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Background on traditional scheduling

Traditional Scheduling – Summary

Scheduling graph of tasks on processors

For regular parallel computers:
I homogeneous processors
I infinite network capacity

Difficult problems (list scheduling heuristics)

When including heterogeneity: no guaranteed algorithms

; model too acurate to be tractable on heterogeneous platforms
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Divisible Load Scheduling

Divisible Load Scheduling – Summary

Changing the task model:
I graph of tasks ; one perfectly divisible task

Considering simple platforms:
I master-slave, bus or star networks

Results:
I Compute optimal makespan
I Study the impact of processor ordering
I Point out solution shape

(all processors enrolled, same termination time)
I Compute optimal allocation
I Adapt to tree platforms,. . .

Limitations:
I Very simple application model
I Simple communication scheme
I Multi-round algorithms not tractable (NP-hard)
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Steady-State Scheduling
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Steady-State Scheduling

Steady-State Scheduling

Changing the objective:

Makespan minimization: reasonable for small set of tasks

On distributed heterogeneous platforms: large amount of work

No difference if program runs for 3 hours or 3 hours + 5 secondes

Total completion time may not be the right metric

Efficient resource utilization during steady-state:
throughput maximization

Neglect initialization and clean-up phases
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Steady-State Scheduling Packet routing

Packet routing without fixed path

P2

P1

P3

P5

P4

40 2 6

nc collections of packets to be
routed

packets of a same collection
may follow different paths

nk,l: total number of packets
to be routed from k to l

rule: one edge cannot carry
two packets at the same time

nk,l
i,j : total number of packets routed from k to l and crossing

edge (i, j)
Congestion:

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j
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Steady-State Scheduling Packet routing

Equations (1/2)

1 Initialization ∑
j|(k,j)∈A

nk,l
k,j = nk,l

2 Reception ∑
i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l
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Steady-State Scheduling Packet routing

Equations (2/2)

4 Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple, Mupad, lp-solve,. . .

Solution:
number of messages nk,l

i,j of each edge to minimize total congestion
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Steady-State Scheduling Packet routing

Routing algorithm

1 Computing optimal solution Cmax of previous linear program
2 Consider periods of length Ω (to be defined later)
3 During each time-interval [pΩ, (p + 1)Ω], follow the optimal

solution: edge (i, j) forwards:

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋
packets that go from k to l.

(if available)

4 number of such periods:

⌈
Cmax

Ω

⌉
5 After time-step

T ≡
⌈

Cmax

Ω

⌉
Ω ≤ Cmax + Ω

sequentially process M residual packets in no longer than ML
time-steps, where L is the maximum length of a simple path in
the network
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Steady-State Scheduling Packet routing

Feasibility

∑
(k,l)

mk,l
i,j ≤

∑
(k,l)

nk,l
i,jΩ

Cmax
=

Ci,jΩ
Cmax

≤ Ω

Loris Marchal Overview of Scheduling 2/2 13/ 55



Steady-State Scheduling Packet routing

Makespan

Define Ω as Ω =
√

Cmaxnc.

Total number of packets still inside network at time-step T is at
most

2|A|
√

Cmaxnc + |A|nc

Makespan:

Cmax ≤ C∗ ≤ Cmax +
√

Cmaxnc + 2|A|
√

Cmaxnc|V |+ |A|nc|V |

C∗ = Cmax + O(
√

Cmax)
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Steady-State Scheduling Packet routing

Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik

Rationale Maximize throughput (total load executed per period)

Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering/allocation of tasks/messages not
needed
Characterize resource activity during each time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent receiving
or sending to which neighbor?

