
Scheduling divisible loads with return messages
on heterogeneous master-worker platforms

Olivier Beaumont, Loris Marchal, Yves Robert

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

Graal Working Group
June 2005

Outline

1 Introduction

2 Framework

3 Case study of some scenarios

4 Simulations

5 Conclusion

Loris Marchal (LIP) Divisible load scheduling with return messages 2/ 32

Introduction

Outline

1 Introduction

2 Framework

3 Case study of some scenarios

4 Simulations

5 Conclusion

Loris Marchal (LIP) Divisible load scheduling with return messages 3/ 32

Introduction

Introduction

One master, holding a large number of identical tasks

Some workers

Heterogeneity in computing speed and bandwidth

Distribute work to workers

Gather the results

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Loris Marchal (LIP) Divisible load scheduling with return messages 4/ 32

Introduction

Introduction

One master, holding a large number of identical tasks

Some workers

Heterogeneity in computing speed and bandwidth

Distribute work to workers

Gather the results

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Loris Marchal (LIP) Divisible load scheduling with return messages 4/ 32

Introduction

Introduction

One master, holding a large number of identical tasks

Some workers

Heterogeneity in computing speed and bandwidth

Distribute work to workers

Gather the results

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Loris Marchal (LIP) Divisible load scheduling with return messages 4/ 32

Introduction

Introduction

One master, holding a large number of identical tasks

Some workers

Heterogeneity in computing speed and bandwidth

Distribute work to workers

Gather the results

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Loris Marchal (LIP) Divisible load scheduling with return messages 4/ 32

Introduction

Assumption: divisible load

Important relaxation of the problem

Master holding N tasks

Worker Pi will get a fraction αi ×N of these tasks

αi is rational, tasks are divisible

⇒ possible to derive analytical solutions (tractability)

In practice, reasonable assumption with a large number of tasks

Loris Marchal (LIP) Divisible load scheduling with return messages 5/ 32

Introduction

Assumption: divisible load

Important relaxation of the problem

Master holding N tasks

Worker Pi will get a fraction αi ×N of these tasks

αi is rational, tasks are divisible

⇒ possible to derive analytical solutions (tractability)

In practice, reasonable assumption with a large number of tasks

Loris Marchal (LIP) Divisible load scheduling with return messages 5/ 32

Introduction

Assumption: divisible load

Important relaxation of the problem

Master holding N tasks

Worker Pi will get a fraction αi ×N of these tasks

αi is rational, tasks are divisible

⇒ possible to derive analytical solutions (tractability)

In practice, reasonable assumption with a large number of tasks

Loris Marchal (LIP) Divisible load scheduling with return messages 5/ 32

Introduction

Assumption: divisible load

Important relaxation of the problem

Master holding N tasks

Worker Pi will get a fraction αi ×N of these tasks

αi is rational, tasks are divisible

⇒ possible to derive analytical solutions (tractability)

In practice, reasonable assumption with a large number of tasks

Loris Marchal (LIP) Divisible load scheduling with return messages 5/ 32

Introduction

Assumption: divisible load

Important relaxation of the problem

Master holding N tasks

Worker Pi will get a fraction αi ×N of these tasks

αi is rational, tasks are divisible

⇒ possible to derive analytical solutions (tractability)

In practice, reasonable assumption with a large number of tasks

Loris Marchal (LIP) Divisible load scheduling with return messages 5/ 32

Introduction

Assumption: divisible load

Important relaxation of the problem

Master holding N tasks

Worker Pi will get a fraction αi ×N of these tasks

αi is rational, tasks are divisible

⇒ possible to derive analytical solutions (tractability)

In practice, reasonable assumption with a large number of tasks

Loris Marchal (LIP) Divisible load scheduling with return messages 5/ 32

Introduction

Background on Divisible Load Scheduling

Without return messages

Linear cost model: X units of work:
I sent to Pi in X × ci time units
I computed by Pi in X × wi time units

Results:

Bus network ⇒ all processors work and finish at the same time
order does not matter closed-formula for the makespan (Bataineh,
Hsiung & Robertazzi, 1994)

Result extended for homogeneous tree: a subtree reduces to one
single worker

Heterogeneous star network:
all processors work and finish at the same time
order matters:

I largest bandwidth first (whatever the computing power)

