
Optimizing Network Resource Sharing in Grids
L. Marchal, P. Vicat-blanc Primet, Y. Robert, and J. Zeng

LIP, UMR CNRS-ENS Lyon-INRIA-UCB Lyon 5668
École Normale Supérieure de Lyon, France

Abstract— While grid computing reaches further to geo-
graphically separated clusters, data warehouses, and disks,
it poses demanding requirements on end-to-end perfor-
mance guarantee. Its pre-defined destinations and service
criteria ease the performance control; however, expensive
resources and equipments used by grid applications deter-
mine that optimal resource sharing, especially at network
access points, is critical. From the resource reservation
perspective, this article looks at communication resources
shared by grid sites. Two resource request scenarios have
been identified, aiming at optimizing the request accept
rate and resource utilization. The optimization problems,
proven NP-complete, are then solved by heuristic algo-
rithms. Simulation results, aside from showing satisfying
results, illustrate the pros and cons of each algorithm.

Keywords: grid computing, communication resource,
resource sharing, optimization.

I. INTRODUCTION

Grid computing is a promising technology that brings
together geographically distributed resources. Grids ag-
gregate a large collection of resources(e.g., computing,
communication, storage, information, etc.) to build a
very high-performance computing environment for data-
intensive or computing-intensive applications [1].

Grid applications, such as distance visualization,
bulk data transfer, and high-end collaborative environ-
ment, have diverse and demanding performance require-
ments [2]; for instance, the coordinate management of
network, storage, and computing resources, dynamically
control over QoS and application behaviors, and advance
resource reservation. Analyses [3] have shown that grids
demand broad service quality, such as guaranteed deliv-
ery of huge data files [4], TCP throughput predictability,
and data delivery stability.

The underlying communication infrastructure of grids,
moreover, is a complex interconnection of LANs and
WANs that introduces potential bottlenecks and varying
performance characteristics [5]. For instance, the inter-
face between LAN and WAN, considering grid sites
may generate large flows through their gigabit interfaces,
introduces resource sharing bottleneck. Herein, provi-
sioning end-to-end services with known and knowable
characteristics of grids, which spans multiple adminis-
trative and technological domains, is critical.

An approach to tackle this problem is network re-
source reservation [6]. While computational/storage re-
source sharing/scheduling has been intensively investi-
gated for grids [7]–[10] during the past years, surfacing
is the idea of incorporating network/communication re-
source management into grid environments.

Based on the Grid 5000 project [11], an experimen-
tal grid platform gathering 5000 processors over eight
sites geographically distributed in France, this article
centers on network resource sharing. The rest of the
article is organized as follows. Section II gives the
system model and defines optimization problems for
network resource sharing. Section III proves that the
optimization problem is NP-complete. Heuristics and
simulation results are given in section IV and section
V, respectively. SectionVI presents related work. Finally,
the article concludes in section VII.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Derived from physical configuration of the Grid5000
network, the system model is a collection of LANs (that
is, grid sites) interconnected over a well-provisioned
WAN. They are connected through IP routers. The grid
network middleware carries out the network resource
reservation task and communicates with grid applica-
tions. The network core is assumed to have ample com-
munication resources [12]. Here, the aggregated capacity
of a LAN is larger than the capacity of its access point
(i.e., the router), and the capacity of the network core is
larger than the aggregated capacity of all access points.

Given a set of resource requests, one can separate
grid sites into ingress and egress points: where the
traffic requires to enter the network from, is the ingress
point, and where the traffic requires to leave the network
from, is the egress point. These points at the network
edge, as depicted in Fig. 1, are where resource sharing
bottlenecks present.

A. Resource requests

Resource requests, corresponding to different appli-
cation scenarios, can be long-lived or short-lived. The
difference is that short-lived requests have time windows
specified, as detailed below.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 835 0-7803-9415-1/05/$20.00 © 2005 IEEE



potential
bottlenecks

potential
bottlenecks

Fig. 1. The system model that shows ingress and egress points of a
network as potential bottlenecks.

Given the notation as follows:
• a set of requests R = {r1, r2, . . . , rK}, with bw(r)

as the bandwidth demanded by request r ∈ R.
• a set of ingress points I = {i1, i2, . . . , iM}, with

Bin(i) as the capacity (i.e., bandwidth) of ingress
point i ∈ I.

• a set of egress points E = {e1, e2, . . . , eN}, with
Bout(e) as the capacity (i.e., bandwidth) of egress
point e ∈ E .

