
Assessing the impact and limits of steady-state
scheduling for mixed task and data parallelism on

heterogeneous platforms

O. Beaumont
LaBRI, UMR CNRS 5800

Bordeaux, France
Olivier.Beaumont@labri.fr

A. Legrand and L. Marchal and Y. Robert
LIP, UMR CNRS-INRIA 5668

ENS Lyon, France
{Arnaud.Legrand,Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract—In this paper, we consider steady-state
scheduling techniques for mapping a collection of task
graphs onto heterogeneous systems, such as clusters
and grids. We advocate the use of steady-state schedul-
ing to solve this difficult problem. Due to space lim-
itations, we concentrate on complexity results. We
show that the problem of optimizing the steady-state
throughput is NP-Complete in the general case. We for-
mulate a compact version of the problem that belongs
to the NP complexity class but which does not restrict
the optimality of the solution.

We provide many positive results in the extended
version [5]. Indeed, we show how to determine in poly-
nomial time the best steady-state scheduling strategy
for a large class of application graphs and for an ar-
bitrary platform graphs, using a linear programming
approach.

I. Introduction

The traditional objective of scheduling algorithms is
makespan minimization: given a task graph and a set of
computing resources, find a mapping of the tasks onto the
processors, and order the execution of the tasks so that: (i)
task precedence constraints are satisfied; (ii) resource con-
straints are satisfied; and (iii) a minimum schedule length
is provided. However, makespan minimization turned out
to be NP-hard in most practical situations [24], [1]. The
advent of more heterogeneous architectural platforms is
likely to even increase the computational complexity of
the process of mapping applications to machines.

An idea to circumvent the difficulty of makespan min-
imization is to lower the ambition of the scheduling ob-
jective. Instead of aiming at the absolute minimization
of the execution time, why not consider asymptotic op-
timality? After all, the number of tasks to be executed
on the computing platform is expected to be very large:
otherwise why deploy the corresponding application on
computational grids? To state this informally: if there is a
nice (meaning, polynomial) way to derive, say, a schedule
whose length is two hours and three minutes, as opposed
to an optimal schedule that would run for only two hours,
we would be satisfied.

This approach has been pioneered by Bertsimas and
Gamarnik [8]. Steady-state scheduling allows to relax the
scheduling problem in many ways. Initialization and clean-
up phases are neglected. The initial integer formulation
is replaced by a continuous or rational formulation. The
precise ordering and allocation of tasks and messages are
not required, at least in the first step. The main idea is to
characterize the activity of each resource during each time-
unit: which (rational) fraction of time is spent computing,
which is spent receiving or sending to which neighbor?
Such activity variables are gathered into a linear program,
which includes conservation laws that characterize the
global behavior of the system.

In this paper, we consider the execution of a complex
application on heterogeneous computing platforms. The
complex application consists of a suite of identical, in-
dependent problems to be solved. In turn, each problem
consists of a set of tasks, modeled by an application graph.
There are dependences (precedence constraints) between
these tasks. A typical example is the repeated execution
of the same algorithm on several distinct data samples
(see the simple application graph depicted in Figure 1(a)).
We use another graph, the platform graph, for the grid
platform. We model a collection of heterogeneous resources
and the communication links between them as the nodes
and edges of an undirected graph. See the example in
Figure 1(b) with four processors and five communication
links. Each node is a computing resource (a processor, or
a cluster, or even a router with no computing capabil-
ities) capable of computing and/or communicating with
its neighbors at (possibly) different rates. The underlying
interconnection network may be very complex and, in
particular, may include multiple paths and cycles (just as
the Internet does).

Deriving a steady-state solution for this complex map-
ping problem amounts to characterize the usage of pro-
cessors and communication links: for a given processor,
which fraction of time is spent executing which task type?
for a given communication link, which fraction of time
is spent communicating which file type? The objective

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE



T4

T2 T3

T1

(a)
Application
graph

P2 P4

P3P1

(b) Platform graph

Fig. 1. The application and platform graphs

is to maximize the throughput, which is the number of
problem instances solved per time-unit, i.e. the number of
copies of the application graph which are processed per
time-unit. Of course, the previous activity fractions and
the throughput are rational numbers. To derive the actual
periodic schedule there will remain to scale everything,
so as to derive an integer time-period. But the beauty of
steady-state scheduling is that this reconstruction can be
automatically computed from the rational values (Theo-
rem 1). We can derive a periodic schedule and express it
in compact form, contrarily to the traditional makespan
minimization approach which would require a scheduling
date for all tasks and files.

