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Abstract In this chapter, we propose a general framework for deriving ef-
ficient (polynomial-time) algorithms for steady-state scheduling. In the con-
text of large scale platforms (grids or volunteer computing platforms), we
show that the characteristics of the resources (volatility, heterogeneity) limit
their use to large regular applications. Therefore, steady-state scheduling,
that consists in optimizing the number of tasks that can be processed per
time unit when the number of tasks becomes arbitrarily large, is a reasonable
setting. In this chapter, we concentrate on bag-of-tasks and collective commu-
nications (broadcast and multicast) applications and we prove that efficient
schedules can be derived in the context of steady-state scheduling, under re-
alistic communication models that take into account both the heterogeneity
of the resources and the contentions in the communication network.

8.1 Introduction

Modern computing platforms, such as Grids, are characterized by their
large scale, their heterogeneity and the variations in the performance of their
resources. These characteristics strongly influence the set of applications that
can be executed using these platforms. First, the running time of the ap-
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190 Introduction to Scheduling

plication has to be large enough to benefit from the platform scale, and to
minimize the influence of start-up times due to sophisticated middlewares.
Second, an application executed of such a platform typically consists in many
small tasks, mostly independent. This allows one to minimize the influence
of variations in resource performance and to limit the impact of resource fail-
ures. From a scheduling point of view, the set of applications that can be
efficiently executed on Grids is therefore restricted, and we can concentrate
in this chapter on “embarrassingly parallel” applications consisting in many
independent tasks. In this context, makespan minimization, i.e, minimizing
the minimal time to process a given number of tasks, is usually intractable.
It is thus more reasonable to focus on throughput maximization, i.e., to opti-
mize the number of tasks that can be processed within T time units, when T
becomes arbitrarily large.

Contrarily to the application model, the platform model may be rather
sophisticated. Indeed, these platforms, made of the aggregation of many re-
sources owned by different entities, are made of strongly heterogeneous com-
puting resources. Similarly, due to long distance communications and huge
volume of transmitted data, the cost of communications has to be explicitly
taken into account. Some computation nodes within the same cluster may
be able to communicate very quickly, whereas the communications between
two nodes on both sides of the Atlantic may take much longer. Of course,
predicting the exact duration of a 1GB communication through a transat-
lantic backbone is unreachable, but, as it is advocated in Chapter 11, the
difficulties in estimating communication times should not lead us to neglect
communications and assume a homogeneous network without congestion!

Therefore, when we consider scheduling issues on heterogeneous platforms,
we need to cope with a rather complicated communication model (described
in Section 8.2.1), but a rather simple application model (described in Sec-
tion 8.2.2). Our goal in this chapter is to take advantage of the regularity
of the applications; as we consider that the applications are made of a large
number of identical operations, we relax the scheduling problem and consider
the steady-state operation: we assume that after some transient initialization
phase, the throughput of each resource will become stable. The idea behind
Steady-State Scheduling is to relax the scheduling problem in order to only
deal with resource activities and to avoid problems related to integral number
of tasks. The question is therefore the following: Do scheduling problems
become harder because we consider more sophisticated communication mod-
els or do they become simpler because we target simpler applications? In
Section 8.3, we propose to represent a schedule by a weighted set of allo-
cations (representing the way to transmit and execute a task) and by a set
of weighted valid patterns (representing the way to organize communications
and computations). In Section 8.4, we prove that it is possible to re-build a
valid schedule from compatible sets of allocations and valid patterns. In Sec-
tion 8.5, we prove that for many different applications under many different
communication models, it is possible to find both the optimal solution (i.e.,
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the optimal throughput) and to build a distributed schedule that achieves
this throughput in strongly polynomial time, thus answering positively to the
above question. At last, since the general framework proposed in Section 8.5
is based on the Ellipsoid method for solving linear programs and may lead to
very expensive algorithms, we propose in Section 8.6 several efficient polyno-
mial time algorithms for solving several Steady-State Scheduling problems.

8.2 Problem formulation

In this section, we detail the modeling of the platform and of the target
applications.

8.2.1 Platform model

A platform is represented by a graph G = (V,E), where vertices correspond
to processors and edges to communication links. For the sake of generality, we
also introduce the concept of resource, that can either represent a processor
(computation resource) or a link (communication resource). We denote by R
the set of all resources.

A processor Pu is characterized by its computing speed su, measured in
flops (floating point operations per second). A communication link le is char-
acterized by its bandwidth bwe, measured in byte per second (B/s). For the
sake of generality, we also extend the concept of speed to any resource r: sr
corresponds either to the computing speed if the resource is a processor, or to
the bandwidth, if the resource is a communication link. Figure 8.1(a) gives
an example of such a platform graph.
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(a) Example of a platform
graph. Processors and
links are labelled with their
speed. Psource = P1
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(b) Example of bag-of-tasks
application. Edges (files)
and nodes (tasks) are la-
belled with their size.
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(c) Bipartite commu-
nication graph for the
bidirectional one-port
model.

FIGURE 8.1: Example of platform graph and of bag-of-tasks applications.
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Note that we do not take latencies into account: the communication of
a message of size L on a link le takes L/bwe time-units. The interaction
between simultaneous communications are taken into account specifically by
each model. In all cases, communications and computations can be over-
lapped.

Bidirectional one-port model: At a given time step, a processor can si-
multaneously be involved in two communications: sending a message
and receiving another message.

Unidirectional one-port model: At a given time step, a processor can be
involved in only one communication: either sending or receiving a mes-
sage.

Bounded multi-port model: At given time step, a processor can be in-
volved in several sending and receiving operations, provided that the
total bandwidths used for incoming and outgoing communications does
not exceed the capacity of the communication links. This model is close
to the one proposed by Hong and Prasanna in [14].

We consider these different communication models as an illustration that
steady-state scheduling can be used for a large range of models. However, in
Section 8.6.2, we will more specifically study the bidirectional one-port model,
which takes into account the fact that communications are usually serialized,
and that in nowadays networks, most links are bidirectional (full-duplex).