For each request r ∈ R, resource sharing constraints are
stated as:

∀i ∈ I,
∑

r∈R,ingress(r)=i

bw(r) � Bin(i)

∀e ∈ E ,
∑

r∈R,egress(r)=e

bw(r) � Bout(e) (1)

where ingress(r) ∈ I and egress(r) ∈ E are the ingress
and egress point of request r, respectively.

For short-lived requests, more parameters are intro-
duced as:

• each request r ∈ R has a starting time ts(r) and a
finishing time tf (r). The time window of request r
is then [ts(r), tf (r)].

• Each request r ∈ R has its volume vol(r) specified
either in Bytes or other meaningful units.

If request r is accepted at time σ(r) = t, both points
of ingress(r) and egress(r) devote a fraction of their
capacity, that is, bw(r), to request r from time t to
time τ(t) = t+ vol(r)

bw(r) . Obviously, the scheduled window
of [σ(r), τ(r)] must be included in the time window of
[ts(r), tf (r)] for all requests r ∈ R, that is,

∀r ∈ R, ts(r) � σ(r) < τ(r) � tf (r)

Applying to the short-lived requests with scheduled time
window [σ(r), τ(r)], the resource constraints (1) are now
restated as:

∀t, ∀i ∈ I,
∑

r∈R, ingress(r)=i,
σ(r)�t<τ(r)

bw(r) � Bin(i)

∀t, ∀e ∈ E ,
∑

r∈R, egress(r)=e,
σ(r)�t<τ(r)

bw(r) � Bout(e) (2)

B. Optimization objectives

To formulate the optimization problem, xk is defined
as a boolean variable; it is equal to 1 if and only if
request rk is accepted. Provided with different types of
requests and constraints specified in subsection II-A, two
optimization objectives are given as below:

a) MAX-REQUESTS : Under the constraints in (1)
or (2), one may maximize the ratio of the number of
accepted requests to that of total requests. The objective
function, referred to as MAX-REQUESTS, is:

MAXIMIZE

K∑
k=1

xk

b) RESOURCE-UTIL : Under the same constraints,
one may maximize the resource utilization ratio, that
is, the ratio of granted resources to total resources. The
objective function, referred to as RESOURCE-UTIL, is:

MAXIMIZE

∑K
k=1 xk.bw(rk)

1
2

(∑M
i=1 B scaled

in (i) +
∑N

e=1 B scaled
out (e)

) ,

where the numerator
∑K

k=1 xk.bw(rk) is the total band-
width that has been assigned to requests. Since one
bandwidth request is counted twice, that is, at both
ingress and egress points, a factor of 1/2 is used to
"stretch" the utilization value to 1.

Furthermore, defined as

B scaled
in (i) = min

(
Bin(i),

∑
r∈R,ingress(r)=i

bw(r)
)

and

B scaled
out (e) = min

(
Bout(e),

∑
r∈R,egress(r)=e

bw(r)
)
,

B scaled
in (i) and B scaled

out (e) are adopted to rule out the
possibility where one access point has no requests at all;
thus, the capacity of this point shall be excluded when
calculating resource utilization.

III. COMPLEXITY ANALYSIS

Since the linear program for MAX-REQUESTS in-
volves integer (boolean) variables, there is little hope that
an optimal solution could be computed in a polynomial
time. Indeed, optimization problems MAX-REQUESTS

and RESOURCE-UTIL both turn out to be NP-complete,
as shown in the rest of the section.

The decision problem associated to the MAX-
REQUESTS problem is the following:

Definition 1 (MAX-REQUESTS-DEC): Given a pro-
blem-platform pair (R, I, E) and a bound Z on the
number of request to satisfy, is there a solution to the

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 836 0-7803-9415-1/05/$20.00 © 2005 IEEE



MAX-REQUESTS linear program such that
∑K

k=1 xk �
Z?

Theorem 1: MAX-REQUESTS-DEC is NP-complete.
Proof: Clearly, MAX-REQUESTS-DEC belongs to

NP; we prove its completeness by reduction from 2-
PARTITION, a well-known NP-complete problem [13].
Consider an instance B1 of 2-PARTITION: given n
integers {a1, a2, . . . , an}, is there a subset I of indices
such that

∑
i∈I ai =

∑
i/∈I ai? Let S =

∑n
i=1 ai and

assume, without loss of generality, that 1 � ai � S/2
for 1 � i � n. We build the following instance B2 of
MAX-REQUESTS-DEC:

• There are K = 2n requests in R, and bw(rk) =
bw(rk+n) = ak for 1 � k � n.