Efficiency Periodic schedule, described in compact form

Adaptability Dynamically record observed performance during current
period, and inject this information to compute optimal
schedule for next period
⇒ react on the fly to resource availability variations
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period, and inject this information to compute optimal
schedule for next period
⇒ react on the fly to resource availability variations
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Steady-State Scheduling Master-slave tasking

Master-slave platform

Master-slave tasking Simple yet efficient

Standard implementation Independent tasks are executed by identical
processors (the slaves) under the supervision of a special
processor (the master)

Heterogeneous version Computing times and communication times are
different from slave to slave
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Steady-State Scheduling Master-slave tasking

Model

Set of independent tasks to be executed by p slaves

All tasks are identical: each represents the same amount of
computations

Need di time-units to transfer a task from M to Pi, and wi

time-units to execute it on Pi

Communications obey the one-port model: M can only send one
task at a given time-step

Overlap computations and communications
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Steady-State Scheduling Master-slave tasking

Complexity results

Definition MasterSlave(P1(d1, w1), . . . , Pp(dp, wp), T (1), . . . , T (n)):
Given a master-slave platform with parameters (d1, w1), . . . , (dp, wp),
what it the minimum time to process n tasks?

MasterSlave(P1(d1, w1), . . . , Pp(dp, wp), T (1), . . . , T (n)) can be solved
at cost O(n2p2) by a complicated greedy algorithm

If the interconnection network is a linear chain or a harpoon, problem
still polynomial
However, for tree-shaped platforms, problem becomes NP-complete
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Steady-State Scheduling Master-slave tasking

A model not well-suited. . .

Hardness comes from the metric: makespan minimization

Not suited to large-scale distributed platforms
I Modeling a collection of clusters, and acquiring all various

parameters: long, tedious and error-prone
I Given difficulty and time needed to deploy applications on such

platforms, number of tasks expected to be very large

Concentrate on steady-state, and target complex platforms (with
cycles and multiple paths) while designing efficient (asymptotically
optimal) schedulings
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Steady-State Scheduling Master-slave tasking

Application graph

n problem instances P(1),P(2), . . . ,P(n), where n is large
Each problem corresponds to a copy of the same task graph
GA = (VA, EA), the application graph

Tbegin et Tend are fictitious tasks, used to model the scattering of input
files and the gathering of output files
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Steady-State Scheduling Master-slave tasking

Platform graph

Target platform represented by platform graph GP = (VP , EP )

Edge Pi → Pj is labeled with ci,j : time needed to send a unit-length
message from Pi to Pj

Communication model: full overlap, one-port for incoming and
outgoing messages
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Steady-State Scheduling Master-slave tasking

Computations and communications

Pi requires wi,k time-units to process task Tk (k ∈ {begin, 1, end}).

Edge ek,l : Tk → Tl in GA is labeled with datak,l: data volume
generated by Tk and used by Tl

Transfer time of a file ek,l from Pi to Pj : datak,l × ci,j
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Steady-State Scheduling Master-slave tasking

Definitions

Allocation An allocation is a pair of mappings: π : VA 7→ VP and
σ : EA 7→ {paths in GP }

Schedule A schedule associated to an allocation (π, σ) is a pair of
mappings: tπ : VA 7→ R and application
tσ : EA × EP 7→ R, satisfying to:

precedence constraints
resource constraints on processors
resource constraints on network links
one-port constraints
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Steady-State Scheduling Master-slave tasking

Activity variables

cons(Pi, Tk): average number of tasks of type Tk processed by Pi

every time-unit

∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1

sent(Pi → Pj , ek,l): average number of files of type ek,l sent from Pi

to Pj every time-unit

∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1
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Steady-State Scheduling Master-slave tasking

Steady-state equations

One-port for outgoing communications Pi sends messages to its
neighbors sequentially

∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

One-port for ingoing communications Pi receives messages
sequentially

∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

Overlap Computations and communications take place
simultaneously

∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1
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Steady-State Scheduling Master-slave tasking

Conservation law

Consider a processor Pi and an edge ek,l of the application graph:

Files of type ek,l received:
∑

Pj→Pi

sent(Pj → Pi, ek,l)

Files of type ek,l generated: cons(Pi, Tk)
Files of type ek,l consumed: cons(Pi, Tl)

Files of type ek,l sent:
∑

Pi→Pj

sent(Pi → Pj , ek,l)

