = 1
c+wi+1

(T
Wtotal

− αic) = wi
(c+wi)(c+wi+1)

T
Wtotal

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)

No Impact!

Loris Marchal Overview of Scheduling 43/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering ?

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(c + wi)Wtotal = T . Hence αi = 1
c+wi

T
Wtotal

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T

Hence αi+1 = 1
c+wi+1

(T
Wtotal

− αic) = wi
(c+wi)(c+wi+1)

T
Wtotal

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)

No Impact!

Loris Marchal Overview of Scheduling 43/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering ?

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(c + wi)Wtotal = T . Hence αi = 1
c+wi

T
Wtotal

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T

Hence αi+1 = 1
c+wi+1

(T
Wtotal

− αic) = wi
(c+wi)(c+wi+1)

T
Wtotal

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)

No Impact!

Loris Marchal Overview of Scheduling 43/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Impact of communication ordering ?

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(c + wi)Wtotal = T . Hence αi = 1
c+wi

T
Wtotal

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T

Hence αi+1 = 1
c+wi+1

(T
Wtotal

− αic) = wi
(c+wi)(c+wi+1)

T
Wtotal

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)

No Impact!

Loris Marchal Overview of Scheduling 43/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Choosing master processor

Compare processors P1 and P2

Processor P1: α1w1Wtotal = T . Hence α1 = 1
w1

T
Wtotal

Processor P2: α2(c + w2)Wtotal = T . Hence α2 = 1
c+w2

T
Wtotal

Total load processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Load maximal when w1 < w2

Master = fastest processor

Loris Marchal Overview of Scheduling 44/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Choosing master processor

Compare processors P1 and P2

Processor P1: α1w1Wtotal = T . Hence α1 = 1
w1

T
Wtotal

Processor P2: α2(c + w2)Wtotal = T . Hence α2 = 1
c+w2

T
Wtotal

Total load processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Load maximal when w1 < w2

Master = fastest processor

Loris Marchal Overview of Scheduling 44/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Choosing master processor

Compare processors P1 and P2

Processor P1: α1w1Wtotal = T . Hence α1 = 1
w1

T
Wtotal

Processor P2: α2(c + w2)Wtotal = T . Hence α2 = 1
c+w2

T
Wtotal

Total load processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Load maximal when w1 < w2

Master = fastest processor

Loris Marchal Overview of Scheduling 44/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Choosing master processor

Compare processors P1 and P2

Processor P1: α1w1Wtotal = T . Hence α1 = 1
w1

T
Wtotal

Processor P2: α2(c + w2)Wtotal = T . Hence α2 = 1
c+w2

T
Wtotal

Total load processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Load maximal when w1 < w2

Master = fastest processor

Loris Marchal Overview of Scheduling 44/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Choosing master processor

Compare processors P1 and P2

Processor P1: α1w1Wtotal = T . Hence α1 = 1
w1

T
Wtotal

Processor P2: α2(c + w2)Wtotal = T . Hence α2 = 1
c+w2

T
Wtotal

Total load processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Load maximal when w1 < w2

Master = fastest processor

Loris Marchal Overview of Scheduling 44/ 56

Divisible Load Scheduling Bus network – Divisible Load Approach

Conclusion

Closed-form formula for execution time and load distribution

Choice of master

Ordering of slaves not important

All processors are enrolled

Powerful approach! ,

Loris Marchal Overview of Scheduling 45/ 56

Divisible Load Scheduling Star network

Star network

Communication links between master and slaves have different
bandwidths

Slaves have different computing power

Loris Marchal Overview of Scheduling 46/ 56

Divisible Load Scheduling Star network

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units,
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: ci

One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 47/ 56

Divisible Load Scheduling Star network

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units,
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: ci

One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 47/ 56

Divisible Load Scheduling Star network

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units,
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: ci

One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 47/ 56

Divisible Load Scheduling Star network

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units,
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: ci

One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 47/ 56

Divisible Load Scheduling Star network

Notations

Set P1, ..., Pp of processors

P1 is the master, initially holds all data

Total amount of work: Wtotal

Processor Pi receives αiWtotal load units,
where αiWtotal ∈ Q and

∑
i αi = 1

Time for one load unit on Pi: wi

Execution time on Pi: αiwi

Communication time of one load-unit from P1 to Pi: ci

One-port model: P1 serially sends one message to each slave

Loris Marchal Overview of Scheduling 47/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

?