• There are M = 2 ingress points and N = n
egress points. For ingress points we let Bin(i1) =
Bin(i2) = S/2. For egress points we let
Bout(ek) = ak, 1 � k � n.

• We let ingress(rk) = i1, ingress(rk+n) = i2, and
egress(rk) = egress(rk+n) = ek for 1 � k � n.

• Finally, we let Z = n. In other words, we aim at
satisfying half of the requests.

The size of B2 is polynomial (and even linear) in the
size B1. We have to show that B1 has a solution if and
only if B2 has a solution.

Assume first that B1 has a solution. Let I be the subset
of {1, 2, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai = S/2.

We claim that we can satisfy the |I| requests rk, k ∈ I
together with the n − |I| requests rk+n, k /∈ I , thereby
achieving the desired bound Z = n. Indeed, we schedule
the first |I| request from ingress point i1, and the
remaining n− |I| ones from i2, without exceeding their
capacity Bin(i1) = Bin(i2) = S/2. Egress point ek is
used either for request rk if k ∈ I , or for request rk+n

if k /∈ I; in either case, Bout(ek) = ak is equal to the
requested bandwidth for the request.

Conversely, assume now that B2 has a solution. Let
I be the set of indices k such that rk is satisfied and
1 � k � n. Similarly, let J be the set of indices such that
rk+n is satisfied and 1 � k � n. Because the capacity
of egress point ek is Bout(ek) = ak, I and J must
be disjoint: if they shared an index, the capacity of the
corresponding egress point would need to be as twice
larger as it is. Because the bound Z = n is achieved,
we have |I| + |J | � n. We deduce that I and J form
a partition of {1, 2, . . . , n}. We have

∑
k∈I ak � S/2

because the capacity of ingress point i1 is not exceeded,
and

∑
k∈J ak � S/2 because the capacity of ingress

point i2 is not exceeded. But I ∪ J = {1, 2, . . . , n} and∑n
k=1 = S, hence

∑
k∈I ak =

∑
k/∈I ak = S/2. We

have found a solution to B1.

Proposition 1: The decision problem associated to
RESOURCE-UTIL is NP-complete.

For the sake of brevity, we do not formally state the
decision problem associated to RESOURCE-UTIL, and
we refer to [14] for a proof of Proposition 1. Interest-
ingly, it is also shown in [14] that MAX-REQUESTS-DEC

problem remains NP-complete in the case of an uniform
network (all ingress/egress capacities are equal); only
in the (very unlikely in practice) case of an uniform
network and uniform requests (all request bandwidths
are equal) can the optimal solution of MAX-REQUESTS

be computed in a polynomial time.
Since the problems defined in Section II have been

proven to be NP-complete, solutions are pursued with
heuristics.

IV. POLYNOMIAL HEURISTICS AND SIMULATIONS

FOR LONG-LIVED REQUESTS

Three polynomial heuristics are proposed for both op-
timization objectives MAX-REQUESTS and RESOURCE-
UTIL.

A. Growing the set of accepted requests

Based on classical greedy algorithm where requests
are accepted until there are no more available resources,
MAXREQ-SIMPLE sorts requests by bandwidth in a non-
decreasing order (ties are broken arbitrarily). A request
is accepted if and only if its requested bandwidth does
not exceed the available capacity of both ingress and
egress points. The pseudo code of the algorithm [14] is
omitted here.

MAXREQ-REFINED refines the previous procedure,
by accepting the request that leaves the maximum
amount of resources to others. Take request rk as an
example. Let i = ingress(rk), and let alloc_ingress(i)
be bandwidth of point i which has been taken by
accepted requests (initially alloc_ingress(i) = 0). By
calculating the utilization ratio of ingress point i, that
is, alloc_ingress(i)+bw(k)

Bin (i) , and that of the corresponding
egress point, the request that minimizes this ratio is
accepted. The details of the algorithm can be referred
to [14].

B. Peeling off the set of original requests

Starting from the whole set of requests (i.e., the set
of accepted requests A = R), MAXUSEPEELING "peels
off" certain requests until a solution meeting all resource
constraints is found. Given the set of requests, an occu-

pancy ratio defined as ratio(i) =
P

r∈A,ingress(r)=i bw(r)

Bin(i)
is calculated for all access points. If all ratios are smaller
than 1, all requests are accepted. Otherwise, among
requests whose ingress and egress points both have

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 837 0-7803-9415-1/05/$20.00 © 2005 IEEE



their occupancy ratio bigger than 1, the one that helps
decrease the ratio the most is peeled off; requests, either
of whose ingress or egress points has a ratio bigger than
1, are scanned through in a similar manner. The heuristic
is detailed in [14].