8.2.2 Applications

Steady-state scheduling can be applied to a large range of applications,
going from collective communications to structured applications. We present
here three applications that will be detailed in the rest of this chapter.

The first application (and the simplest) is called a bag-of-tasks applica-
tion. We consider an application consisting of a large number of independent
and similar tasks. Although simple, this application models most of the em-
barrassingly parallel applications such as parameter sweep applications [9] or
BOINC-like computations [8]. Each task of the bag consists in a message
“data” containing the information needed to start the computation, a com-
putational task denoted by “comp”, and a message “result” containing the
information produced by the computation. Initially, all data messages are
hold by a given processor Psource. Similarly, all result messages must even-
tually be sent to Psource. All data messages have the same size (in bytes),
denoted by δdata, and all result messages have size δresult. The cost of the each
computational task comp (in flops) is wcomp. The simple application graph
associated to the bag-of-tasks application is depicted in Figure 8.1(b). This
application is close to the one presented in the chapter devoted to Divisible
Load Scheduling (Chapter 7); however, even if, like in Divisible Load Schedul-
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ing, we relax the problem to work with rational number of tasks, our ultimate
goal is to build a schedule where task atomicity is preserved.

The second application is a collective communication operation between
processors. It consists in broadcasting a message from one processor Psource

to all other processors of the platform. No computation is induced by this
operation, so that the only parameter to deal with is the size of the message
data, δdata. Broadcasting in computer networks is the subject of a wide liter-
ature, as parallel algorithms often require to send identical data to the whole
computing platform, in order to disseminate global information (see [5] for
extensive references). In steady-state scheduling, we concentrate on the se-
ries of broadcast problem: the source processor Psource has a large number
of same-sized messages to broadcast to all other processors. We can sym-
metrically assume that the source processor has a message of large size to
broadcast, which is divided into small chunks, and we target the pipelined
scheduling of the series of chunks.

The third application considered here is the multicast operation, which
is very close to the previous one: instead of broadcasting a message to all
processors in the platform, we target only a given subset of the nodes denoted
by Ptarget. As previously, we focus on the series of multicast problem,
where a large number of same-sized messages has to be broadcast to target
processors.

Just as we gather processors and communication links under the word “re-
source”, we sometimes do not distinguish between computational tasks and
files, and we call them “operations”. Each operation is characterized by its
size, which can either be the size of the corresponding message (in bytes) or
the cost (in flops) of the corresponding computational task. The size of op-
eration o is denoted by δo. Thus, the duration of operation o on resource r
is δo/sr. Note that this formulation forbids us to deal with unrelated compu-
tation models, where the execution time of a given task can vary arbitrarily
among processors. It would be possible to study such complex computation
models under the steady-state assumption, but at the cost of complicating
the notations. Therefore, in this chapter, we limit our study to related com-
putation models to keep notations simple.

At last, we denote by O the set of all operations in the considered applica-
tion.

8.3 Compact description of a schedule

Scheduling an application on a parallel platform requires to describe where
and when each task will be processed and each transfer will be executed.
Since we concentrate on the problem of scheduling a large number of similar
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jobs, this description may well have a very large size. Indeed, providing the
explicit answer to above questions for each task would lead to a description
of size Ω(n), thus pseudo-polynomial in the size of the input. Indeed, since
all n tasks are identical, the size of the input is of order log n and not n.
Therefore, we are looking for a compact (i.e., polynomial in the size of the
input) description of the schedule.

In this section, we separate temporal and spatial description of such a sched-
ule. We first explain how to get a compact description of the spatial aspect
of the schedule (where operations are done); then we focus on the temporal
aspect (when they are done).

8.3.1 Definition of the allocations

In order to introduce the concept of allocation, let us consider the bag-
of-tasks application and the platform graph represented on Figure 8.1(a).
We also assume that the source processor is P1. The problem consists in
scheduling a large number of similar tasks. We first concentrate on a single
task in the series, and study where, i.e., on which processor this task can be
processed and on which links the transfers of the data and result messages can
be done.

The computational task can be computed on any processor: P1, P2, P3 or
P4. Once we have decided where this particular task will be processed, say
P2, we have to determine how the data (and the result) are sent from Psource

to P2 (respectively from P2 to Psource). Any path may be taken to bring the
data from the source to the computing processor: P1 → P2, P1 → P3 → P2

or P1 → P3 → P4 → P2. To fully describe where a task is done, an allocation
should provide (i) the path taken by the data, (ii) the processor computing
the task, and (iii) the path taken by the result. Figure 8.2 presents some valid
allocations for the bag-of-tasks application on the previous platform.

To cope with the different applications and to be able to schedule both
communication primitives and complex scheduling problems, we propose the
following general definition of an allocation.

DEFINITION 8.1 (allocation) An allocation A is a function which as-
sociates a set of platform resources to each operation such that all constraints
of the particular application are satisfied.

To complete the definition for the three applications introduced above, we
have to detail their respective constraints.

• For the bag-of-tasks application, the constraints on the allocation are
the following:

– The set of resources A(comp) is a single processor;
– The set of resourceA(data) is a path from processor Psource toA(comp);
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FIGURE 8.2: Examples of allocations for a bag-of-tasks application.

– The set of resource A(result) is a path from A(comp) to Psource.

• For the series of broadcast and the series of multicast applications,
there is a single operation, which consists in the message data to be
broadcast. The set of resources A(data) must be a tree made of edges
from the platform graph G, rooted at Psource. Furthermore, for the
broadcast application, this tree has to span the whole platform graph,
whereas for the multicast operation, the tree has to span a subset of the
processors that contains all destination nodes.

Note that several resources may be associated to a single operation, like in
the broadcast application (where several links are associated to the transfer
of the data message). In this case, we assume that there is no need for a
simultaneous use of these resources. For example, assume some legacy code
used in a task imposes that four processors must be enrolled to process this
task: such a task cannot be modeled with our framework, since we are unable
to guarantee that the four processors allocated to the task will be available
at the very same time for this particular task. On the contrary, in the case
of the broadcast operation, each link of a given route can be used one after
the other, by storing the message on intermediate nodes. Of course there is
a precedence constraint (the links have to be used in a given order), and we
are able to deal with this case in our model.

