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Introduction
veer overlay

What is peer-to-peer ?
@ paradigm to organize distributed ressources (peers)
@ overlay network: logical organization
@ core functionnality: search objects in the system
o distributed hashtables (DHT) (Chord, Pastry,...)
@ hash function gives identifiers for peers and objects
°

choice of hash function to get uniform distribution
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What is peer-to-peer ?
@ paradigm to organize distributed ressources (peers)
@ overlay network: logical organization
@ core functionnality: search objects in the system
o distributed hashtables (DHT) (Chord, Pastry,...)
@ hash function gives identifiers for peers and objects

@ choice of hash function to get uniform distribution

main goals:
o scalability © but restricted to exact search ®
o fault tolerance © highly depends on the hash function ®

o efficient search ©
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Introduction
peer overlay

Content-based topologies:
@ CAN (Content Adressable Network)

» d-dimensional torus

> degree O(d) ® ®
_ )
» diameter O(N'/4)
> not really “content addressed”: 0)
location (of objects and peers) computed
with hash function (to ensure @

homogeneous distribution)
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Introduction

@ Object-based peer-to-peer overlay

> objects are linked rather than peers
> an object is held by the node which published it

o Content-based topology:

» not based on a DHT

» objects with “close” attributes will be neighbors
@ d-dimensional attribute space  we consider for now: d = 2
@ VoroNet topology is inspired from:

» Voronoi diagram in the attribute space
» Kleinberg's small world routing algorithm designed for grids
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set of points in R?
consider object at point M

region of points closer from M
than from any other object:
Voronoi cell of M (or region)

do the same for all objects

Voronoi neighbors: when cells
share a border

graph of Voronoi neighbors:
Delaunay triangularization
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Introduction

erg's small-world

O O O O O O . .
@ N nodes in a 2D grid
) O O O O C ( N X N)
O \ \ \ \ O i .
> routing in O(v'N)
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@ N nodes in a 2D grid
(VN x V/N)
» routing in O(V/N)
@ add random long range links:

» probability for a long link to be
at distance [: %

> use greedy routing algorithm
» then routing in O(In® N)
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Introduction
g's small-world

@ N nodes in a 2D grid
| (VN xVN)
» routing in O(V/N)
@ add random long range links:

probability for a long link to be
at distance [: %

|

> use greedy routing algorithm
» then routing in O(In® N)

) @ can be extended to any
dimension d, with proba 1

ld
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@ Voronoi neighbors
@ long range neighbors:
» randomly chose a target point ¢
» the long range neighbors is the object “responsible” for point ¢
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Description of VoroNet
neighborhood

| | RN \.

@ Voronoi neighbors

@ long range neighbors:
» randomly chose a target point ¢
» the long range neighbors is the object “responsible” for point ¢
» keep a back pointer for overlay maintenance

@ close neighbors (within distance dy,iy) for convergence
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Description of VoroNet
neighborhood — details

@ Space: 2-dimensional torus: [0, 1] x [0, 1]
e Long link target of object z: distribution in 1/d>
Prltarget(z) € B(y,dr)] = o i
’ d(,y)?

Link always points on the closest object from target.
1

T Nmax

Close neighbors: within dpin =

Nmax = maximal number of nodes for which we have an efficient
routing
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Description of VoroNet
e neighborhood

@ Voronoi neighbors:
» graph of the Voronoi neighbors is planar = average degree < 6
» O(1) size
» mean value < 6 (max = N)

@ Close neighbors: number of objects in B(0, dmin)

» O(1) size for a “reasonable” distribution
» mean value =1 (max = N)

@ Long range neighbors:

> one long range neighbor per object
» O(1) backward links for a “reasonable” distribution
» mean value =1 (max = N)

size of data stored at each node: O(1) mean value < 9
(we will check this property in the experiments)
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How to insert an object = 7
@ Update the Voronoi diagram:

» Find the closest existing object (route to z)
» Add a new Voronoi cell
» Find and update the Voronoi neighbors
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Description of VoroNet
y maintenance

How to insert an object = 7
@ Update the Voronoi diagram:

» Find the closest existing object (route to z)
» Add a new Voronoi cell
» Find and update the Voronoi neighbors

@ Find and the close neighbors
sufficient to consider close neighbors of Voronoi neighbors

@ create a long range target point ¢, find the corresponding object:
= route a JOIN message to ¢
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Description of VoroNet
outing scheme

ROUTE (Target):
find the object responsible for the Voronoi cell where Target is.

RoUTE( Target)

z = DISTANCETOREGION( Target)

if d(z, Target) > 3d(Target, CurrentObject) and

d( Target, CurrentObject) > dpin then
Spawn(ROUTE, Target, GREEDYNEIGHBOR( Target))

else
ADDVORONOIREGION(2)
ADDVORONOIREGION( Target)
Perform some local computations depending on the operation at z
REMOVEVORONOIREGION(?)
(depending on the operation,
REMOVEVORONOIREGION( Target))

return
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arithmic routing - sketch of proof - 1/2

Lemma 1
The probability for the long link target of = to be chosen in a disk of

center y and radius fr, where r = d(z,y) is lower bounded by K(%;)Q

1

98 1In(v/2m Nipax)

@ X: number of hops necessary to reach an object whose long link
target belongs to the disk of center Target and radius %.

e For f =1/6: probability lower bounded by:

E(X) = +fp[)o-] < +§<1 L )H
= S = 98 In(v/27 Nynax)

E(X) < 98In(vV27Npax)-

but link target # link destination

This accounts for a super-step.
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Description of VoroNet

rithmic routing - sketch of proof - 1/2

@ During a super-step, the distance to the target is divided by 5/6
@ Number of super-steps bounded by

Mm(22) (V27 Nar)
ln(g) N 1n(%)

@ Expectation of number of steps:

E(N) < aln®(Nyaz)
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Evaluation (simulation)

ental framework

@ Simulations

» 300.000 objects
> objects are not leaving the overlay (for now)

@ Distribution of object

» uniform

> skewed (powerlaw with parameter o = 1,2,5)
e We observe:

» number of neighbors
> polylogarithmic routing
» what happens if we add several long range links
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Evaluation (simulation)

Qutgoing degree

Uniform distribution Skewed distribution (o = 5)
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Evaluation (simulation)

arithmic routing
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Evaluation (simulation)

arithmic routing

4.3 T
42 ¢
4.1 r

39
38 r
3.7
36
35+
34
3.3 .
22 225 23 235 24 245 25 255
log(log(Objects in the overlay))

log(Hops)

Uniform ——
Sparse (alpha=1) — o
Sparse (alpha=2) i |

_ Sparse (alpha = 5) -2

h=(lnn)’ < In(h) =In ((lnny) =~vIn(Inn)

Loris Marchal VoroNet 20/ 24



Evaluation (simulation)

veral long links to improve routing
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Perspectives, conclusion

Perspectives:
@ Range queries
@ Queries by proximity: all objects within d from a given object
o Fault tolerance 7

VoroNet in a nutshell:

Object-to-object overlay

Efficient routing

Distributed construction and management
Reasonable size of neighborhood

Insensitive to object distribution

Base for complex requests
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