In steady state:

∀Pi,∀ek,l : Tk → Tl ∈ EA,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)
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Steady-State Scheduling Master-slave tasking

Upper bound for the throughput

Maximize ρ =
∑p

i=1 cons(Pi, Tend),
under the constraints

(1a) ∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1
(1b) ∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1

(1c) ∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

(1d) ∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

(1e) ∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1

(1f) ∀Pi,∀ek,l ∈ EA : Tk → Tl,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)

How to design a schedule achieving this throughput?
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Steady-State Scheduling Master-slave tasking

Back to the example

Computations

cons(Pi, T1)
P1 0.025
P2 0.125
P3 0.125
P4 0.250

Total 21 tasks / 40 seconds

Communications

0.125

0.250

0.125
0.250

0.125 0.25

0.375

P1 P3

P4P2

sent(Pi → Pj , ek,l)
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1 : 0.025

P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

Tbegin

T1

Tend

Tbegin

T1

Tend
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

P1 → P3 : 0.375

Tbegin

T1

Tend

Tbegin

T1

Tend

Loris Marchal Overview of Scheduling 2/2 29/ 55



Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

P1 → P3 : 0.375

Tbegin

T1

Tend

Tbegin

T1

Tend
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P2
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P1
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P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

P1 → P3 : 0.375

Tbegin

T1

Tend

Tbegin

T1

Tend
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A2 : 0.125

P1
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P2 → P1

P1
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P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
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P1 → P3 : 0.375

Tbegin

T1

Tend
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A3 : 0.125
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P3
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P1
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P1 → P3 : 0.375
P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.125

P3 : 0.125
P4 : 0.250

P1 : 0.375

Tbegin

T1

Tend

Tbegin

T1

Tend
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A4 : 0.125

P1

P1 → P3

P3 → P4

P4

P4 → P2

P2 → P1

P1

P1 : 0.250

P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125 P2 → P1 : 0.125

P4 : 0.250

P1 : 0.250
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P3 → P1 : 0.125

Tbegin

T1

Tend
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T1

Tend
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A5 : 0.125

P1

P1 → P3

P3 → P4

P4

P4 → P3

P3 → P1

P1

P1 : 0.125

P3 → P4 : 0.125

P4 → P3 : 0.125

P4 : 0.125

P1 : 0.125

P1 → P3 : 0.125

P3 → P1 : 0.125

Tbegin

T1

Tend

Tbegin

T1

Tend
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (2/2)

A4

0,125 0,125

A5

0,025 0,125 0,125

A3A2A1

P1 → P3

P3 → P1

P1 → P2

P2 → P1

P1 → P3 → P4

P4 → P2 → P1

P1 → P3 → P4

P4 → P3 → P1

P1

P1

P1

P1

P3

P1

P1

P2

P1

P1

P4

P1

P1

P4

P1

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

1 10

1

1

1

1

210

2

P1

P2 P4

P3
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (2/2)

A4

0,125 0,125

A5

0,025 0,125 0,125

A3A2A1

P1 → P3

P3 → P1

P1 → P2

P2 → P1

P1 → P3 → P4

P4 → P2 → P1

P1 → P3 → P4

P4 → P3 → P1

P1

P1

P1

P1

P3

P1

P1

P2

P1

P1

P4

P1

P1

P4

P1

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

This decomposition is always possible
1 10

1

1

1

1

210
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P1

P2 P4

P3
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Steady-State Scheduling Master-slave tasking

Decomposition into a set of allocations (2/2)

A4

0,125 0,125

A5

0,025 0,125 0,125

A3A2A1

P1 → P3

P3 → P1

P1 → P2

P2 → P1

P1 → P3 → P4

P4 → P2 → P1

P1 → P3 → P4

P4 → P3 → P1

P1

P1

P1

P1

P3

P1

P1

P2

P1

P1

P4

P1

P1

P4

P1

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

How to orchestrate these allocations?
1 10

1

1

1

1

210

2

P1

P2 P4

P3
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Steady-State Scheduling Master-slave tasking