C. Simulation settings

It is assumed that there are 50 ingress and egress
points, respectively. The capacity of each point is ran-
domly chosen as either 1Gb/s or 10Gb/s. Requests may
occur between any pair of different points, and its band-
width request is randomly chosen from a set of values:
{10MB/s, 20MB/s, . . . , 90MB/s, 100MB/s, 200MB/s,
. . . , 900MB/s, 1000MB/s}. The number of requests is
determined by the system load, which is defined as the
ratio of the sum of demanded bandwidth and the sum of
available bandwidth in the system:

load =

∑
r∈R

bw(r)

1
2

(∑
i∈I

Bin(i) +
∑
e∈E

Bout(e)

)

D. Simulation results and discussion

The simulation results for long-lived requests are
illustrated in Figure 2.

 40

 50

 60

 70

 80

 90

 100

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

ac
ce

pt
an

ce
 r

at
e 

(%
)

load

MaxReqSimple
MaxReqRefined
MaxUsePeeling

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

ut
ili

za
tio

n 
ra

tio
 (

%
)

load

MaxReqSimple
MaxReqRefined
MaxUsePeeling

Fig. 2. Comparison of the heuristics for long-lived requests.

Obviously, MAXREQ-SIMPLE and MAXREQ-
REFINED, aiming at accepting as many requests as

possible, outperforms MAXUSEPEELING with respect
to the accept rate. And MAXUSEPEELING achieves
better utilization ratio because it targets at optimizing
the resource utilization. The original purposes of these
heuristics have been met.

One may argue that none of the strategies reaches
100% acceptance rate or utilization ratio. The reason is
that randomly generated requests in the article are not
uniformly distributed among access points. It is not rare
that certain point are heavily loaded, and certain points
are not. The plotted accept rate and utilization ratio,
which are more than 50%, are actually rather satisfying.

V. POLYNOMIAL HEURISTICS AND SIMULATIONS FOR

SHORT-LIVED REQUESTS

As illustrated in subsection II-A, if request r with time
window [ts(r), tf (r)] is accepted at time σ(r) = t, a
fraction of system capacity, that is, bw(r), is scheduled
to request r from time t to time τ(t) = t+ vol(r)

bw(r) . Assume
that time constraints are rigid, that is, σ(r) = ts(r) and
τ(r) = tf (r). Requests are then accepted or rejected as
they are.

Note that, sharing the same complexity characteristics
with long-lived ones, resource sharing optimization for
short-lived requests is also NP-complete.

A. FIFO

Scheduling requests in a “first come first serve” man-
ner, FIFO heuristic accepts requests in the order of
their starting times. If several requests happen to have the
same starting time, the request demanding the smallest
bandwidth is scheduled first.

B. Time window decomposition

With rigid time windows, pre-defined starting and
finishing times are used as reference points for re-
source scheduling. As depicted in Figure 3, these time
points naturally form time intervals within which no
request starts or stops; thus heuristics for long-lived
requests in Section IV can be applied. Given inter-
vals [t0, t1], [t1, t2], . . . , [ti−1, iN ], therefore, for each ti,
there exists a request r such that ts(r) = ti or tf (r) =
ti. The greedy strategies proposed in Section IV are
then applied to each time-interval, with two situations
explained in the following paragraphs.

t

r

tf (r)ts(r)
time-intervals:

requests:

Fig. 3. Decomposition of requests with time windows.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 838 0-7803-9415-1/05/$20.00 © 2005 IEEE



For a request that spreads over multiple time intervals,
first, if it gets rejected in its first time interval, it will
be discarded permanently; second, if it gets accepted in
its first time interval, it shall be granted certain priority
when competing with other requests in its future time
intervals.