The objective of the paper is to assess the limits of
steady-state scheduling when applied to the difficult map-
ping problem that we just described. When is this ap-
proach asymptotically optimal? What is the inherent com-
plexity of computing the optimal steady-state throughput?
The contribution of the paper is a complexity result assess-
ing that the most general instance of the problem is NP-
Complete (Section III). Showing that the problem does
belong to the class NP (i.e. that a solution can be verified
in polynomial time) already is a challenging problem.
Nevertheless, the optimal steady-state throughput can be
computed in polynomial time for most practical instances,
and the corresponding actual schedule is asymptotically
optimal.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce our base model of computation and
communication, and we formally state the steady-state
scheduling problem to be solved. Then, in Section III, we
prove that the most general instance of the problem is NP-
Complete. We describe related work in Section IV. We give
some final remarks and conclusions in Section V. Due to
space limitations, many details and proofs are omitted:
please refer to the extended version of the paper [5].

II. Models

A. Constraints on platform and application graphs

The application is a suite of problem instances, each
instance being modeled by the same application graph: let
P(1),P(2), . . . ,P(N) be the N problems to solve, where N
is large. Each problem P (m) corresponds to a copy G

(m)
A =

(V (m)
A , E

(m)
A ) of the application graph GA = (VA, EA). The

number |VA| of nodes in GA is the number of task types.
In the example of Figure 1(a), there are four task types,
denoted as T1, T2, T3 and T4. Overall, there are N.|VA|
tasks to process, since there are N copies of each task
type.

The target heterogeneous platform is represented by a
directed graph, the platform graph GP = (VP , EP ). There
are p = |VP | nodes P1, P2, . . . , Pp in VP that represent the
processors. In the example of Figure 1(b) there are four
processors, hence p = 4. See below for processor speeds
and execution times. Each edge represents a physical in-
terconnection. Each edge eij ∈ EP : Pi → Pj is labeled by
a value ci,j which represents the time to transfer a message
of unit length between Pi and Pj , in either direction: we
assume that the link between Pi and Pj is bidirectional and
symmetric. We assume a full overlap, single-port operation
mode, where a processor node can simultaneously receive
data from one of its neighbor, perform some (independent)
computation, and send data to one of its neighbor. At any
given time-step, there are at most two communications
involving a given processor, one in emission and the other
in reception. Other models have been considered in [4], [2].

In our model, processor Pi requires wi,k time units to
process a task of type Tk. Note that this framework is quite
general, because each processor has a different speed for
each task type, and these speeds are not related: they are
inconsistent with the terminology of [11]. At last, each
edge ek,l : Tk → Tl in the task graph is weighted by a
communication cost datak,l that depends on the tasks Tk

and Tl. It corresponds to the amount of data output by Tk

and required as input to Tl. Recall that the time needed
to transfer a unit amount of data from processor Pi to
processor Pj is ci,j . Thus, if a task T

(m)
k is processed on

Pi and task T
(m)
l is processed on Pj , the time to transfer

the data from Pi to Pj is equal to datak,l × ci,j ; this holds
for any edge ek,l : Tk → Tl in the task graph and for any
processor pair Pi and Pj . Again, once a communication
from Pi to Pj is initiated, Pi (resp. Pj) cannot handle a
new emission (resp. reception) during the next datak,l×ci,j

time-units.

B. Allocations and cyclic schedules

We need the following definitions: allocation, schedule,
makespan, cyclic schedule, K-periodic schedule, through-
put. Because of lack of space, some of the definitions will
be omitted here. We refer to the extended version [5] for
a rigorous introduction to cyclic scheduling.

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE



Definition 1 (Allocation): An allocation A is a pair of
mappings π : VA �→ VP and σ : EA �→ {paths in GP } such
that for each edge ek,l : Tk → Tl:

σ(ek,l) = (Pi1 , Pi2 , . . . , Pip)

with

{
Pi1 = π(Tk), Pip = π(Tl) et(
Pij → Pij+1

) ∈ EP for all j ∈ �1, p − 1�
.