Communication graph

A5 : 0.25

A4 : 0.25

A2 : 0.25

A3 : 0.25

A3 : 0.25

A5 : 0.25

A4 : 0.25

0.25
A5

A5
0.25

0.25 A2

0.25 A4

0.25

A4

P1

P2 P3

P3

Fraction of time spent transferring some ek,l file from Pi to Pj for a
given allocation
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Steady-State Scheduling Master-slave tasking

One-port constraints = matching

0.25
A5

0.25
A2

0.25
A5

0.25
A4 A4

0.25A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25

A4 : 0.25

A3 : 0.25

A3 : 0.25
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Steady-State Scheduling Master-slave tasking

Edge coloring (decomposition into matchings)

 0.25
A5

0.25
A2

0.25
A5

0.25
A4 A4

0.25A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25

A4 : 0.25

A3 : 0.25

A3 : 0.25

 = 1
4 ×


A4

A3

A3


︸ ︷︷ ︸

χ1

+1
4 ×

 A5

A4


︸ ︷︷ ︸

χ2

+

1
4 ×

 A4A2

A5


︸ ︷︷ ︸
χ3

+1
4 ×

 A5

A2 A5A4


︸ ︷︷ ︸

χ4

This decomposition is always possible
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Steady-State Scheduling Master-slave tasking

Edge coloring (decomposition into matchings)
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1
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P2

P1
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput

P1 → P2

P2 → P1

P1 → P3

P3 → P1

P2 → P4

P4 → P2

P3 → P4

P4 → P3

P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1

Loris Marchal Overview of Scheduling 2/2 34/ 55



Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Cyclic scheduling achieving optimal throughput
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Steady-State Scheduling Master-slave tasking

Asymptotically optimal schedule

The technique used in the example is
I general
I polynomial

The resulting schedule is asymptotically optimal: within T
time-steps, it differs from the optimal schedule by a constant
number of tasks (independent of T )
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Steady-State Scheduling Master-slave tasking

Extensions to collections of general task graphs

More difficult but possible

Maximizing throughput NP-hard /
Most application DAGs have polynomial number of joins
⇒ polynomial solution ,
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Steady-State Scheduling Master-slave tasking

Perspectives

Macro-communications (scatter, gather, reduce, broadcast,
multicast,. . . )

Open problems:
I Period length, approximating cyclic pattern
I When problem remains difficult after steady-state relaxation?
I Stability, robustness in front of load variations
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Steady-State Scheduling Master-slave tasking
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Simulation for Grid Computing

Outline

1 Background on traditional scheduling

2 Divisible Load Scheduling

3 Steady-State Scheduling

4 Simulation for Grid Computing
Validation Problem
Platform modeling
Simulation
SimGrid
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Simulation for Grid Computing Validation Problem

Analytical or Experimental validation ?

Scheduling theory:
purely analytical / mathematical models for Grid computing

I makes it possible to prove interesting theorems
I often too simplistic to convince practitioners
I but generally useful for understanding principles

Heterogeneity, latencies,. . . render scheduling problems NP-hard
I Design low complexity heuristics
I How to compare two different heuristics ?

; Need for experiments
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Simulation for Grid Computing Validation Problem

Grid Experiments (1/3)

Real-world experiments are good
I Eminently believable
I Demonstrates that proposed approach can be implemented in

practice

But...

Can be time-intensive
Execution of “applications” for hours, days, months,. . .

Can be labor-intensive
Entire application needs to be built and functional.
Is it a good engineering practice to carry out many entire solutions
to find out which ones works best?
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Simulation for Grid Computing Validation Problem

Grid Experiments (2/3)

What experimental test-bed?

My own little test-bed
well-behaved, controlled, stable, often not representative of real
Grids.