Allocations characterize where the computations and the transfers take
place for a single task. Let us come back to the series of tasks problem:
each task of the series has its own allocation. However, the number of alloca-
tions is finite: for instance, in the case of the bag-of-tasks application, there
are at most H2 × P different possible allocations, where P is the number of
processors, and H the number of paths (without cycles) in the platform graph.
We call A the set of possible allocations.
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For each allocation A ∈ A , we focus on the number of times this allocation
is used, that is the number of tasks among the series that will be transfered
and processed according to this allocation. Yet, as we do not want to depend
on the total number of tasks in the series, we rather compute the average
throughput of a given allocation: we denote by xa the (fractional) number of
times the allocation Aa is used per time-units (say, seconds).

8.3.2 Definition of valid patterns

We have studied how to describe where the operations of a given applica-
tion are executed. We now focus on the temporal aspect of the schedule, that
is when all the operations involved by the allocations can take place. More
specifically, we are looking for sets of operations (communications or compu-
tations) that can take place simultaneously. Such a set corresponds to a valid
pattern.

DEFINITION 8.2 (valid pattern) A valid pattern π is a set of oper-
ations (communications and/or computations) that can take place simultane-
ously according to a given model.

We denote by Π the set of all possible valid patterns. According to the
communication model we consider, a valid pattern corresponds to different
structures in the platform graph.

Unidirectional one-port model. In this model, a processor can be in-
volved in at most one communication, but computations and commu-
nications can be overlapped. The communication links involved in a
simultaneous pattern of communications constitutes a matching in the
platform graph. A valid pattern is therefore a matching in G plus any
subset of computing processors. Some examples of valid patterns for
this model are depicted in Figure 8.3.

P1 P3

P4P2

(a) π1

P1 P3

P4P2

(b) π2

P1 P3

P4P2

(c) π3

P1 P3

P4P2

(d) π4

P1 P3

P4P2

(e) π5

FIGURE 8.3: Examples of valid patterns for the unidirectional one-port
model. Shaded processors and dark links are the resources taking part in
the pattern.
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Bidirectional one-port model. In this model, a processor can be involved
in at most two communications, since it can simultaneously send and
receive data. To better model this behavior, let us build the communica-
tion graph GB obtained by splitting each processor Pu into two commu-
nicating processors: P out

u is in charge of the sending messages while P in
u

is dedicated to receiving messages. All communication links are natu-
rally translated into GB : a link Pu → Pv is turned into a link P out

u → P in
v

in GB . GB is a bipartite graph between P out
∗ and P in

∗ nodes, and the
communications that can take place simultaneously in this model build
up a matching in GB . A valid pattern is thus made of a matching in GB
plus any subset of communicating processors. Figure 8.1(c) illustrates
GB for the platform graph described on Figure 8.1(a).

Bounded multi-port model. In this model, all operations (communica-
tions and computations) can take place simultaneously, provided that
their aggregated throughput does not exceed platform capacity. There-
fore, a valid pattern for this model is made of any subset of communi-
cation links and computing processors.

Since the computations are independent from the communications in all
the models we consider, valid patterns are sometimes denoted “communica-
tion patterns” or even “matchings” when using the one-port communication
models.

Each valid pattern may be used several times in a schedule. Rather than
specifying for each task which pattern is used, we characterize each pattern πp
by its average utilization time yp, that corresponds to the ratio between the
time a given pattern is used and the total schedule time. We have considered
an average throughput for the allocations; we similarly consider that a pattern
πp is used for a time yp per time unit.

8.4 From allocations and valid patterns to schedules

8.4.1 Conditions and weak periodic schedules

In this section, we describe how to move from a description made of weighted
allocations and weighted valid patterns to an actual schedule. Let us therefore
consider a set of allocations with their average throughput, and a set of valid
patterns with their average utilization time.

We first give necessary conditions on throughputs and utilization times
to build a schedule based on these two sets. The first condition concerns
resource activity. We consider a given resource r; this resource might be used
by several tasks corresponding to different allocations. We further focus on a
given allocation Aa; this allocation makes use of resource r for an operation o
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if and only if r ∈ A(o). Since operation o has size δo and resource r has speed
sr, r needs δo/sr time units to perform operation o. Assuming that allocation
Aa has an average throughput xa, the total time needed on resource r for this
allocation during one time-unit is given by

∑
o∈O
r∈A(o)

xa
δo
sr
.

We now focus on the time available on a given resource r. This resource is ac-
tive and can be used during each valid pattern πp where r appears. Assuming
that the average utilization time of πp is yp, then the total availability time
of resource r is given by ∑

πp∈Π
r∈πp

yp.

We are now able to write our first set of constraints: on each resource, the
average time used by the allocations during one time-unit must be smaller
than the average available time, i.e.,

∀r ∈ R
∑
Aa∈A

∑
o∈O
r∈A(o)

xa
δo
sr
6
∑
πp∈Π
r∈πp

yp. (8.1)

The second constraint comes from the definition of the availability times: yp
is the average time during which valid pattern πp is used. During one time-
unit, no more than one time-unit can be spent using all possible patterns,
hence the second constraint ∑

πp∈Π

yp 6 1. (8.2)

These conditions must be satisfied by any pair of weighted sets of allocations
and patterns that corresponds to a valid schedule. Figure 8.4 depicts an
example of such sets, made of two allocations from Figure 8.2: A1 with average
throughput 1/8, and A2 with throughput 1/16, and three valid patterns from
Figure 8.3: π1 with utilization time 3/8, π2 with utilization time 1/4, and
π3 with utilization time 1/8. Let us consider for example the communication
link π2 → π1. It is used by both allocations to ship the result message of size
2, and has speed 1. The total utilization time of this communication link is
therefore 1

8 × 2
1 + 1

16 × 2
1 = 3

8 . This link belongs to valid pattern π1, with
utilization time 3/8, thus Constraint (8.1) is satisfied on this link. We can
similarly check that Constraint (8.1) is satisfied for each resource, and that
the overall utilization time of valid patterns is given by 3

8 + 1
4 + 1

8 6 1, so that
Constraint (8.2) is also satisfied.
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(a) Allocations A1 and A2 with their throughputs.
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(b) Valid patterns π1, π2, and π3 with their utilization times.