Obviously, π maps the tasks of the application graph GA

onto the platform nodes and σ maps the (files associated to
the) edges of GA onto the paths of the platform network.
Thus A represents a possible way to execute the applica-
tion graph on the platform graph. In what follows, we will
consider a set of weighted allocations (Am, αm). We define
the weight αm of allocation Am as the fractional number of
application graphs processed according to allocation Am

during one time unit.

Definition 2 (Schedule): A schedule associated to an
allocation (π, σ) is a pair of mappings tπ : VA �→ Q and
tσ : EA × EP �→ Q satisfying to the following constraints:

• precedence constraints for the application graph
• resource constraints for the platform graph (compu-

tations, communications and 1-port constraints)

Theorem 1: Given a set of r weighted allocations
(Am, αm), such that the superposition of the r weighted
allocations satisfies all resource constraints, then we can
reconstruct a valid periodic schedule of throughput ρ =∑r

m=1 αm.

The significance of Theorem 1 is that it allows to go from
purely local constraints to a global steady-state schedule.
The formal proof of this result is technical, and the de-
tailed proof is available in [5]. The proof is divided in two
parts. First, we prove that we can build a valid schedule of
communications from a set of allocations satisfying 1-port
constraints, using a weighted decomposition of bipartite
graphs [22, vol.A chapter 20]. Then, we prove how to
build a periodic schedule achieving the throughput ρ =∑r

m=1 αm.

III. Complexity results

In this section, we derive some complexity results for the
problem of maximizing the throughput when mapping an
application graph GA = (VA, EA) onto a given platform
graph GP = (VP , EP ). In particular, we prove that finding
the set of allocations that maximizes the throughput is
NP-Complete in general. Nevertheless, it is proven in [5]
that this problem can be solved in polynomial time for
large classes of graph, in particular if the dependency
depth of the application graph is bounded (which covers
many important cases in practice, such as independent
tasks, tree-shaped application graphs, series of fork-join
application graphs, etc.).

In order to prove the NP-Completeness, we first define
a restricted version of the problem, whose solutions can
be verified in polynomial time. We will show the NP-
Completeness of the restricted version. Before that, we
show that we do not lose anything by sticking to the
restricted version: if the general problem admits a solu-
tion of given throughput, so does the restricted version.
Altogether, these results fully demonstrate the difficulty of
the general problem. Because of lack of space, we cannot
provide full proofs in this short version (see [5]), but we
provide the main ideas. The target decision problems can
be stated as follows:

Definition 3 (GRAPH-THROUGHPUT(GA, GP , ρ)):
Given a platform graph GP , an application graph GA and
a rational bound for the throughput ρ, does there exist a
periodic schedule whose throughput is at least ρ?

However, we need a version where the solution can be
verified in polynomial time:

Definition 4: (COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ)) Given a platform graph
GP , an application graph GA and a rational bound for
the throughput ρ, does there exist a periodic schedule
consisting of at most k � 3|VP | allocations A1, . . . ,Ak,
where the weight αi is the average number of graphs
processed by the allocation Ai within one time unit,
αi = ai

bi
, and ai and bi are integers such that

∀i, log ai + log bi � 6|VP |(2 + log(|VP |) + log(M)),

where M = max(1, |VA|maxwi,k, |VP ||EA|max ci,j max datak,l)

and such that the throughput is at least ρ =
∑

αi � ρ ?

In the latter definition, we restrict the search to solu-
tions where a bounded number (k � 3|VP |) of allocations
is used, whose weights can be expressed in a compact
way (αi = ai

bi
, where ai and bi are integers such that

log ai +log bi � 6|VP |(log(|VP |)+log(M)). This restriction
is necessary in order to keep the problem in the class NP ,
since an optimal solution may have a size exponential
in the size of the initial data: indeed, from any periodic
solution with period T , we can trivially build another
solution, achieving the same throughput, with period r ·T ,
for any integer r. However, the following theorem asserts
that this restriction on the size of the solution does not
affect the optimal throughput:

Theorem 2: Given a weighted platform graph GP and
a task graph GA if there exists a periodic schedule
to GRAPH-THROUGHPUT that achieves a through-
put ρ, then there also exists a solution of COMPACT-
WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ).