Real grid platforms
I (Still) challenging for many grid researchers to obtain
I Not built as a tool for my experiments:

F other user may disrupt my experiments
F other users may find my experiments disruptive

I Platform will experience failures
I Platform configuration may change drastically while experiments

are being conducted
I Experiments are uncontrolled and unrepeatable: even if disruption

from other users is part of the experiments, it prevents comparative
runs of different heuristics
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Simulation for Grid Computing Validation Problem

Grid Experiments (3/3)

; Difficult to obtain statistically significant results on an appropriate
test-bed

And to make things worse...

Experiments are limited to the test-bed
I What part of the results are due to idiosyncrasies of the test-bed?
I Extrapolations are possible, but rarely convincing

Difficult for others to reproduce results
This is the basis for scientific advances!

Grid experiments are limited and non reproducible.
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Simulation for Grid Computing Validation Problem

Simulation

Simulation can solve many (all) of these difficulties

No need to build a real system

Conduct controlled and repeatable experiments

In principle, no limits to experimental scenarios

Possible for anybody to reproduce results

Definition (Simulation)

Attempting to predict aspects of the behavior of some system by
creating an approximate (mathematical) model of it.

Key question: Validation (correspondence between simulation and
real-world)
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Simulation for Grid Computing Validation Problem

Grid Simulations

Challenges for grid simulations:

Consider complex network topologies (multi-hop networks,
heterogeneous bandwidths and latencies, non-negligible latencies,
complex bandwidth sharing behaviors, contention with other
traffic)

Overhead of middleware

Complex resource access/management policies

Interference of communication and computation

Two main questions for grid simulations:

1 What does a ”representative” Grid look like?

2 How does one do simulation on a synthetic representative Grid?
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Simulation for Grid Computing Platform modeling

Platform modeling

Network modeling

Depending on the application, clarify the network contention (if
any)

Network topology generators

Provide link characteristics (bandwidth, latency,. . . )

Computational resources

Examine existing resources adapted to my application,

Design generative model, following key characteristics

Resource availability

Probabilistic models

Traces (NWS)

Workload models for batch schedulers
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Simulation for Grid Computing Simulation

Simulation in a nutshell

Simulations are configurable, repeatable, fast.
Key question: “Validation: correspondence between simulation and
real world”.
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Simulation for Grid Computing Simulation

Simulation in a nutshell

Simulations are configurable, repeatable, fast.
Key question: “Validation: correspondence between simulation and
real world”.

Based solely on equations

Abstraction of system as a set
of dependant actions and events
(fine- or coarse- grain)

Trapping and virtualization of low-level
application/system actions

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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Simulation for Grid Computing Simulation

Simulation in a nutshell

Simulations are configurable, repeatable, fast.
Key question: “Validation: correspondence between simulation and
real world”.

Microscopic: packet-level
(fine-grain d.e. simulation)

Macroscopic: flows in a pipe
(coarse-grain d.e simulation + math. simulation)

Actual flows go through some network

Network

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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Simulation for Grid Computing Simulation

Simulation in a nutshell

Simulations are configurable, repeatable, fast.
Key question: “Validation: correspondence between simulation and
real world”.

Microscopic: Cycle-accurate simulation
(fine-grain d.e. simulation)

Macroscopic: flows in a pipe
(coarse-grain d.e simulation + math. simulation)

Virtualization via another CPU/virtual machine

CPU

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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Simulation for Grid Computing Simulation

Simulation in a nutshell

Simulations are configurable, repeatable, fast.
Key question: “Validation: correspondence between simulation and
real world”.

Application

Virtualization (emulation of actual code
with trapping of application generated events)

Macroscopic: application = analytical ”flow”

with resource needs and dependancies
Less Macroscopic: set of abstract tasks

Application

Virtualization (emulation of actual code
with trapping of application generated events)

Macroscopic: application = analytical ”flow”

with resource needs and dependancies
Less Macroscopic: set of abstract tasks

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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Simulation for Grid Computing Simulation

MicroGrid

MicroGrid is a UCSD project lead by Andrew Chien.
Applications are supported by emulation and virtualization: Actual
application code is executed on “virtualized” resources
MicroGrid accounts for CPU and network

Resource gethostnames, sockets, GIS,
MDS, NWS are wrapped

CPU Direct execution on a
fraction of physical CPU:
find a good mapping

Network Packet-level simulation
(parallel version of MaSSF)

Time Synchronize real time and
virtual time: find the good
execution rate

Virtual

Resources

Physical

Ressources

Application

MicroGrid
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Physical
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MicroGrid in a Nutshell

Network

Application Slow but hopefully
accurate

CPU Can have high overheads
But captures the overhead!