FIGURE 8.4: Example of allocations and valid patterns satisfying condi-
tions 8.1 and 8.2.

8.4.2 Weak periodic schedules and cyclic scheduling

In this section, we present the basic block of a steady-state schedule, which
is called a weak periodic schedule. We also describe how to build such a weak
periodic schedule based on allocations and valid patterns that satisfy previous
conditions.

DEFINITION 8.3 (K-weak periodic schedule of length T ) A
K-weak periodic schedule of length T is an allocation of K instances of the
application within time T that satisfies resource constraints (but not the de-
pendencies between operations constituting an instance).

Here by instance, we mean a single task in the bag-of-tasks applications, or
a single message to broadcast in the series of broadcast (or multicast). In a
weak periodic schedule, we do not take precedence constraints into account:
for example a data message does not have to be received before a computation
comp takes place. The precedence constraints will be taken care of in the next
section, and fulfilled by the use of several consecutive weak periodic schedules.

We present here a greedy algorithm to build a weak periodic schedule. We
assume that we have a set of allocations weighted by their average throughput,
and a set of valid patterns weighted by the average utilization time, that satisfy
both conditions (8.1) and (8.2). Furthermore, we assume that the values of
average throughputs and average utilization times are rational numbers.

1. For each resource r, we do the following:

(a) We consider the set Π(r) of valid patterns which contains resource r;

(b) Let us consider the set Lr of pairs (o,A) such that A(o) contains
resource r; for each element (o,A) of this set, we compute the time
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needed by this operation: t(o,A, r) = xa
δo
sr

.
Thanks to Constraint (8.1), we know that

∑
(o,A)∈Lr

t(o,A, r) 6
l∑
i=1

ypi

after splitting:

operations:

communication patterns: yp1 yp2 yp3 yp5yp4 yp6

t(o1, A1, r) t(o2, A2, r) t(o3, A3, r)

t3(o2, A2, r)

t2(o2, A2, r)

Then, we split each t(o,A, r) into pieces so that they can fit into
the intervals defined by the ypi (in any order), as illustrated above.
We call tp(o,A, r) the time allocated for pair (o,A) using resource
r on pattern πp, and np(o,A, r) = sr

δo
× tp(o,A, r) the (fractional)

number of instances of operation o for allocation A that can be
computed in time tp(o,A, r).

2. We compute T , the least common multiple (lcm) of the denominators
of all values np(o,A, r), and we set K = T ×

∑
Aa∈A

xa.

3. We build a K-weak periodic schedule of length T as follows. A weak
periodic schedule is composed of |Π| intervals of length T × yp. During

the p-th interval,
[
T ×∑p−1

i=1 yp ; T ×∑p
i=1 yp

]
, the schedule “follows”

the valid pattern πp:

• Resource r is active if and only if r ∈ πp;
• For each couple (o,A) such as r ∈ A(o), r performs T × np(o,A, r)

operations o for allocation A (in any order). Due to the definition
of T , we know that T × np(o,A, r) is an integer.

Since Condition (8.2) is satisfied, the weak periodic schedule takes time
T ×∑πp∈Π yp 6 T .

Figure 8.5 shows the construction of the weak periodic schedule correspond-
ing to the allocations and valid patterns of Figure 8.4.

THEOREM 8.1
Given a K-weak periodic schedule of length T , we can build a cyclic schedule

of period T , with throughput K/T .
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(c) Final weak periodic schedule, after scaling (T = 4), with all operations labelled.

FIGURE 8.5: Example of the construction of a weak periodic schedule from
allocations and valid patterns of Figure 8.4
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The throughput represents the average number of instances of the applica-
tion that are performed per one time-unit in steady state. To prove this result
and formally define the throughput of a cyclic schedule, important concepts
of cyclic scheduling theory must be introduced, which is not the aim of this
chapter. We refer the interested reader to [2] where the theory is detailed,
and all previous theorems are proved for the problem of scheduling series of
workflows (DAGs) on a heterogeneous platform.

We now have all the pieces to build a schedule from the allocations and
valid patterns.

THEOREM 8.2
Given a set of allocations A weighted by their average throughput x and a set

of valid patterns Π weighted by their average utilization time y, where x and y
are vectors of rational values, if these sets satisfy Constraints (8.1) and (8.2),
then we can build a periodic schedule with throughput

∑
Aa∈A xa.

This result is a simple corollary of Theorem 8.1 applied to the weak periodic
schedule builded from the sets of allocations and valid patterns.

8.5 Problem solving in the general case

In this section, we focus on the construction of allocations and valid pat-
terns satisfying Constraints (8.1) and (8.2) and that maximize the overall
throughput. We first gather this objective together with the constraints into
a linear program:

Maximize ρ =
∑
Aa∈A

xa,under the contraints



∑
πp∈Π

yp 6 1,

∀r ∈ R
∑
Aa∈A

∑
o∈O
r∈A(o)

xa
δo
sr
6
∑
πp∈Π
r∈πp

yp,

∀Aa ∈ A , xa > 0,
∀πp ∈ Π, yp > 0.

(8.3)

This linear program is not directly tractable. Indeed, both the number
of possible allocations and the number of possible valid patterns can be of
exponential size in the size of the original problem. Therefore, the number of
variables of this linear program may be huge. To simplify the notations, let
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us rewrite the previous linear program as follows

Maximize cT ·X,under the contraints{
A ·X 6 b,
X > 0.