Taking the duration of a request and the scheduling
decisions in previous time intervals into consideration,
a priority factor is used to represents the importance of
scheduling request r on a given time-interval. Assume
requests in time-intervals [t0, t1], [t1, t2],. . . ,[ti−1, ti]
have been scheduled, At the interval of [ti, ti+1], the
priority factor is defined as the sum of the time already
allocated to the request (ti−ts(r)) and the duration of the
current interval (ti−ti−1) over the total request duration,
that is,

priority(r, [ti, ti+1]) =
ti+1 − ts(r)
tf (r) − ts(r)

The cost factor defined in the MAXREQ-REFINED

heuristic for long-lived requests, is then refined as fol-
lows:

cost(r, [ti, ti+1]) =
bw(r)

bmin × priority(r, [ti, ti+1])

where bmin = min
{
Bin(ingress(r)),Bout (egress(r))

}
By adopting this cost factor, for requests with the same

starting time, a higher priority is given to requests with
smaller duration; it maximizes the accepted number of
requests. For requests within the same time interval, a
higher priority is given to requests that have been granted
more resources. The complete heuristic CUMULATED-
SLOTS is detailed in [14].

Following the same time window decomposition tech-
nique, two variants of the previous heuristic, that is,
MINBW-SLOTS and MINVOL-SLOTS, are proposed with
re-defined cost factor cost(r, [ti, ti+1)] = bw(r) and
cost(r, [ti, ti+1)] = vol(r), respectively.

C. Simulation settings

There are 10 ingress and 10 egress points, respectively,
with a capacity of 1GB/s. Ingress/egress points and
demanded bandwidth are generated as in subsection IV-
C. Moreover, the requested volume is randomly chosen
between 100GB and 1TB. Following the Poisson dis-
tribution, the request arrivals determine the system load
similarly as in subsection IV-C.

D. Simulation results and discussion

As illustrated in Figure 4, first, FIFO shows poor
performance on both accept rate and utilization ratio.
The fact that FIFO lets requests block each other indi-
cates that selectively reject is an important step towards

good performance. Second, MINVOL-SLOTS does not
perform as well as MINBW-SLOTS and CUMULATED-
SLOTS. In fact, accepting a request with the minimum
volume may not always be a good decision. If the time
window is small, the request will likely take the majority
of the bandwidth; this lowers the value of the accept
rate and thus the utilization ratio. Last, CUMULATED-
SLOTS and MINBW-SLOTS have very close perfor-
mance. CUMULATED-SLOTS should have good perfor-
mance because its decision is made based on both de-
manded bandwidth and resource reservation in the past;
it prevents a request from being rejected in the late stage
of its time window. MINBW-SLOTS accepts the requests
with smaller bandwidth requirements; these requests are
unlikely to be rejected later, unless other requests with
small bandwidth demand surges at one point. Under
some circumstances, MINBW-SLOTS performs as well as
CUMULATED-SLOTS, even without resource reservation
history.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

ac
ce

pt
 r

at
e 

(%
)

load

FIFO
minBW-Slots
minVol-Slots

Cumulated-Slots

 0

 20

 40

 60

 80

 100

 120

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

ut
ili

za
tio

n 
ra

tio
 (

%
)

load

FIFO
minBW-Slots
minVol-Slots

Cumulated-Slots

Fig. 4. Comparison of the heuristics according to two different metrics

VI. RELATED WORK

Admission control mechanisms in IP networks are
well-developed [15]. They have been mostly done at
the ingress points of the network edge, or is closely
coupled with feasible path search. The work in this
article, however, looks at both access points where the
traffic enters and leaves the network. Besides, the specific
network topology studied in this article does not pose
significant requirements on routing.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 839 0-7803-9415-1/05/$20.00 © 2005 IEEE



Studying control mechanisms at network edge, this
work is in line with the Internet philosophy of pushing
the complexity to the network edge. On the perspective
of resource scheduling, it pursues solutions based on the
idea of what enters the network shall be able to leave
the network, that is, the idea of avoiding potential packet
drop within the network. This idea of "globally max-min
fair" was investigated in Network Border Patrol [16], a
core-stateless congestion avoidance mechanism.

Advance reservation for grids has also been under
intensive study. The Globus Architecture for Reservation
and Allocation (GARA) provides advance reservations
and end-to-end management for QoS on different type
of resources (network, storage and computing) [6]. A
QoS architecture that combines resource reservation and
application adaptation has been proposed. The work in
this article fits in this context, but further explores the
optimization on network resource sharing, based on a
specific topology.

The advance reservation problem has also been de-
fined and investigated in [17]. Although both targeting at
resource requests with starting and finishing time limits,
the work in this article looks at optimal resource sharing
over a network with resource bottlenecks occurring at
the edge, rather than investigating on impacts of the
percentage of book-ahead periods and that of malleable
reservations on the system.