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE



Proof: In order to prove this result, we first derive
a set of constraints that will be satisfied by any periodic
solution periodic to the GRAPH-THROUGHPUT prob-
lem. Let us denote by A the set of all possible allocations.
There may be an exponential number of such allocations
(with respect to the size of the application and platform
graphs), but the number of allocations is nevertheless
finite, since it consists to associate a given processor to
any task, and a given path in the platform graph (of
size at most |VP | since cycles are clearly useless) to any
dependence in the task graph. A solution of the GRAPH-
THROUGHPUT problem is then a set of weighted alloca-
tions {(A1, α1), . . . , (Ar, αr)}: here the weight αm is the
number of times per time-unit where allocation Am is used
by the schedule. Let us denote by π(k, m) the index of the
processor that processes task Tk in the allocation Am, and
by Σ(k, l, m) the set of oriented links used to send data
from π(i, m) to π(j, m) in the allocation Am. Then, any
solution of the GRAPH-THROUGHPUT problem satisfies
the following set of constraints:


(1, i) ∀Pi,
∑
Am

αm

∑
k,π(k,m)=i

wi,k � 1

(2, i) ∀Pi,∑
Am

αm

∑
Pi→Pj

∑
(Tk,Tl)∈EA, (Pi,Pj)∈Σ(k,l,m)

ci,jdatak,l � 1

(3, i) ∀Pi,∑
Am

αm

∑
Pj→Pi

∑
(Tk,Tl)∈EA, (Pj ,Pi)∈Σ(k,l,m)

cj,idatak,l � 1

(4, m) ∀Am, αm � 0

Indeed, for any solution to the GRAPH-THROUGHPUT
problem, the processing capability of each processor can-
not be exceeded (constraint (1, i)); one-port constraints
for sending (2, i) and receiving (3, i) messages must be
fulfilled at any node. Conversely, from any solution of
previous set of inequalities, one can derive a valid schedule,
where

∑
αm messages are processed every time-unit (this

is exactly Theorem 1). Thus, the solution of the linear
program where we aim at maximizing

∑
m αm under above

constraints provides an optimal solution of the GRAPH-
THROUGHPUT problem. Let us denote by ρmax the
optimal value of the objective function. The previous
linear program is of little practical interest since both the
number of constraints and the number of variables are
possibly exponential in the size of the original instance
of the GRAPH-THROUGHPUT problem. Nevertheless,
using linear programming theory [21], it is possible to
prove that one of the optimal solution to the linear
program is one instance of COMPACT-WEIGHTED-
GRAPH-THROUGHPUT(GA, GP , ρ).

Indeed, the linear program has |A| + 3|VP | constraints,
where |A| is the number of all allocations. There is a vertex
V of the polyhedron defined by linear constraints which is
optimal, and V is given by the solution of a |A|×|A| linear
system, such that at vertex V , at least |A| inequalities

among |A| + 3|VP | are tight. Since only 3|VP | constraints
are not of the form (4, m), we know that at least |A| −
3|VP | constraints of the form (4, m) are tight, i.e. that at
most 3|VP | allocations have a non-zero weight. Thus, there
exists an optimal solution where at most 3|VP | allocations
are actually used.

In order to achieve the proof of the theorem, we need to
bound the size of the weights of these allocations. Again,
consider the optimal solution defined by vertex V , which
is given by the solution of a |A|× |A| linear system, where
at most m � 3|VP | constraints are not of the form αi = 0.
Let us consider the m × m linear system containing
non-trivial equations. We can easily prove that the
coefficients of the resulting linear system are bounded by
M = max(1, |VA|maxwi,k, |VP ||EA|max ci,j max datak,l)
and, using Cramer’s rule, that log(ai) + log(bi) �
6|VP |(2 + log(|VP |) + log(M)), and thus that the
sizes of both ai and bi satisfy the constraints of
the instance of COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ). Thus, among the optimal
solutions of the GRAPH-THROUGHPUT problem, there
exists a solution to COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρmax).

Theorem 3: COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ) is NP-Complete.

Lemma 1: COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ) ∈ NP

Proof: In order to prove that COMPACT-
WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ)
∈ NP, we use the set of allocations as a certificate.
We know that there the solution consists in at most
3|VP | allocations, whose weights αi = ai

bi
satisfy

log ai + log bi � 6|VP |(2 + log(|VP |) + log(M)), where

M = max(1, |VA|max wi,k, |VP ||EA|max ci,j max datak,l).

Theorem 1 asserts that it is possible to build a valid
schedule of communications and task processing, that
achieves the throughput

∑
m αm, using a weighted de-

composition of the bipartite graph. The weights on
the edges of the bipartite graph represent the over-
all communication time between the Pi and Pj . In
order to prove that COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ) ∈ NP, we only need to prove
that both the bipartite graph and the processing times can
be encoded in size polynomial to the size S of the original
instance, which can be done since both the number of
allocations and their weights are bounded by construction.