(P)

Let us denote by m = |A |+ |Π| the number of variables and by n = |R|+1
the number of non-trivial constraints, then matrix A has size n × m, b is a
vector of size n, and c a vector of size m. Variable X gathers both the xa and
the yp: Xi = xi for 1 6 i 6 |A | and X|A |+i = yi for 1 6 i 6 |Π|. Matrix A is
described below:

for each resource r ∈ R

for each allocation Aa for each valid pattern πp 


0,0,. . . ,0 1,1,. . . ,1

∑
o∈O
r∈A(o)

δo
sr

(−1 if r ∈ πp, 0 otherwise)

8.5.1 Existence of a compact solution

A solution of the above linear program is a priori described by a huge
number of weighted allocations and a huge number of valid patterns. In this
section, we prove that there exists a compact optimal solution, i.e., an optimal
solution with polynomial size in the size of the problem.

We write each δo and each sr as irreducible fractions αo
βo

and α′r
β′r

, and we
compute ∆ = max{αo, βo, α′r, β′r}. Thus, the encoding of each coefficient of
matrix A has size at most 2 log ∆.

The number of constraints in the linear program is not polynomial in the
size of the problem. However, most of these constraints are trivial (X >
0), and only |R| + 1 constraints need to be checked through computations.
Thus, we assume that we have an oracle which, given a solution (i1, Xi1 =
ai1/bi1), . . . , (ik, Xik = aik/bik) (we implicitly assume that Xi = 0 on all
other components) and for all K ∈ Q, can determine if the following system
of constraints is satisfied in time O(kγ log(max{aij , bij}):

A ·X 6 b,
X > 0,

cT ·X > K.
The last constraint enables to check if the throughput of the solution is above
a given threshold K, as in the decision problem associated to the previous
linear program.
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DEFINITION 8.4 LIN-PROG-DEC Does there exists X ∈ Qm which
satisfies the constraints of Linear Program (P) and such that the value of the
objective function verifies cT ·X > K ?

Since the number of constraints to be checked is huge, this problem does not
a priori belongs to the NP class. We consider the following reduced decision
problem.

DEFINITION 8.5 RED-LIN-PROG-DEC Does there exist X ∈ Qm

such that:
(i) X has at most n positive components;

(ii) the positive components of X, Xi = ai/bi, satisfy:

log(ai) + log(bi) 6 B

(iii) X satisfies the constraints of Linear Program (P), and cT ·X > K ?

The complexity bound B depends on ∆, and is set to B = 2n(log n +
2n log ∆) + n log ∆ for technical reasons. We are able to prove that these two
versions of the decision problem are equivalent, but the second one belongs
to NP.

THEOREM 8.3
RED-LIN-PROG-DEC belongs to the NP class, and if there exists a solution
X of LIN-PROG-DEC, then there exists a solution Y of RED-LIN-PROG-
DEC, and Y is also solution of LIN-PROG-DEC.

PROOF We briefly present the idea of the proof. The detailed proof can
be found in [18].

It is easy to check that RED-LIN-PROG-DEC belongs to NP: given a
solution that satisfies the conditions of the decision problem, we can apply
the oracle desribed above to this solution, and check that it is a valid solution
in polynomial time.

To prove the second part of the theorem, we consider a solution X of LIN-
PROG-DEC. We know that there exists an optimal solution Y of the linear
program that corresponds to a vertex of the convex polyhedron defined by
the constraints of (P). Y can be obtained by solving a linear system of size
m × m extracted from the constraints of (P). Since A has size n × m, the
linear systems contains at most n rows from matrix A, and at least m − n
rows Xi = 0. This means that at most n components of Y are different from
zero (point (i)).

To prove that the positive components of Y have a bounded complexity
(point (ii) of RED-LIN-PROG-DEC), we can go further on the computation
of Y with the linear system, and consider that each component of Y is obtained
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with Cramer formulae [11] as a fraction of two determinants extracted from
A. This allows to bound the value of the numerator and denominator of all
elements (point (iii)).

Finally, since Y is an optimal solution, its throughput is larger that the
throughput of X.

This proves that our expression of the problem makes sense: there exist
compact, easily described optimal solutions, and we now aim at finding them.

8.5.2 Resolution with the Ellipsoid method

We now focus on throughput optimization. The method we propose is based
on the Ellipsoid method for linear programming, introduced by Khachiyan [16]
and detailed in [19]. To apply this method, we consider the dual linear pro-
gram of (P)

Minimize bTU,under the contraints{
AT · U > c,
U > 0.

(D)

Let us analyze this linear program. There is one constraint per allocation
Aa, and one per valid pattern πp, whereas there is one variable (U1) corre-
sponding to Constraint (8.1) and one variable (Ur+1) for each constraint of
type (8.2), i.e., one for each resource r. The previous linear program can also
be written:

Minimize bTU,under the contraints

(I) ∀Aa ∈ A
∑
r∈R

∑
o∈O

r∈A a(o)

δo
sr

Ur+1 > 1,

(II) ∀πp ∈ Π
∑
r∈πp

Ur+1 6 U1,

(III) U > 0.

(D2)

Given an optimization problem on a convex and compact set K of Qk,
we consider the following two problems. The first one is the optimization
problem.

DEFINITION 8.6 OPT(K, v) Given a convex and compact set K and
a vector v ∈ Qk, find a vector x ∈ K which maximizes vT · x, or prove that
K is empty.
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The second problem is a separation problem, which consists in deciding
whether the convex K contains a vector v and, if not, in finding an hyperplane
separating v from K.

DEFINITION 8.7 SEP(K, v) Given a convex and compact set K and
a vector v ∈ Qk, decide if v ∈ K and if not, find a vector x such that xT · v >
max{xT · y, y ∈ K}.

The Ellipsoid method is based on the equivalence between above two prob-
lems, as expressed by the following result [12, Chapter 6].

THEOREM 8.4
Each of the two problems, OPT(K, v) and SEP(K, v) can be solved in polyno-

mial time for each “well described” polyhedron if we know a polynomial-time
oracle for the other problem.

A convex polyhedron is “well described” if it can be encoded in polynomial
size, which is possible in our case (see [18] for details).