Loris Marchal (LIP) Divisible load scheduling with return messages 6/ 32

Introduction

Background on Divisible Load Scheduling

Without return messages

Linear cost model: X units of work:
I sent to Pi in X × ci time units
I computed by Pi in X × wi time units

Results:

Bus network ⇒ all processors work and finish at the same time
order does not matter closed-formula for the makespan (Bataineh,
Hsiung & Robertazzi, 1994)

Result extended for homogeneous tree: a subtree reduces to one
single worker

Heterogeneous star network:
all processors work and finish at the same time
order matters:

I largest bandwidth first (whatever the computing power)

Loris Marchal (LIP) Divisible load scheduling with return messages 6/ 32

Introduction

Background on Divisible Load Scheduling

With an affine cost model: X units of work:
I sent to Pi in Ci + X × ci time units
I computed by Pi in Wi + X × wi time units

⇒ not all processors participate to the computation
selecting the resources is hard:

I computing the optimal schedule on a star with affine cost model is
NP-hard (Casanova, Drodowski, Legrand & Yang, 2005)

Affine cost model + multi-round algorithms:
I UMR, quadratic progression of the chunk size (Casanova & Yang,

2003)
I asymptotically optimal algorithm based on steady-state

(Beaumont, Legrand & Robert, 2003)

Loris Marchal (LIP) Divisible load scheduling with return messages 7/ 32

Introduction

Background on Divisible Load Scheduling

With an affine cost model: X units of work:
I sent to Pi in Ci + X × ci time units
I computed by Pi in Wi + X × wi time units

⇒ not all processors participate to the computation
selecting the resources is hard:

I computing the optimal schedule on a star with affine cost model is
NP-hard (Casanova, Drodowski, Legrand & Yang, 2005)

Affine cost model + multi-round algorithms:
I UMR, quadratic progression of the chunk size (Casanova & Yang,

2003)
I asymptotically optimal algorithm based on steady-state

(Beaumont, Legrand & Robert, 2003)

Loris Marchal (LIP) Divisible load scheduling with return messages 7/ 32

Introduction

Adding return messages

What we need to decide:

Ordering of the initial data to the workers

Ordering of the return messages

Quantity of work for each worker

Related work:

Barlas: fixed communication time or bus network + affine
computation cost → optimal ordering and closed-from formulas

Drodowski and Wolniewicz: consider LIFO and FIFO distributions

Rosenberg et al.: complex (affine) communication model +
possibility to slow down computing speed → all FIFO ordering are
equivalent and better than any other ordering

Loris Marchal (LIP) Divisible load scheduling with return messages 8/ 32

Introduction

Adding return messages

What we need to decide:

Ordering of the initial data to the workers

Ordering of the return messages

Quantity of work for each worker

Related work:

Barlas: fixed communication time or bus network + affine
computation cost → optimal ordering and closed-from formulas

Drodowski and Wolniewicz: consider LIFO and FIFO distributions

Rosenberg et al.: complex (affine) communication model +
possibility to slow down computing speed → all FIFO ordering are
equivalent and better than any other ordering

Loris Marchal (LIP) Divisible load scheduling with return messages 8/ 32

Framework

Outline

1 Introduction

2 Framework
Model
Linear Program for a given scenario
Counter Examples

3 Case study of some scenarios

4 Simulations

5 Conclusion

Loris Marchal (LIP) Divisible load scheduling with return messages 9/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:

I sent to Pi in X × ci time units
I computed by Pi in X × wi time units
I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:

I sent to Pi in X × ci time units
I computed by Pi in X × wi time units
I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:

I sent to Pi in X × ci time units
I computed by Pi in X × wi time units
I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:
I sent to Pi in X × ci time units

I computed by Pi in X × wi time units
I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:
I sent to Pi in X × ci time units
I computed by Pi in X × wi time units

I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:
I sent to Pi in X × ci time units
I computed by Pi in X × wi time units
I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

One master P0

p workers P1, . . . , Pp

Linear model, X unit of work are:
I sent to Pi in X × ci time units
I computed by Pi in X × wi time units
I their result is sent back from Pi to the master in X × di time units

We sometimes make the assumption: di = z × ci

(e.g. z=0.8 ⇔ result file = 80% of original files)