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE



Pa

Pb

P1 P4
P2 P3

V1

V3

V2

V4

Fig. 2. Reduction from the instance of MINIMUM-MULTIWAY-
CUT: the weight of the cut is equal to the communication volume.

Lemma 2: COMPACT-WEIGHTED-
THROUGHPUT(GA, GP , ρ) is complete.

Proof: In order to prove that COMPACT-
WEIGHTED-THROUGHPUT(GA, GP , ρ) is complete,
we use a reduction from MINIMUM-MULTIWAY-CUT,
which is NP-Complete (and even APX-Complete) [1].
MINIMUM-MULTIWAY-CUT is the following decision
problem:

Definition 5 (MINIMUM-MULTIWAY-CUT(GM , B)):
Given a weighted graph GM = (VM , EM ), a set S ⊂ VM of
terminals, a weight function t on the edges and a rational
bound B, is there a multiway cut, i.e. a set E ′

M ⊂ EM

such that the removal of E′
M from EM disconnects each

terminal from all the others, and
∑

e∈E′
M

t(e) � B ?
Consider the following instance of COMPACT-

WEIGHTED-THROUGHPUT(GA, GP , ρ), built from an
instance of MINIMUM-MULTIWAY-CUT(GM , B). First,
the application graph is built as shown on Figure 2). It
has the same number of vertices and the same number
of edges as GM . Each (non-oriented) edge (Vk, Vl) (of
weight t(Vk, Vl)) in GM is transformed in an (oriented)
edge (Tmin(k,l), Tmax(k,l)) (of weight datak,l = t(Vk, Vl)) in
GA. The resulting graph is clearly oriented and acyclic,
thus representing a valid application graph. Then, the
platform graph is built as follows. It consists of |S| + 2
processors P1, . . . , P|S|, Pa, Pb. The communication times
of the edges of the platform graph depicted in Figure 2
are given by ∀i, cPi,Pa = 0, cPb,Pi = 0 and cPa,Pb

= 1, all
the other communication times being +∞. The times to
process the tasks of GA on the processors of GP are the
following. If Vk ∈ S, then we will refer Tk as a ”terminal
task”. Terminal task Tk is associated to terminal processor
Pk, so that wk,k = 0 and wi,k = +∞ if i �= k. All the
other tasks are not associated to a particular processor
and can be processed in time 0 whatever the processor Pi

executing it. Finally, Pa and Pb are unable to process any
task (wa,k = wb,k = +∞). Finally, we set ρ = 1

B .
Let us first suppose that there is a solution to the orig-

inal instance of MINIMUM-MULTIWAY-CUT(GM , B),

and let Ci denote the set of nodes connected to the terminal
Vi ∈ S in the graph GM = (VM , EM \E′

M ). Then, consider
the following allocation (see Figure 2):

∀Tk ∈ Ci, Tk is done on Pi, ∀(Tk, Tl) ∈ Ci × Cj, i �= j,

σ(k, l) = {(Pi, Pa), (Pa, Pb), (Pb, Pj)}. (1)

In this allocation, only the communication time between
Pa and Pb is not 0. We can easily see that this communi-
cation time is equal to the weight of Multiway Cut in GM .
Thus, by Theorem 1, the platform GP is able to process
one application graph GA every B time units using this
allocation.

Suppose now that we have a solution to the
instance of COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ) that we have built, i.e. a
collection of weighted allocations (A1, α1), . . . , (Am, αm)
such that the platform GP is able to process

∑
m αm � 1

B
application graphs GA every time unit. For every
allocation, the fraction of time spent by any processor
(Pi, Pa or Pb) is necessarily 0 since otherwise, the
processing time would be infinite. The fraction of time
spent by Pi or Pb sending data, and the fraction of time
spent by Pi and Pa receiving data is 0 by construction.
For every terminal processor Pi let Ci be the set of tasks in
GA processed on Pi. Clearly, Ti ∈ Ci (otherwise the overall
processing time would be infinite). Thus, it can be proven
that every allocation induces a multiway cut in GM . Using
resource constraints, we can prove that at least one of the
weights of the allocations is less than B, thus providing
a solution to MINIMUM-MULTIWAY-CUT(GM , B).
This achieves the proof of the NP-Completeness of
COMPACT-WEIGHTED-THROUGHPUT(GA, GP , ρ).