THEOREM 8.5 (Theorem 6.5.15 in [12])
There exists a polynomial-time algorithm, which, for x ∈ Qk and a well de-

scribed polyhedron (corresponding to the dual (D)) described by a polynomial-
time separation oracle,
(i) finds a solution to the primal problem (P)
(i) or proves that (P) has unbounded solutions or no solution at all.

To solve the optimization problem using Ellipsoid method, it is therefore
enough to find a polynomial-time algorithm that solves the separation problem
in (D) (or (D2)).

8.5.3 Separation in the dual linear program

Given a vector U ∈ Qk (with k = |R|+1), we can check whether U satisfies
all the constraints of (D2), and if not, find a constraint which is violated.
This unsatisfied constraint provides a hyperplane separating vector U from
the convex. There are three types of constraints in the linear program. The
last constraints (type (III)) are easy to check, as the number of variables is
small. The other constraints can be linked with allocations (type (I)) or valid
patterns (type (II)).
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8.5.3.1 Allocation constraints

Let us first consider constraints of type (I). To each resource r (processor or

link), we associate a weight wr =
∑
o∈O

δo
sr
Ur+1. The constraint for allocation Aa

is satisfied if the weighted sum of the resources taking part in the allocation is
larger or equal to one. We specify this for the three examples of applications:
Broadcast. An allocation is a spanning tree in the platform graph, rooted

at Psource. The constraint for allocation Aa states that the weight of the
tree is larger than one. In order to check all constraints, we compute
(in polynomial time) a spanning tree of minimum weight Amin [10]. If
its weight is larger or equal to one, then all spanning trees satisfy this
constraint. On the contrary, if its weight is smaller than one, then the
corresponding constraint is violated for this minimal weight tree.

Multicast. The allocations for the multicast operation are very closed to
the ones of the broadcast: an allocation is a tree rooted at Psource but
spanning only the nodes participating to the multicast operation. Once
the platform graph is weighted as above, checking all the constraints
can be done by searching for a minimum weight multicast spanning tree.
However, finding a minimum tree spanning a given subset of the nodes
in a graph is a well known NP-complete problem, also called the Steiner
problem [15]. This suggests that the steady-state multicast problem
is difficult, but does not provide any proof. Nevertheless, finding the
optimal throughput for the series of multicast problem happens to be
NP-complete [4].

Bag-of-tasks application. For this problem, the allocations are a little more
complex than simple trees, but finding the allocation with smallest
weight can still be done in polynomial time: each allocation consists
in a computing processor Pcomp, a path from the source to the comput-
ing processor Psource  Pcomp, and a path back Pcomp  Psource. Note
that the choices of the two paths are made independently and they may
have some edges in common: an edge (and its weight) is thus counted
twice if it is used by both paths. A simple method to compute the allo-
cation of minimum weight is to consider iteratively each processor: for
each processor Pu, we can find in polynomial time a path of minimum
weight from Psource to Pu [10], and another minimum weight path from
Pu to Psource. By taking the minimum of the total weight among all
computing processors, we obtain a minimum weight allocation.

8.5.3.2 Valid pattern constraints

The constraints of type (II) are quite similar of the constraints of type (I):
for each valid pattern, we have to check that the sum of the weights of the
resources involved in this pattern is smaller than a given threshold U1, where
the weight of a resource r is Ur+1. We proceed very similarly to the pre-



208 Introduction to Scheduling

vious case: we search a valid pattern with maximum weight, and check if
it satisfies the constraint: if it does, all other valid patterns (with smaller
weights) lead to satisfied constraints, and if it does not, it constitutes a vi-
olated constraint. Finding a pattern with maximum weight depends on the
communication model in use.
Unidirectional one-port model. A valid pattern in this model corresponds

to a matching in the communication graph plus any subset of computing
nodes. To maximize its weight, all computing processors can be chosen,
and the problem turns into finding a maximum weighted matching in
the graph, what can be done in polynomial time [10].

Bidirectional one-port model. In this model, a valid pattern is a match-
ing in the bipartite communication graph GB , plus any subset of com-
puting nodes. Again, the problems turns into finding a maximum weighted
matching (in a bipartite graph in this context).

Bounded multi-port model. In that case, all communications and com-
putations can be done simultaneously. A valid pattern with maximum
weight is thus the one including all processors and all communication
links.

Thus, we can solve the separation problem in the dual (D2) in polynomial
time. Using Theorem 8.5, we can solve the original linear program (8.3), i.e.,
• Compute the optimal steady-state throughput;
• Find weighted sets of allocations and valid patterns to reach this through-

put;
• Construct a periodic schedule realizing this throughput, with the help

of Theorem 8.2.
The framework we have developed here is very general. It can thus be

applied to a large number of scheduling problems, under a large number of
communication models, as soon as we can explicit the allocations and the valid
patterns, and solve the separation problem for these allocations and patterns.
This allows us to prove that many scheduling problems have a polynomial
complexity when studied in the context of steady-state scheduling.

8.6 Toward compact linear programs

8.6.1 Introduction

In previous sections, we have proposed a general framework to analyze the
complexity of steady-state scheduling problems. This framework is based on
the polynomial-time resolution of linear programs (see Linear Program (8.3)).
The variables in (8.3) are the set of all possible allocations and valid pat-
terns and thus may both be of exponential size in the size of the platform.
Therefore, the Ellipsoid method is the only possible mean to solve these lin-
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ear programs in polynomial time, since all other methods require to explicitly
write the linear program. We have proved that this method enables the de-
sign of polynomial-time algorithms for a large number of problems under a
large number of communication schemes. Nevertheless, the Ellipsoid method
is known to have a prohibitive computational cost, so that it cannot be used
in practice.

