Scheduling divisible loads with return messages on heterogeneous master-worker platforms

Olivier Beaumont, Loris Marchal, Yves Robert

Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon, France

> Graal Working Group June 2005

> > <ロ> (四) (四) (三) (三) (三)

2 Framework

④ Simulations

< 🗇 🕨

4

Outline

- One master, holding a large number of identical tasks
- Some workers

- One master, holding a large number of identical tasks
- Some workers
- Heterogeneity in computing speed and bandwidth

- One master, holding a large number of identical tasks
- Some workers
- Heterogeneity in computing speed and bandwidth
- Distribute work to workers

- One master, holding a large number of identical tasks
- Some workers
- Heterogeneity in computing speed and bandwidth
- Distribute work to workers
- Gather the results

• Important relaxation of the problem

- Important relaxation of the problem
- Master holding N tasks

Image: A math a math

4

→

- Important relaxation of the problem
- Master holding N tasks
- Worker P_i will get a fraction $\alpha_i \times N$ of these tasks

- Important relaxation of the problem
- Master holding N tasks
- Worker P_i will get a fraction $\alpha_i \times N$ of these tasks
- α_i is **rational**, tasks are divisible

- Important relaxation of the problem
- Master holding N tasks
- Worker P_i will get a fraction $\alpha_i \times N$ of these tasks
- α_i is **rational**, tasks are divisible
- \Rightarrow possible to derive analytical solutions (tractability)

- Important relaxation of the problem
- Master holding N tasks
- Worker P_i will get a fraction $\alpha_i imes N$ of these tasks
- α_i is **rational**, tasks are divisible
- ullet \Rightarrow possible to derive analytical solutions (tractability)
- In practice, reasonable assumption with a large number of tasks

Background on Divisible Load Scheduling

Without return messages

- Linear cost model: X units of work:
 - sent to P_i in $X \times c_i$ time units
 - computed by P_i in $X \times w_i$ time units

Background on Divisible Load Scheduling

Without return messages

- Linear cost model: X units of work:
 - sent to P_i in $X \times c_i$ time units
 - computed by P_i in $X \times w_i$ time units

Results:

- Bus network ⇒ all processors work and finish at the same time order does not matter closed-formula for the makespan (Bataineh, Hsiung & Robertazzi, 1994)
- Result extended for homogeneous tree: a subtree reduces to one single worker
- Heterogeneous star network:

all processors work and finish at the same time order matters:

largest bandwidth first (whatever the computing power)

・ 何 ト ・ ヨ ト ・ ヨ ト

Background on Divisible Load Scheduling

• With an affine cost model: X units of work:

- sent to P_i in $C_i + X \times c_i$ time units
- computed by P_i in $W_i + X \times w_i$ time units
- \Rightarrow not all processors participate to the computation selecting the resources is hard:
 - computing the optimal schedule on a star with affine cost model is NP-hard (Casanova, Drodowski, Legrand & Yang, 2005)

Background on Divisible Load Scheduling

• With an affine cost model: X units of work:

- sent to P_i in $C_i + X \times c_i$ time units
- computed by P_i in $W_i + X \times w_i$ time units
- \Rightarrow not all processors participate to the computation selecting the resources is hard:
 - computing the optimal schedule on a star with affine cost model is NP-hard (Casanova, Drodowski, Legrand & Yang, 2005)
- Affine cost model + multi-round algorithms:
 - ► UMR, quadratic progression of the chunk size (Casanova & Yang, 2003)
 - asymptotically optimal algorithm based on steady-state (Beaumont, Legrand & Robert, 2003)

Adding return messages

What we need to decide:

- Ordering of the initial data to the workers
- Ordering of the return messages
- Quantity of work for each worker

Adding return messages

What we need to decide:

- Ordering of the initial data to the workers
- Ordering of the return messages
- Quantity of work for each worker

Related work:

- Barlas: fixed communication time or bus network + affine computation cost → optimal ordering and closed-from formulas
- Drodowski and Wolniewicz: consider LIFO and FIFO distributions
- Rosenberg et al.: complex (affine) communication model + possibility to slow down computing speed → all FIFO ordering are equivalent and better than any other ordering

Outline

- Model
- Linear Program for a given scenario
- Counter Examples

э

4 E b

Model

Model

• One master P_0

æ.,

Model

Model

- One master P_0
- p workers P_1, \ldots, P_p

Model

Model

- One master P_0
- p workers P_1, \ldots, P_p
- Linear model, X unit of work are:

- 4 週 ト 4 ヨ ト 4 ヨ ト

-

Model

Model

- One master P_0
- p workers P_1, \ldots, P_p
- Linear model, X unit of work are:
 - sent to P_i in $X \times c_i$ time units

- 4 回 ト - 4 回 ト

Model

Model

- One master P_0
- p workers P_1, \ldots, P_p
- Linear model, X unit of work are:
 - sent to P_i in $X \times c_i$ time units
 - computed by P_i in $X \times w_i$ time units

< 回 ト < 三 ト < 三 ト

Model

Model

- One master P_0
- p workers P_1, \ldots, P_p
- Linear model, X unit of work are:
 - sent to P_i in $X \times c_i$ time units
 - computed by P_i in $X \times w_i$ time units
 - their result is sent back from P_i to the master in $X \times d_i$ time units