IV. Related problems

We classify several related papers along the following
three main categories. The interested reader will find more
references in [5].

a) Scheduling task graphs on heterogeneous plat-
forms.: Several heuristics have been introduced to sched-
ule (acyclic) task graphs on different-speed processors,
see [20], [28] among others. Unfortunately, all these heuris-
tics assume no restriction on the communication resources,
which renders them somewhat unrealistic to model real-
life applications. Recent papers [14], [16], [25] suggest
to take communication contention into account. Among
these extensions, scheduling heuristics under the one-port
model [17], [18] are considered in [3]: just as in this paper,
each processor can communicate with at most another
processor at a given time-step.

b) Collective communications on heterogeneous plat-
forms.: Several papers deal with the complexity of collec-
tive communications on heterogeneous platforms: broad-
cast and multicast operations are addressed in [10], [19],

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE



gather operations are studied in [12]. Broadcasting and
multicasting on heterogeneous platforms have been stud-
ied under different models, in the context of heterogeneous
target platforms. Asymptotically optimal algorithms have
been derived for series of broadcasts [7] on an heteroge-
neous platform, under the communication model presented
in Section II. On the other hand, it has been proved in [6]
that under the same communication model, optimizing the
throughput of a series of multicasts in NP-Hard.

c) Master-slave on the computational grid.: Master-
slave scheduling on the grid can be based on a network-
flow approach [23] or on an adaptive strategy [13]. Note
that the network-flow approach of [23] is possible only
when using a full multiple-port model, where the number
of simultaneous communications for a given node is not
bounded. This approach has also been studied in [15].
In [27], Taura and Chien prove that finding the best
allocation (when restricting to a single allocation, i.e. when
mapping all instances of a given task type onto the same
processor) is NP-Complete in the strong sense.

V. Conclusion

In this paper, we have dealt with the implementation
of mixed task and data parallelism onto heterogeneous
platforms. Due to space limitations, we have mainly con-
centrated on complexity results. We have shown that
the problem of optimizing the steady-state throughput is
NP-Complete in the general case. We have been able to
formulate a compact version of the problem that belongs
to the NP complexity class but which does not restrict the
optimality of the solution.

We provide many positive results in the extended ver-
sion [5]. Indeed, we show how to determine in polynomial
time the best steady-state scheduling strategy for a large
class of application graphs and for a arbitrary platform
graphs, using a linear programming approach. In particu-
lar, we provide positive results for all task graphs whose
dependency depth is bounded (what includes atomic and
tree shaped task graphs, among others).

This work can be extended in the following two di-
rections. On the theoretical side, we could try to solve
the problem of maximizing the number of tasks that can
be executed within a time period K. This scheduling
problem is more complicated than the search for the best
steady-state, but a smaller time period limits memory
requirements and may be necessary in order to derive
more dynamic schedules, where the allocations may change
according to changes in platform capabilities. On the prac-
tical side, we need to run actual experiments rather than
simulations. Indeed, it would be interesting to capture
actual architecture and application parameters, and to
compare heuristics on a real-life problem suite, such as
those in [9], [26].

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation.
Springer, Berlin, Germany, 1999.

[2] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Schedul-
ing strategies for master-slave tasking on heterogeneous proces-
sor grids. In PARA’02: International Conference on Applied
Parallel Computing, LNCS 2367, pages 423–432. Springer Ver-
lag, 2002.

[3] O. Beaumont, V. Boudet, and Y. Robert. A realistic model
and an efficient heuristic for scheduling with heterogeneous
processors. In HCW’2002, the 11th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2002.

[4] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Bandwidth-centric allocation of independent tasks
on heterogeneous platforms. In International Parallel and Dis-
tributed Processing Symposium (IPDPS’2002). IEEE Computer
Society Press, 2002.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Assessing
the impact and limits of steady-state scheduling for mixed task
and data parallelism on heterogenous platforms. Research Re-
port RR-2004-20, LIP, ENS Lyon, France, April 2004. Available
at http://www.ens-lyon.fr/LIP/.

[6] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Com-
plexity results and heuristics for pipelined multicast operations
on heterogeneous platforms. Research Report RR-2004-07, LIP,
ENS Lyon, France, January 2004.