Our goal in this section is to provide efficient polynomial-time algorithms
for several steady-state scheduling problems. More precisely, we prove in
Section 8.6.2, that the set of variables corresponding to valid patterns can be
replaced by a much smaller set of variables and constraints dealing with local
congestion only. In Section 8.6.3, we show that for a large set of problems,
the set of variables dealing with allocations can also be replaced by a more
compact set of variables and constraints. In this latter case, optimal steady-
state schedules can be efficiently solved in practice, since corresponding linear
programs only involve polynomial number of variables and constraints (with
low degree polynomials). Nevertheless, for some problems, especially those
under the unidirectional one-port model, no efficient polynomial algorithm is
known, whereas those problems lie in P, as assessed in the previous section.

8.6.2 Efficient computation of valid patterns under bidirec-
tional one-port model

Steady-state scheduling problems can be formulated as linear programs
where there is one variable per allocation and per valid pattern (see Lin-
ear Program (8.3)). In the case of bidirectional one port model, the variables
corresponding to valid patterns can be replaced by variables and constraints
dealing with local congestion only. Indeed, let us denote by tu,v the occupa-
tion time of the communication link from Pu to Pv induced by the allocations.
Then,

∀r = (Pu, Pv) ∈ R tu,v =
∑
Aa∈A

∑
o∈O
r∈A(o)

xa
δo
sr
.

In the bidirectional one-port model, incoming and outgoing communications
at a node Pu can take place simultaneously, but all incoming (respectively
outgoing) communications at Pu must be sequentialized. Therefore, we can
define tinu (resp. tout

u ), the time when Pu is busy receiving (resp. sending)
messages as

tinu =
∑

(Pv,Pu)∈E
tv,u and tout

u =
∑

(Pu,Pv)∈E
tu,v,

and both quantities must satisfy tinu 6 1 and tout
u 6 1. Therefore, when consid-

ering only constraints on communications, we can replace the original linear
program by the following one,
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Maximize ρ =
∑
Aa∈A

xa,under the contraints



∀r = (Pu, Pv) ∈ R tu,v =
∑
Aa∈A

∑
o∈O
r∈A(o)

xa
δo
sr
,

∀r = Pu ∈ R

tinu =
∑

(Pv,Pu)∈E
tv,u, tinu 6 1,

tout
u =

∑
(Pu,Pv)∈E

tu,v, tout
u 6 1,

(8.4)

where the set of variables dealing with valid patterns, which had an exponen-
tial size a priori, have been replaced by |E|+ 2|V | variables and constraints.
The following theorem states that this modification in the linear program does
not affect the optimal throughput.

THEOREM 8.6
On an application using only communications (and not computations), both
Linear Programs (8.3) and (8.4) provide the same optimal objective value.

PROOF Let us first consider a solution of Linear Program (8.3). Then,

∀r = (Pu, Pv) ∈ R, tu,v =
∑
Aa∈A

∑
o∈O
r∈A(o)

xa
δo
sr
6

∑
P=πp∈Π

(Pu,Pv)∈πp

yp

and therefore

tout
u =

∑
(Pu,Pv)∈E

tu,v 6
∑

(Pu,Pv)∈E

∑
πp∈Π

(Pu,Pv)∈πp

yp.

Moreover, the edges (Pu, Pv) and (Pu, Pk) cannot appear simultaneously in a
valid pattern πp, so that each πp appears at most once in the above formula.
Therefore,

tout
u 6

∑
πp∈Π

yp 6 1.

Similarly, tini 6 1 holds true and the tu’s satisfy the constraints of Linear
Program (8.4).

On the other hand, let us consider an optimal solution of Linear Pro-
gram (8.4) and let us build the bipartite graph GB (see Section 8.3.2) repre-
senting communications, where the weight of the edge between the outgoing
port of Pu (denoted by P out

u ) and the incoming port of Pv (denoted by P in
v ) is

given by tu,v. This bipartite graph can be decomposed into a set of matchings,
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using the refined version of the Edge Coloring Lemma [19, vol. A, Chapter
20]:

Corollary 20.1a in [19, vol. A, Chapter 20]. Let GB = (V ′, E′, tu,v)
be a weighted bipartite graph. There exist K matchings M1, . . . ,MK with
weights µ1, . . . , µK such that

∀u, v,
K∑
i=1

µiχu,v(Mi) = tu,v,

where χu,v(Mi) = 1 if (P out
u , P in

v ) ∈Mi and 0 otherwise, and

K∑
i=1

µi = max

(
max
u

∑
v

tu,v,max
v

∑
u

tu,v

)
.

Moreover, the matchings can be found in strongly polynomial time and by
construction K 6 |E′|.

We build valid patterns directly from the matchingsM : forMi, if χu,v(Mi) =
1, then we include the communication link (P out

u , P in
v ) in the pattern πi. There-

fore, we can build from the solution of Linear Program (8.4) a set of valid
patterns (the matchings Mi) to organize the communications. Thus, both
linear programs provide the same optimal objective value.

For the sake of simplicity, we have not considered processing resources in
this section. To take processing into account, we can bound the occupation
time of a processor with a new constraint in the linear program:

∀r = Pu ∈ R
∑
Aa∈A

∑
o∈O
r∈A(o)

xa
δo
sr
6 1. (8.5)

Then, since communications and computations do not interfere, we can sched-
ule the computations of processor Pu, which last tu =

∑
o xaδo/su, during the

first tu time units to build the valid patterns.
Therefore, in the case of the bidirectional one-port model, it is possible to

replace the (exponential size) set of variables representing valid patterns by a
much smaller (polynomial size) set of variables and constraints dealing with
local congestion. This holds also true in the case of the bounded multi-port
model, since building the valid patterns from local transfers is also equivalent
to pealing a graph into a sum of weighted edge subsets. On the other hand, in
the case of the unidirectional one-port model, the corresponding graph is not
bipartite and it is therefore not possible to express the maximal throughput
via local congestion constraints only. In fact, the design of efficient polyno-
mial time algorithms for optimizing steady-state throughput is still completely
open (for bag-of-tasks application, broadcast, . . .).
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8.6.3 Efficient computation of allocations

In the previous section, we have shown how the set of variables dealing
with valid patterns can be replaced by a much smaller set of variables and
constraints in the case of the bidirectional one-port (and bounded multi-port)
model. However, an exponential set of variables still remains, describing the
allocations.