Loris Marchal (LIP) Divisible load scheduling with return messages 10/ 32

Framework Model

Model

Standard model in DLS for communications
I the master can send data to at most one worker at time t
I the master can receive data from at most one worker at time t
I a worker can start computing only once the reception from the

master has terminated

No idle time in the operation of each worker ?
I reasonable without return messages
I send results to the master just after computation ?

but maybe the communication medium is not free
I general scheme: allow idle time

Loris Marchal (LIP) Divisible load scheduling with return messages 11/ 32

Framework Model

Model

Standard model in DLS for communications
I the master can send data to at most one worker at time t
I the master can receive data from at most one worker at time t
I a worker can start computing only once the reception from the

master has terminated

No idle time in the operation of each worker ?
I reasonable without return messages
I send results to the master just after computation ?

but maybe the communication medium is not free
I general scheme: allow idle time

Loris Marchal (LIP) Divisible load scheduling with return messages 11/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

A scenario describes:

which workers participate

in which order are performed the communications
(sending data and receiving results)

Then we can suppose that:

the master sends data as soon as possible

the workers start computing as soon as possible

return communications are performed as late as possible

Loris Marchal (LIP) Divisible load scheduling with return messages 12/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P1, P2, . . . , Pn, permutation σ for return messages

Pi

αi × dixiαi × wiαi × ci

Consider worker Pi:

starts receiving its data at trecvi =
∑

j, j<i

αj × cj

starts execution at trecvi + αi × ci

terminates execution at ttermi = trecvi + αi × ci + αi × wi

starts sending results at tback
i = T −

∑
j, σ(j)>σ(i)

αj × dj

idle time: xi = tback
i − ttermi > 0

Loris Marchal (LIP) Divisible load scheduling with return messages 13/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P1, P2, . . . , Pn, permutation σ for return messages

Pi

αi × dixiαi × wiαi × ci

Consider worker Pi:

starts receiving its data at trecvi =
∑

j, j<i

αj × cj

starts execution at trecvi + αi × ci

terminates execution at ttermi = trecvi + αi × ci + αi × wi

starts sending results at tback
i = T −

∑
j, σ(j)>σ(i)

αj × dj

idle time: xi = tback
i − ttermi > 0

Loris Marchal (LIP) Divisible load scheduling with return messages 13/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P1, P2, . . . , Pn, permutation σ for return messages

Pi

αi × dixiαi × wiαi × ci

Consider worker Pi:

starts receiving its data at trecvi =
∑

j, j<i

αj × cj

starts execution at trecvi + αi × ci

terminates execution at ttermi = trecvi + αi × ci + αi × wi

starts sending results at tback
i = T −

∑
j, σ(j)>σ(i)

αj × dj

idle time: xi = tback
i − ttermi > 0

Loris Marchal (LIP) Divisible load scheduling with return messages 13/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P1, P2, . . . , Pn, permutation σ for return messages

Pi

αi × dixiαi × wiαi × ci

Consider worker Pi:

starts receiving its data at trecvi =
∑

j, j<i

αj × cj

starts execution at trecvi + αi × ci

terminates execution at ttermi = trecvi + αi × ci + αi × wi

starts sending results at tback
i = T −

∑
j, σ(j)>σ(i)

αj × dj

idle time: xi = tback
i − ttermi > 0

Loris Marchal (LIP) Divisible load scheduling with return messages 13/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P1, P2, . . . , Pn, permutation σ for return messages

Pi

αi × dixiαi × wiαi × ci

Consider worker Pi:

starts receiving its data at trecvi =
∑

j, j<i

αj × cj

starts execution at trecvi + αi × ci

terminates execution at ttermi = trecvi + αi × ci + αi × wi

starts sending results at tback
i = T −

∑
j, σ(j)>σ(i)

αj × dj

idle time: xi = tback
i − ttermi > 0

Loris Marchal (LIP) Divisible load scheduling with return messages 13/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

first messages sent to P1, P2, . . . , Pn, permutation σ for return messages

Pi

αi × dixiαi × wiαi × ci

Consider worker Pi:

starts receiving its data at trecvi =
∑

j, j<i

αj × cj

starts execution at trecvi + αi × ci

terminates execution at ttermi = trecvi + αi × ci + αi × wi

starts sending results at tback
i = T −

∑
j, σ(j)>σ(i)

αj × dj

idle time: xi = tback
i − ttermi > 0

Loris Marchal (LIP) Divisible load scheduling with return messages 13/ 32

Framework Linear Program for a given scenario

Linear Program for a given scenario

With a fixed T , we get the following LP:

