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Introduction

Peer-to-peer overlay

What is peer-to-peer ?

paradigm to organize distributed ressources (peers)

overlay network: logical organization

core functionnality: search objects in the system

distributed hashtables (DHT) (Chord, Pastry,. . . )

hash function gives identifiers for peers and objects

choice of hash function to get uniform distribution
main goals:

scalability ,
fault tolerance ,
efficient search ,

but restricted to exact search /
highly depends on the hash function /
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Introduction

Peer-to-peer overlay

Content-based topologies:

CAN (Content Adressable Network)
I d-dimensional torus

I degree O(d)

I diameter O(N1/d)

I not really “content addressed”:
location (of objects and peers) computed
with hash function (to ensure
homogeneous distribution)

?
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Introduction

VoroNet

Object-based peer-to-peer overlay
I objects are linked rather than peers
I an object is held by the node which published it

Content-based topology:
I not based on a DHT
I objects with “close” attributes will be neighbors

d-dimensional attribute space

VoroNet topology is inspired from:
I Voronoi diagram in the attribute space
I Kleinberg’s small world routing algorithm designed for grids
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Introduction

Voronoi tessellations

set of points in R2

consider object at point M

region of points closer from M
than

do the same for all objects

Voronoi neighbors: when cells
share a border

graph of Voronoi neighbors:
Delaunay triangularization
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add random long range links:
I probability for a long link to be

at distance l: ∝ 1
l2

I use greedy routing algorithm
I then routing in O(ln2 N)

can be extended to any
dimension d, with proba ∝ 1
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Description of VoroNet

VoroNet neighborhood

Voronoi neighbors
long range neighbors:

I randomly chose a target point t
I the long range neighbors is the object “responsible” for point t
I keep a back pointer for overlay maintenance

close neighbors (within distance dmin) for convergence
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Description of VoroNet

VoroNet neighborhood – details

Space: 2-dimensional torus: [0, 1]× [0, 1]
Long link target of object x: distribution in 1/d2

Pr
[
target(x) ∈ B(y, dr)

]
= α

πr2

d(x, y)2

Link always points on the closest object from target.

Close neighbors: within dmin = 1
πNmax

Nmax = maximal number of nodes for which we have an efficient
routing
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Description of VoroNet

Size of the neighborhood

Voronoi neighbors:
I graph of the Voronoi neighbors is planar ⇒ average degree 6 6
I O(1) size
I mean value 6 6 (max = N)

Close neighbors: number of objects in B(o, dmin)
I O(1) size for a “reasonable” distribution
I mean value = 1 (max = N)

Long range neighbors:
I one long range neighbor per object
I O(1) backward links for a “reasonable” distribution
I mean value = 1 (max = N)

size of data stored at each node: O(1) mean value 6 9
(we will check this property in the experiments)

Loris Marchal VoroNet 12/ 24



Description of VoroNet

Size of the neighborhood

Voronoi neighbors:
I graph of the Voronoi neighbors is planar ⇒ average degree 6 6
I O(1) size
I mean value 6 6 (max = N)

Close neighbors: number of objects in B(o, dmin)
I O(1) size for a “reasonable” distribution
I mean value = 1 (max = N)

Long range neighbors:
I one long range neighbor per object
I O(1) backward links for a “reasonable” distribution
I mean value = 1 (max = N)

size of data stored at each node: O(1) mean value 6 9
(we will check this property in the experiments)

Loris Marchal VoroNet 12/ 24



Description of VoroNet

Size of the neighborhood

Voronoi neighbors:
I graph of the Voronoi neighbors is planar ⇒ average degree 6 6
I O(1) size
I mean value 6 6 (max = N)

Close neighbors: number of objects in B(o, dmin)
I O(1) size for a “reasonable” distribution
I mean value = 1 (max = N)

Long range neighbors:
I one long range neighbor per object
I O(1) backward links for a “reasonable” distribution
I mean value = 1 (max = N)

size of data stored at each node: O(1) mean value 6 9
(we will check this property in the experiments)