- 4 回 ト - 4 回 ト

Model

Model

- One master P_0
- p workers P_1, \ldots, P_p
- Linear model, X unit of work are:
 - sent to P_i in $X \times c_i$ time units
 - computed by P_i in $X \times w_i$ time units
 - their result is sent back from P_i to the master in $X \times d_i$ time units
- We sometimes make the assumption: $d_i = z \times c_i$

(e.g.
$$z=0.8 \Leftrightarrow$$
 result file = 80% of original files)

Model

Model

Standard model in DLS for communications

- the master can send data to at most one worker at time t
- the master can receive data from at most one worker at time t
- a worker can start computing only once the reception from the master has terminated

= √000

Model

Model

Standard model in DLS for communications

- the master can send data to at most one worker at time t
- the master can receive data from at most one worker at time t
- a worker can start computing only once the reception from the master has terminated
- No idle time in the operation of each worker ?
 - reasonable without return messages
 - send results to the master just after computation ? but maybe the communication medium is not free
 - general scheme: allow idle time

Linear Program for a given scenario

A scenario describes:

- which workers participate
- in which order are performed the communications (sending data and receiving results)

Then we can suppose that:

- the master sends data as soon as possible
- the workers start computing as soon as possible
- return communications are performed as late as possible

4 AR & 4 E & 4 E &

Framework Linear Program for a given scenario Linear Program for a given scenario

first messages sent to P_1, P_2, \ldots, P_n , permutation σ for return messages

Consider worker P_i :

Linear Program for a given scenario Framework Linear Program for a given scenario

first messages sent to P_1, P_2, \ldots, P_n , permutation σ for return messages

Consider worker P_i :

• starts receiving its data at $t_i^{\mathsf{recv}} = \sum lpha_j imes c_j$ j, j < i

-

Framework Linear Program for a given scenario

first messages sent to P_1, P_2, \ldots, P_n , permutation σ for return messages

Consider worker P_i :

- starts receiving its data at $t_i^{\mathsf{recv}} = \sum_{j, \ j < i} lpha_j imes c_j$
- starts execution at $t_i^{\mathsf{recv}} + \alpha_i \times c_i$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の へ ()

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P_1, P_2, \ldots, P_n , permutation σ for return messages

Consider worker P_i :

- starts receiving its data at $t_i^{\text{recv}} = \sum_{i, j \le i} \alpha_j \times c_j$
- starts execution at $t_i^{\text{recv}} + \alpha_i \times c_i$
- terminates execution at $t_i^{\text{term}} = t_i^{\text{recv}} + \alpha_i \times c_i + \alpha_i \times w_i$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の へ ()

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P_1, P_2, \ldots, P_n , permutation σ for return messages

Consider worker P_i :

- starts receiving its data at $t_i^{\text{recv}} = \sum_{j, j \le i} \alpha_j \times c_j$
- starts execution at $t_i^{\text{recv}} + \alpha_i \times c_i$
- terminates execution at $t_i^{\text{term}} = t_i^{\text{recv}} + \alpha_i \times c_i + \alpha_i \times w_i$
- starts sending results at $t_i^{\text{back}} = T \sum_{j, \sigma(j) \ge \sigma(i)} \alpha_j \times d_j$

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P_1, P_2, \ldots, P_n , permutation σ for return messages

Consider worker P_i :

- starts receiving its data at $t_i^{\mathsf{recv}} = \sum lpha_j imes c_j$ *i*. i < i
- starts execution at $t_i^{\text{recv}} + \alpha_i \times c_i$
- terminates execution at $t_i^{\text{term}} = t_i^{\text{recv}} + \alpha_i \times c_i + \alpha_i \times w_i$
- starts sending results at $t_i^{\text{back}} = T \sum_{i=1}^{n} \sum_{j=1}^{n} t_j^{\text{back}}$ $\alpha_i \times d_i$

• idle time: $x_i = t_i^{\text{back}} - t_i^{\text{term}} \ge 0$ Loris Marchal (LIP)

31

 $j, \sigma(j) \ge \sigma(i)$

Linear Program for a given scenario

With a fixed T, we get the following LP:

 $\begin{aligned} & \text{MAXIMIZE } \sum_{i} \alpha_{i}, \\ & \text{UNDER THE CONSTRAINTS} \\ & \left\{ \begin{aligned} & \alpha_{i} \geqslant 0 \\ & t_{i}^{\text{back}} - t_{i}^{\text{term}} \geqslant 0 \end{aligned} \right. \end{aligned}$

(1)

- It gives the optimal throughput
- Given a set of resources and the communications ordering
- \Rightarrow not possible to test all configurations
 - Even if we force the order of the return messages to be the same as for the initial messages (FIFO), still an exponential number of scenarios

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Not all processors always participate to the computation

(best among schedules with 3 processors)

FIFO with 2 processors, optimal throughput $\rho = 1/2$

Counter Examples

Optimal schedule might be non-LIFO and non-FIFO

Optimal schedule $(\rho = 38/499 \approx 0.076)$

Loris Marchal (LIP)

best FIFO schedule

 $(\rho = 47/632 \approx 0.074)$

 P_1

 P_2

 P_3

Outline

1 Introduction

2 Framework

Case study of some scenarios
 LIFO strategies
 FIFO strategies

Simulations

5 Conclusion

< 🗇 🕨

э

- LIFO = Last In First Out
- Processor that receives first its data is the last one sending its results
- The ordering of return messages is the reverse of the ordering of initial messages

Loris Marchal (LIP)

Theorem

In the optimal LIFO solution, then

- All processors participate to the execution
- Initial messages must be sent by non-decreasing values of $c_i + d_i$
- There is no idle time, i.e. $x_i = 0$ for all *i*.