In this section, we will concentrate on the bidirectional one-port model
and prove how the (exponential size) set of variables dealing with allocations
can also be replaced by a polynomial size set of variables and constraints.
For simplicity, we will focus only on independent task distribution, but the
same framework also applies to broadcasting [5] and independent task graphs
scheduling [6] (under some conditions). The approach we propose is closely
related to the pioneering work of Bertsimas and Gamarnik [7].

Let us consider the bag-of-tasks application problem described in Sec-
tion 8.2.2, where a source (master) node Psource holds a large number of iden-
tical independent tasks to be processed by distant nodes (workers). All data
messages have the same size (in bytes), denoted by δdata, and all result mes-
sages have common size δresult. The cost of any computational task comp is
wcomp (in flops). We denote by su the computational speed of Pu and by su,v
the speed of the link between Pu and Pv.

Let us first concentrate on worker Pu and let us derive a set of equations
corresponding to the communications and the processing induced by the exe-
cution of αu tasks per time unit on Pu. First, Pu should be able to process the
tasks, i.e., αu×wcomp

su
6 1. Let us now introduce the new variables αi,ju,data (re-

spectively αi,ju,result) that represent the number of data (resp. result) messages
for the tasks processed by Pu which are transmitted through link (Pi, Pj).
Clearly, all data (resp. result) messages should leave (resp. reach) Psource and
reach (resp. leave) Pu and therefore,∑

j

αsource,j
u,data =

∑
i

αi,uu,data = αu =
∑
j

αu,ju,result =
∑
i

αi,source
u,result

and no messages should be created or lost at any node different from Psource

and Pu

∀Pi, Pi 6= Psource, Pi 6= Pu,


∑
j

αi,ju,data =
∑
j

αj,iu,data,∑
j

αi,ju,result =
∑
j

αj,iu,result.

Let us now consider the transfers corresponding to all messages to all workers
simultaneously. Pi is busy receiving data and result messages during

tini =
∑
u

∑
j

αj,iu,data × δdata

sj,i
+
∑
u

∑
j

αj,iu,result × δresult

sj,i
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and Pi is busy sending data and result messages during

tout
i =

∑
u

∑
j

αi,ju,data × δdata

si,j
+
∑
u

∑
j

αi,ju,result × δresult

si,j
.

Therefore, the following linear program provides an upper bound on the
possible number of tasks that can be processed, at steady state, during one
time-unit

Maximize ρ =
∑
u

αu,under the contraints



∀Pu, αu > 0,
αu wcomp

su
6 1,

∀Pu,
∑
j

αsource,j
u,data =

∑
j

αj,uu,data = αu =
∑
j

αu,ju,result =
∑
j

αj,source
u,result ,

∀Pi, Pi 6= Psource, Pi 6= Pu,


∑
j

αi,ju,data =
∑
j

αj,iu,data ,∑
j

αi,ju,result =
∑
j

αj,iu,result ,

tini =
∑
u

∑
j

αj,iu,data × δdata

sj,i
+
∑
u

∑
j

αj,iu,result × δresult

sj,i
,

tout
i =

∑
u

∑
j

αi,ju,data × δdata

si,j
+
∑
u

∑
j

αi,ju,result × δresult

si,j
,

∀Pi, tini 6 1, tout
i 6 1.

(8.6)

From the solution of the linear program, the set of valid patterns can be
determined using the general framework described in Section 8.6.2. In order
to build the set of allocations, we can observe that the set of values αi,ju,data

(resp. αi,ju,result) defines a flow of value αu between Psource and Pu (resp. Pu
and Psource). Each of these flows can be decomposed into a weighted set of at
most |E| disjoint paths [19, vol. A, Chapter 10]. Thus, it is possible to find at
most 2|E| weighted allocations that represent the transfer of data from Psource

to Pu, the processing on Pu and the transfer of results from Pu to Psource.
Therefore, under the bidirectional one-port model, the Linear Program (8.6)
provides the optimal throughput for the bag-of-tasks application problem.
Moreover, this linear program is compact since it only involves Θ(|V ||E|)
variables and constraints.



References 214

8.7 Conclusion

Figure 8.7 summarizes the complexity of the problem from the point of view
of steady-state scheduling. All NP-complete problems of this table are NP-
complete for any of the communication models we have considered. For the
problems with polynomial complexity, we do not know a better algorithm than
the one using the Ellipsoid method (see Section 8.5.2) for the unidirectional
one-port model, whereas we have efficient algorithms under the bidirectional
one-port model (as for the bag-of-tasks application in Section 8.6.3).

NP-complete problems with
problems polynomial complexity

collective operations multicast and broadcast [5], scatter
prefix computation [4] and reduce [17]

scheduling problems general DAGs [3]
bags of tasks,

DAGs with bounded
dependency depth [3]

Table 8.1: Complexity results for steady-state problems.

In this chapter, we have shown that changing the metric, from makespan
minimization to throughput maximization, enables to derive efficient poly-
nomial time algorithms for a large number of scheduling problems involving
heterogeneous resources, even under realistic communication models where
contentions are explicitly taken into account. Nevertheless, from an algorith-
mic point of view, large scale platforms are characterized by their hetero-
geneity and by the dynamism of their components (due to processor or link
failures, workload variation,. . . ). Deriving efficient scheduling algorithms that
can self-adapt to variations in platforms characteristics is still an open prob-
lem. We strongly believe that in this context, one needs to inject some static
knowledge into scheduling algorithms, since greedy algorithms are known to
exhibit arbitrarily bad performance in presence of heterogeneous resources.
For instance, Yu-Tong He et al. propose in [13] to base dynamic mapping
decisions in resource management systems on the solution of a linear pro-
gram, and Awerbuch and Leighton [1] show how to derive fully distributed
approximation algorithms for multi-commodity flow problems based on po-
tential queues whose characteristics are given by the pre-computation of the
optimal solution.
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