VII. CONCLUSIONS

Network resource sharing in grids has been investi-
gated in this article. With bottlenecks presented at the
network edge, network resources are reserved based on
the concept of what enters the network shall be able to
leave the network. For both long-lived and short-lived
requests, optimization objectives with respect to request
accept rate and resource utilization are pursued. Proven
to be NP-complete, the optimization problems are solved
with heuristics. The heuristic algorithms are studied and
compared by simulations.

Resource sharing optimization studied in this article
can be extended to other similar environments, for exam-
ple, community overlay networks. The resource sharing
strategies can be carried out either in a centralized or
distributed manner, depending on network management
implementations. Future work will be continued in the
direction of reliving tentative hot spots in the network,
that is, ingress/egress points that are heavily demanded,
and in the direction of real-time resource reservation.

VIII. ACKNOWLEDGMENT

This work has been funded by the French ministry of
Education and Research, INRIA, and CNRS, via ACI

GRID’s Grid5000 project and GRIPPS project.

REFERENCES

[1] I. Foster, The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 2004.

[2] V. Sander, W. Allcock, C. Pham, I. Monga, P. Padala,
M. Tana, and F. Travostino. (2003, June) Networking issues
of grid infrastructures. Grid working draft, Grid High
Performance Networking Research Group (GHPN-RG), Global
GRID Forum. [Online]. Available: http://forge.gridforum.org/
projects/ghpn-rg/document/draft-ggf-ghpn-net%issues-0/en/1/
draft-ggf-ghpn-netissues-1.pdf

[3] P. Vicat-Blanc/Primet, “High performance grid networking in
the datagrid project,” special issue Future Generation Computer
Systems, vol. 19, pp. 199–208, Jan. 2003.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke, “The data grid: Towards an architecture for the
distributed management and analysis of large scientific datasets,”
Journal of Network and Computer Applications, vol. 23, pp. 187–
200, 2001.

[5] S. Floyd and V. Jacobson, “Link-sharing and resource manage-
ment models for packet networks,” IEEE/ACM Transaction on
Networking, vol. 3, pp. 365–386, Aug. 1995.

[6] I. T. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler, “End-
to-end quality of service for high-end applications,” Computer
Communications, vol. 27, no. 14, pp. 1375–1388, 2004.

[7] T. Roblitz, F. Schintke, and A. Reinefeld, “From clusters to
the fabric: the job management perspective,” in Proc. IEEE the
International Conference on Cluster Computing, 2003, pp. 468–
473.

[8] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in Proc.
IEEE the 11th Symposium on High Performance Distributed
Computing(HPDC’02), July 2002, pp. 352–358.

[9] K. Czajowski, I. Foster, and C. Kesselman, “Resource co-
allocation in computational grids,” in Proc. IEEE the eighth
International Symposium on High Performance Distributed Com-
puting, Aug. 1999, pp. 219–228.

[10] H. Dail, F. Bern, and H. Casanova, “A decoupled scheduling
approach for grid application development environment,” Inter-
national Journal Parallel and Distributed Systems, vol. 63, pp.
505–524, 2003.

[11] The grid 5000 project. [Online]. Available: http://www.grid5000.
org/

[12] L. L. Smarr, A. A. Chien, T. Defanti, J. Leigh, and P. M.
Papadopoulos, “The optiputer,” Communications of the ACM
special issue: blueprint for the future of high-performance net-
working, vol. 46, pp. 58–67, Nov. 2003.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability, a
Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, 1979.

[14] L. Marchal, P. Primet, Y. Robert, and J. Zeng, “On network
resource scheduling in grid networking,” INRIA - ENS/LIP,
Lyon, France, Tech. Rep., 2005.

[15] V. Firoiu, J. L. Boudec, D. Towsley, and Z. Zhang, “Theories
and models for internet quality of service,” Proceedings of the
IEEE, vol. 90, pp. 1565–1591, Sept. 2002.

[16] C. Albuquerque, B. Vickers, and T. Suda, “Network border patrol:
Preventing congestion collapse and promoting fairness in the
internet,” IEEE Transactions on Networking, vol. 12, pp. 173–
186, Feb. 2004.

[17] L. Burchard, H.-U. Heiss, and C. A. F. D. Rose, “Performance
issues of bandwidth reservations for grid computing,” in Proc.
IEEE the 15th Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’03), Nov. 2003, pp. 82–90.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 840 0-7803-9415-1/05/$20.00 © 2005 IEEE