[7] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Pipelin-
ing broadcasts on heterogeneous platforms. In International
Parallel and Distributed Processing Symposium IPDPS’2004.
IEEE Computer Society Press, 2004.

[8] D. Bertsimas and D. Gamarnik. Asymptotically optimal algo-
rithm for job shop scheduling and packet routing. Journal of
Algorithms, 33(2):296–318, 1999.

[9] Michael D. Beynon, Tahsin Kurc, Alan Sussman, and Joel
Saltz. Optimizing execution of component-based applications
using group instances. Future Generation Computer Systems,
18(4):435–448, 2002.

[10] P. B. Bhat, V. K. Prasanna, and C. S. Raghavendra. Efficient
collective communication in distributed heterogeneous systems.
In 19th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS’99). IEEE Computer Society Press, 1999.

[11] T. D. Braun, H. J. Siegel, and N. Beck. Optimal use of mixed
task and data parallelism for pipelined computations. J. Parallel
and Distributed Computing, 61:810–837, 2001.

[12] J.-I. Hatta and S. Shibusawa. Scheduling algorithms for efficient
gather operations in distributed heterogeneous systems. In 2000
International Conference on Parallel Processing (ICPP’2000).
IEEE Computer Society Press, 2000.

[13] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive
scheduling for master-worker applications on the computational
grid. In R. Buyya and M. Baker, editors, Grid Computing -
GRID 2000, pages 214–227. Springer-Verlag LNCS 1971, 2000.

[14] L. Hollermann, T. S. Hsu, D. R. Lopez, and K. Vertanen.
Scheduling problems in a practical allocation model. J. Combi-
natorial Optimization, 1(2):129–149, 1997.

[15] B. Hong and V.K. Prasanna. Bandwidth-aware resource al-
location for heterogeneous computing systems to maximize
throughput. In Proceedings of the 32th International Conference
on Parallel Processing (ICPP’2003). IEEE Computer Society
Press, 2003.

[16] T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task
allocation on a network of processors. IEEE Trans. Computers,
49(12):1339–1353, 2000.

[17] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and
personalized communication in hypercubes. IEEE Trans. Com-
puters, 38(9):1249–1268, 1989.

[18] D. W. Krumme, G. Cybenko, and K. N. Venkataraman. Gos-
siping in minimal time. SIAM J. Computing, 21:111–139, 1992.

[19] R. Libeskind-Hadas, J. R. K. Hartline, P. Boothe, G. Rae, and
J. Swisher. On multicast algorithms for heterogeneous networks
of workstations. Journal of Parallel and Distributed Computing,
61(11):1665–1679, 2001.

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE



[20] M. Maheswaran and H. J. Siegel. A dynamic matching and
scheduling algorithm for heterogeneous computing systems. In
Seventh Heterogeneous Computing Workshop. IEEE Computer
Society Press, 1998.

[21] A. Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, New York, 1986.

[22] A. Schrijver. Combinatorial Optimization: Polyhedra and Effi-
ciency, volume 24 of Algorithms and Combinatorics. Springer-
Verlag, 2003.

[23] G. Shao. Adaptive scheduling of master/worker applications
on distributed computational resources. PhD thesis, Dept. of
Computer Science, University Of California at San Diego, 2001.

[24] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling
and load balancing in parallel and distributed systems. IEEE
Computer Science Press, 1995.

[25] O. Sinnen and L. Sousa. Comparison of contention-aware list
scheduling heuristics for cluster computing. In T. M. Pinkston,
editor, Workshop for Scheduling and Resource Management for
Cluster Computing (ICPP’01), pages 382–387. IEEE Computer
Society Press, 2001.

[26] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek,
A. Sussman, and J. Saltz. Executing multiple pipelined data
analysis operations in the grid. In 2002 ACM/IEEE Supercom-
puting Conference. ACM Press, 2002.

[27] K. Taura and A. A. Chien. A heuristic algorithm for mapping
communicating tasks on heterogeneous resources. In Heteroge-
neous Computing Workshop, pages 102–115. IEEE Computer
Society Press, 2000.

[28] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algo-
rithms for heterogeneous processors. In Eighth Heterogeneous
Computing Workshop. IEEE Computer Society Press, 1999.

Proceedings of the ISPDC/HeteroPar’04 

0-7695-2210-6/04 $20.00 © 2004 IEEE