Loris Marchal VoroNet 12/ 24



Description of VoroNet

Size of the neighborhood

Voronoi neighbors:
I graph of the Voronoi neighbors is planar ⇒ average degree 6 6
I O(1) size
I mean value 6 6 (max = N)

Close neighbors: number of objects in B(o, dmin)
I O(1) size for a “reasonable” distribution
I mean value = 1 (max = N)

Long range neighbors:
I one long range neighbor per object
I O(1) backward links for a “reasonable” distribution
I mean value = 1 (max = N)

size of data stored at each node: O(1) mean value 6 9
(we will check this property in the experiments)

Loris Marchal VoroNet 12/ 24



Description of VoroNet

Overlay maintenance

How to insert an object x ?

Update the Voronoi diagram:
I Find the closest existing object (route to x)
I Add a new Voronoi cell
I Find and update the Voronoi neighbors

Find and the close neighbors
sufficient to consider close neighbors of Voronoi neighbors

create a long range target point t, find the corresponding object:
=⇒ route a JOIN message to t
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Description of VoroNet

General routing scheme

Route (Target):
find the object responsible for the Voronoi cell where Target is.

Route(Target)
z = DistanceToRegion(Target)
if d(z,Target) > 1

3d(Target ,CurrentObject) and
d(Target ,CurrentObject) > dmin then

Spawn(Route,Target ,GreedyNeighbor(Target))
else

AddVoronoiRegion(z)
AddVoronoiRegion(Target)
Perform some local computations depending on the operation at z
RemoveVoronoiRegion(z)
(depending on the operation,
RemoveVoronoiRegion(Target))

return

Loris Marchal VoroNet 14/ 24



Description of VoroNet

Polylogarithmic routing - sketch of proof - 1/2

Lemma 1

The probability for the long link of x to be chosen in a disk of center

y and radius fr, where r = d(x, y) is lower bounded by πf2

K(1+f)2
.

For f = 1/6: probability lower bounded by:
1

98 ln(
√

2πNmax)
X: number of hops necessary to reach the disk of center Target
and radius d

6 .

E(X) =
+∞∑
i=1

Pr[X > i] 6
+∞∑
i=1

(
1− 1

98 ln(
√

2πNmax)

)i−1

E(X) 6 98 ln(
√

2πNmax).

but link target 6= link destination

This accounts for a super-step.
Loris Marchal VoroNet 15/ 24
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Description of VoroNet

Polylogarithmic routing - sketch of proof - 1/2

During a super-step, the distance to the target is divided by 5/6
Number of super-steps bounded by

ln(
√

2
dmin

)

ln(6
5)

=
ln(
√

2πNmax)
ln(6

5)

Expectation of number of steps:

E(N) 6 α ln2(Nmax)

Loris Marchal VoroNet 16/ 24



Evaluation (simulation)

Outline

1 Introduction

2 Description of VoroNet

3 Evaluation (simulation)

4 Perspectives, conclusion

Loris Marchal VoroNet 17/ 24



Evaluation (simulation)

Experimental framework

Simulations
I 300.000 objects
I objects are not leaving the overlay (for now)

Distribution of object
I uniform
I skewed (powerlaw with parameter α = 1, 2, 5)

We observe:
I number of neighbors
I polylogarithmic routing
I what happens if we add several long range links
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Evaluation (simulation)

Outgoing degree

Uniform distribution

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  2  4  6  8  10  12

O
bj

ec
ts

Out−degree

Skewed distribution (α = 5)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  2  4  6  8  10  12
O

bj
ec

ts

Out−degree

Loris Marchal VoroNet 19/ 24



Evaluation (simulation)

Polylogarithmic routing
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Evaluation (simulation)

Polylogarithmic routing
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Evaluation (simulation)

Using several long links to improve routing
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Perspectives, conclusion
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Perspectives, conclusion

Extension to higher dimensional cases

No bound on the number of
neighbors, O(1) data size ?

Extend small world property
seems possible

Compute Voronoi diagram:
geometric algorithms costly
and sensitive to computation
errors

No need to have complete
description of Voronoi cells,
only compute neighborhood

Use other techniques:
lifting in dimension d + 1 and LP
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