Loris Marchal Overview of Scheduling 48/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Impact of communication ordering

Load processed by Pi and Pi+1 within time T

Processor Pi: αi(ci + wi)Wtotal = T . Hence αi = 1
ci+wi

T
Wtotal

Processor Pi+1: αiciWtotal + αi+1(ci+1 + wi+1)Wtotal = T

Hence αi+1 = 1
ci+1+wi+1

(1− ci
ci+wi

) T
Wtotal

= wi
(ci+wi)(ci+1+wi+1)

T
Wtotal

Total load processed: αi + αi+1 = ci+1+wi+wi+1

(ci+wi)(ci+1+wi+1)

Communication time: αici + αi+1ci+1 = cici+1+ci+1wi+ciwi+1

(ci+wi)(ci+1+wi+1)

; Serve processors with higher bandwidth first

Loris Marchal Overview of Scheduling 49/ 56

Divisible Load Scheduling Star network

Resource selection

Lemma

In any optimal solution, all processors are enrolled

Proof:

Consider an optimal solution

Let Pk be a non-participating processor

Enroll Pk in the end and assign load αk s.t.

αk(ck + wk)Wtotal = execution time of last activated processor

Loris Marchal Overview of Scheduling 50/ 56

Divisible Load Scheduling Star network

Resource selection

Lemma

In any optimal solution, all processors are enrolled

Proof:

Consider an optimal solution

Let Pk be a non-participating processor

Enroll Pk in the end and assign load αk s.t.

αk(ck + wk)Wtotal = execution time of last activated processor

Loris Marchal Overview of Scheduling 50/ 56

Divisible Load Scheduling Star network

Load balancing property

Lemma

In any optimal solution, all processors terminate execution
simultaneously

Proof

Most existing proofs are incorrect

Either resort to very technical arguments (properties of solutions
of linear programs) or to tedious case-by-case analysis

Loris Marchal Overview of Scheduling 51/ 56

Divisible Load Scheduling Star network

Load balancing property

Lemma

In any optimal solution, all processors terminate execution
simultaneously

Proof

Most existing proofs are incorrect

Either resort to very technical arguments (properties of solutions
of linear programs) or to tedious case-by-case analysis

Loris Marchal Overview of Scheduling 51/ 56

Divisible Load Scheduling Star network

Conclusion

Closed-form formula for execution time and load distribution

Serve faster-communicating processors first

All processors terminate execution simultaneously

All processors are enrolled

Powerful approach! ,

Loris Marchal Overview of Scheduling 52/ 56

Divisible Load Scheduling Star network

Various extensions

Good news One-round, linear model extends to other topologies (e.g.
trees, linear chains)

Still open Adding return messages, although very natural, renders
problem quite combinatorial

Bad news

Becomes NP-hard when adding
communication/computation latencies
Unfortunately, adding latencies absolutely needed to
deal with multi-round algorithms

Loris Marchal Overview of Scheduling 53/ 56

Divisible Load Scheduling Star network

Bibliography

Pioneering book:
Scheduling divisible loads in parallel and distributed systems, V.
Bharadwaj, D. Ghose, V. Mani and T.G. Robertazzi, IEEE
Computer Society Press 1996

Recent survey:
Ten reasons to use Divisible Load Theory, T.G. Robertazzi,
Computer 36, 5 (2003), 63-68

Bags of tasks:
Optimal sharing of bags of tasks in heterogeneous clusters, M.
Adler, Y. Gong and A.L. Rosenberg, 15th ACM SPAA (2003),
1-10

Archive of DLS literature:
http://www.ece.sunysb.edu/∼tom/dlt.html

Loris Marchal Overview of Scheduling 54/ 56

http://www.ece.sunysb.edu/~tom/dlt.html

Simulation for Grid Computing (next week)

Outline

1 Background on traditional scheduling

2 Divisible Load Scheduling (or changing the task model)

3 Simulation for Grid Computing (next week)

4 Steady-State Scheduling (next week)

Loris Marchal Overview of Scheduling 55/ 56

Steady-State Scheduling

Outline

1 Background on traditional scheduling

2 Divisible Load Scheduling (or changing the task model)

3 Simulation for Grid Computing (next week)

4 Steady-State Scheduling (next week)

Loris Marchal Overview of Scheduling 56/ 56

	Background on traditional scheduling
	Divisible Load Scheduling (or changing the task model)
	Bus network -- Classical approach
	Bus network -- Divisible Load Approach
	Star network

	Simulation for Grid Computing (next week)
	Steady-State Scheduling (next week)