Slow but hopefully
accurate

MicroGrid

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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Simulation for Grid Computing SimGrid

SimGrid

Originally developed for scheduling research ; must be fast to
allow for thousands of simulation

Application
I No real application code is executed
I Simulation is expressed in term of communicating process
I Process can perform task communication or computation,

described by their resource consumption.

Resources
I No virtualization
I A resource is defined by

F a rate at which it does “work”,
F a fixed overhead that must be paid by each task,
F traces of the above if needed + failures.

Tasks Tasks can use multiple resources
I data transfer over multiple links,
I computation that uses a disk and a CPU
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Simulation for Grid Computing SimGrid

SimGrid

Uses a combination of mathematical simulation and coarse-grain
discrete event simulation

I Simple API to ”specify” an application rather than having it
already implemented

I Fast simulation

Key issue: Resource sharing
I In MicroGrid: resource sharing ”emerges” out of the low level

emulation and simulation
F Packets of different connections interleaved by routers
F CPU cycles of different processes get slices of the CPU

I Drawback: slow simulation
I How can one do something faster that is still reasonable?
I Come up with macroscopic models of resource sharing
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Simulation for Grid Computing SimGrid

Resource Sharing in SimGrid

Resource sharing for CPU:
I process/threads competing for resource get a fair share of the CPU

“in steady state”
I no need to emulate CPU
I compute the CPU cycles allocated of each process/thread (rate)

Resource sharing for the network:
I many end-points, routers and links,
I many end-to-end TCP flows ?
I macroscopic behavior: How much bandwidth does each flow

receive?

Macroscopic TCP modeling:
I TCP in steady-state implements a type of resource sharing

“Max-Min Fairness”
I Bandwidth allocation can be solved efficiently with appropriate

data structure
I Validated with NS-2 simulators
I Justified for “long-enough” transfers. . .
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SimGrid in a Nutshell

SimGrid

Application

Network

CPU

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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(GRAS)

(MSG)

SimGrid

Application

Network

CPU

less abstract

more abstract
Simulation

Mathematical

Discrete-Event
Simulation

Emulation
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Simulation for Grid Computing SimGrid

Simple example: master-slave tasking

Code for slave
int slave(int argc, char *argv[]) {

while(1) {
m task t task = MSG task get(&(task), TASK PORT);

MSG task execute(task); }
}

Code for master
int master(int argc, char *argv[]) {

for (i = 0; i < number of tasks; i++) {
tasks[i] = MSG task create("task", task computation size,

task communication size, NULL);

}
/* [...] */

for (i = 0; i < number of tasks; i++) {
m host t target slave = choose target();

MSG task put(tasks[i], target slave, TASK PORT);

}
}
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Simulation for Grid Computing SimGrid

Simple example: master-slave tasking

Platform description

XML file describing:

CPUs

network links

routes (between CPUs, using network links)

Deployment

XML file describing the application:

which process is run on which host, with argument list

All simulated processes are run as different threads of a same
physical process

Makes it easy to communicate (shared memory)
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Simulation for Grid Computing SimGrid

A few remarks

SimGrid cannot help you to figure out what is going to be the duration
of a real application

but can help you to compare two algorithms

SimGrid cannot model accurately the behavior of a computing platform
but can help you to study the robustness of your algorithm in a

noisy environment

SimGrid cannot help you to fix some experimental thresholds
but can be used to design adaptive thresholds strategies and test

them against a wide variety of environments

SimGrid cannot help you to debug an already existing code
but can help you to test and debug your algorithms before the real

implementation
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