Maximize
∑

i αi,
under the constraints{

αi > 0
tback
i − ttermi > 0

(1)

It gives the optimal throughput

Given a set of resources and the communications ordering

⇒ not possible to test all configurations

Even if we force the order of the return messages to be the same
as for the initial messages (FIFO), still an exponential number of
scenarios

Loris Marchal (LIP) Divisible load scheduling with return messages 14/ 32

Framework Counter Examples

Not all processors always participate to the computation

P0

P1 P2 P3

d3 = 5d1 = 1

w1 = 1 w2 = 1 w3 = 5

c1 = 1
c2 = 1

c3 = 5

d2 = 1

P2

P1

P3

P2

P1

P3

LIFO, throughput ρ = 61/135 FIFO with 2 processors,
(best among schedules with 3 processors) optimal throughput ρ = 1/2

Loris Marchal (LIP) Divisible load scheduling with return messages 15/ 32

Framework Counter Examples

Optimal schedule might be non-LIFO and non-FIFO

P0

P1 P2 P3

c2 = 8c1 = 7 c3 = 12

d1 = 7 d3 = 12

w1 = 6 w2 = 5 w3 = 5

d2 = 8

P2

P1

P3

Optimal schedule
(ρ = 38/499 ≈ 0.076)

P2

P1

P3

P2

P1

P3

best FIFO schedule best LIFO schedule
(ρ = 47/632 ≈ 0.074) (ρ = 43/580 ≈ 0.074)

Loris Marchal (LIP) Divisible load scheduling with return messages 16/ 32

Case study of some scenarios

Outline

1 Introduction

2 Framework

3 Case study of some scenarios
LIFO strategies
FIFO strategies

4 Simulations

5 Conclusion

Loris Marchal (LIP) Divisible load scheduling with return messages 17/ 32

Case study of some scenarios LIFO strategies

LIFO strategies

LIFO = Last In First Out

Processor that receives first its data is the last one sending its
results

The ordering of return messages is the reverse of the ordering of
initial messages

P2

P1

Pp

Pi

αici αiwi
xi

αidi

Loris Marchal (LIP) Divisible load scheduling with return messages 18/ 32

Case study of some scenarios LIFO strategies

LIFO strategies

Theorem

In the optimal LIFO solution, then

All processors participate to the execution

Initial messages must be sent by non-decreasing values of ci + di

There is no idle time, i.e. xi = 0 for all i.

Proof: modify the platform: ci ← ci + di and di ← 0

P2

P1

αici αiwi
xi

αidi

Pi

Pp

→

P1

αiwiαi(di + ci) xi

P2

Pi

Pp

⇒ reduces to a classic DLS problem without return messages

Loris Marchal (LIP) Divisible load scheduling with return messages 19/ 32

Case study of some scenarios FIFO strategies

FIFO strategies

FIFO = First In First Out

The ordering of return messages is the same as the ordering of
initial messages

P2

P1

Pp

xi

αidiαici αiwi

Pi

We restrict to the case where di = z × ci (z < 1)

Loris Marchal (LIP) Divisible load scheduling with return messages 20/ 32

Case study of some scenarios FIFO strategies

FIFO strategies

Theorem

In the optimal FIFO solution, then

Initial messages must be sent by non-decreasing values of ci + di

The set of participating processors is composed of the first q
processors for the previous ordering, where q can be determined in
linear time

There is no idle time, i.e. xi = 0 for all i.

Loris Marchal (LIP) Divisible load scheduling with return messages 21/ 32

Case study of some scenarios FIFO strategies

FIFO strategies

Consider processor Pi in the schedule:

αici

previous initial messages following return messages

αiwi
xi

αidi ∑
j, σ(j)>σ(i) αj × dj

∑
j, j<i αj × cj

∑
j, j6i

αi × ci + αi × wi

∑
j, σ(j)>σ(i)

αi × di + xi = T

So we have:

Aα + x = T11, where:

A =

c1 + w1 + d1 d2 d3 . . . dk

c1 c2 + w2 + d2 d3 . . . dk
... c2 c3 + w3 + d3

. . .
...

...
...