Proof: modify the platform: $c_i \leftarrow c_i + d_i$ and $d_i \leftarrow 0$

 \Rightarrow reduces to a classic DLS problem without return messages

- FIFO = First In First Out
- The ordering of return messages is the same as the ordering of initial messages

We restrict to the case where $d_i = z \times c_i$ (z < 1)

Theorem

In the optimal FIFO solution, then

- Initial messages must be sent by non-decreasing values of $c_i + d_i$
- The set of participating processors is composed of the first *q* processors for the previous ordering, where *q* can be determined in linear time
- There is no idle time, i.e. $x_i = 0$ for all *i*.

Consider processor P_i in the schedule:

So we have:

 $A\alpha + x = T1$, where:

$$A = \begin{pmatrix} c_1 + w_1 + d_1 & d_2 & d_3 & \dots & d_k \\ c_1 & c_2 + w_2 + d_2 & d_3 & \dots & d_k \\ \vdots & c_2 & c_3 + w_3 + d_3 & \ddots & \vdots \\ \vdots & \vdots & & \ddots & d_k \\ c_1 & c_2 & c_3 & \dots & c_k + w_k + d_k \end{pmatrix}$$

Loris Marchal (LIP)

We can write $A = L + \mathbf{1} d^T$, with:

$$L = \begin{pmatrix} c_1 + w_1 & 0 & 0 & \dots & 0 \\ c_1 - d_1 & c_2 + w_2 & 0 & \dots & 0 \\ \vdots & c_2 - d_2 & c_3 + w_3 & \ddots & \vdots \\ \vdots & \vdots & & \ddots & 0 \\ c_1 - d_1 & c_2 - d_2 & c_3 - d_3 & \dots & c_k + w_k \end{pmatrix} \text{ and } d = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ \vdots \\ d_k \end{pmatrix}$$

Matrix $\mathbb{1}d^t$ is a rank-one matrix, so we can use the Sherman-Morrison formula to compute the inverse of A:

$$A^{-1} = (L + \mathbb{1}d^t)^{-1} = L^{-1} - \frac{L^{-1}\mathbb{1}d^tL^{-1}}{1 + d^tL^{-1}\mathbb{1}}$$

Using this formula for A^{-1} , we are able to:

- prove that for all processor P_i , either $\alpha_i = 0$ (processor does not compute at all) or $x_i = 0$ (no idle time)
- derive an analytical formula for the throughput $ho(T) = \sum_i lpha_i$
- prove that throughput is better when $c_1 \leqslant c_2 \leqslant c_3 \ldots \leqslant c_n$
- throughput is best when only processors with $d_i \leqslant rac{1}{
 ho_{ extsf{opt}}}$

FIFO strategies - special cases

- Until now, we have suppose that $d_i = z \times c_i$, with z < 1
- If z > 1, symmetric solution (send initial messages by decreasing value of $d_i + c_i$, select the first q processors in this order)
- $z = 1 \Rightarrow$ order has no importance in this case

Outline

- Not possible to compute the optimal schedule in the general case (for 100 processors $\rightarrow (100!)^2$ linear programs with 100 unknowns to solve...)
- Use optimal FIFO ordering as a comparison basis
- Also compute optimal LIFO solution
- Some FIFO heuristic, with all processors :
 - ▶ ordered by increasing value of c_i (fastest communicating worker first)
 - ordered by increasing value of w_i (fastest computing worker first)

(人間) とうてい くうい

Simulations

Simulations

100 processors, z=80%

- x-axis: ratio between average communication and computation costs (w/c)
- y-axis: throughput versus optimal FIFO throughput

Loris Marchal (LIP)

Simulations

Simulations

Number of processors used by the optimal FIFO schedule:

• x-axis: ratio between average communication and computation costs (w/c)

Loris Marchal (LIP)

→

Simulations

Simulations

z=1 (same size for initial messages and return messages)

• x-axis: ratio between average communication and computation costs (w/c)

Loris Marchal (LIP)

4 E b

Outline

æ.

Conclusion

- Divisible Load Scheduling with return messages on star platforms
- Natural extension to classical studies
- Leads to considerable difficulties (quite unexpected in the linear model)
- Complexity of the problem is still open
- Characterization of optimal FIFO and LIFO solutions
- Future work:
 - Investigate the general case
 - Extend results to the unidirectional one-port model (master cannot send AND receive at the same time)