. . . dk

c1 c2 c3 . . . ck + wk + dk

Loris Marchal (LIP) Divisible load scheduling with return messages 22/ 32

Case study of some scenarios FIFO strategies

FIFO strategies

We can write A = L + 11dT , with:

L =

c1 + w1 0 0 . . . 0
c1 − d1 c2 + w2 0 . . . 0

... c2 − d2 c3 + w3
. . .

...
...

...
. . . 0

c1 − d1 c2 − d2 c3 − d3 . . . ck + wk

 and d=

d1

d2
...
...

dk

Matrix 11dt is a rank-one matrix, so we can use the Sherman-Morrison
formula to compute the inverse of A:

A−1 = (L + 11dt)−1 = L−1 − L−111dtL−1

1 + dtL−111

Loris Marchal (LIP) Divisible load scheduling with return messages 23/ 32

Case study of some scenarios FIFO strategies

FIFO strategies

Using this formula for A−1, we are able to:

prove that for all processor Pi, either αi = 0 (processor does not
compute at all) or xi = 0 (no idle time)

derive an analytical formula for the throughput ρ(T) =
∑

i αi

prove that throughput is better when c1 6 c2 6 c3 . . . 6 cn

throughput is best when only processors with di 6
1

ρopt

Loris Marchal (LIP) Divisible load scheduling with return messages 24/ 32

Case study of some scenarios FIFO strategies

FIFO strategies - special cases

Until now, we have suppose that di = z × ci, with z < 1
If z > 1, symmetric solution (send initial messages by decreasing
value of di + ci, select the first q processors in this order)

z = 1 ⇒ order has no importance in this case

Loris Marchal (LIP) Divisible load scheduling with return messages 25/ 32

Simulations

Outline

1 Introduction

2 Framework

3 Case study of some scenarios

4 Simulations

5 Conclusion

Loris Marchal (LIP) Divisible load scheduling with return messages 26/ 32

Simulations

Simulations

Not possible to compute the optimal schedule in the general case
(for 100 processors → (100!)2 linear programs with 100 unknowns
to solve. . .)

Use optimal FIFO ordering as a comparison basis

Also compute optimal LIFO solution

Some FIFO heuristic, with all processors :
I ordered by increasing value of ci (fastest communicating worker

first)
I ordered by increasing value of wi (fastest computing worker first)

Loris Marchal (LIP) Divisible load scheduling with return messages 27/ 32

Simulations

Simulations

100 processors, z = 80%

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1 10 100

re
la

tiv
e

th
ro

ug
hp

ut

ratio w/c

OPT-FIFO
OPT-LIFO

FIFO-INC-C
FIFO-INC-W

x-axis: ratio between average communication and computation
costs (w/c)

y-axis: throughput versus optimal FIFO throughput

Loris Marchal (LIP) Divisible load scheduling with return messages 28/ 32

Simulations

Simulations

Number of processors used by the optimal FIFO schedule:

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

nb
 o

f p
ro

ce
ss

or
s

re
al

ly
 u

se
d

ratio w/c

x-axis: ratio between average communication and computation
costs (w/c)

Loris Marchal (LIP) Divisible load scheduling with return messages 29/ 32

Simulations

Simulations

z=1 (same size for initial messages and return messages)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1 10 100

re
la

tiv
e

th
ro

ug
hp

ut

ratio w/c

OPT-FIFO
OPT-LIFO

FIFO-INC-C
FIFO-INC-W

x-axis: ratio between average communication and computation
costs (w/c)

Loris Marchal (LIP) Divisible load scheduling with return messages 30/ 32

Conclusion

Outline

1 Introduction

2 Framework

3 Case study of some scenarios

4 Simulations

5 Conclusion

Loris Marchal (LIP) Divisible load scheduling with return messages 31/ 32

Conclusion

Conclusion

Divisible Load Scheduling with return messages on star platforms

Natural extension to classical studies

Leads to considerable difficulties (quite unexpected in the linear
model)

Complexity of the problem is still open

Characterization of optimal FIFO and LIFO solutions

Future work:
I Investigate the general case
I Extend results to the unidirectional one-port model (master cannot

send AND receive at the same time)

Loris Marchal (LIP) Divisible load scheduling with return messages 32/ 32

	Introduction
	Framework
	Model
	Linear Program for a given scenario
	Counter Examples

	Case study of some scenarios
	LIFO strategies
	FIFO strategies

	Simulations
	Conclusion

