
Complexity analysis and performance evaluation of matrix product on
multicore architectures

Mathias Jacquelin, Loris Marchal and Yves Robert

École Normale Suprieure de Lyon, France
{Mathias.Jacquelin|Loris.Marchal|Yves.Robert}@ens-lyon.fr

Abstract

The multicore revolution is underway. Classical al-
gorithms must be revisited in order to take the hierar-
chical memory layout into account. In this paper, we
aim at minimizing the number of cache misses paid
during the execution of the matrix product kernel on a
multicore processor, and we show how to achieve the
best possible tradeoff between shared and distributed
caches. Comprehensive simulation results confirm the
analytical performance predictions and fully establish
the practical significance of our new algorithms.

I. Introduction

Dense linear algebra kernels are the key to perfor-
mance for many scientific applications. Some of these
kernels, like matrix multiplication, have extensively
been studied on parallel architectures. Two well-known
parallel versions are Cannon’s algorithm [1] and the
ScaLAPACK outer product algorithm [2]. Typically,
parallel implementations work well on 2D processor
grids: input matrices are sliced horizontally and verti-
cally into square blocks; there is a one-to-one mapping
of blocks onto physical resources; several communica-
tions can take place in parallel, both horizontally and
vertically. Even better, most of these communications
can be overlapped with (independent) computations.
All these characteristics render the matrix product ker-
nel quite amenable to an efficient parallel implementa-
tion on 2D processor grids.

However, algorithms based on a 2D grid (virtual)
topology are not well suited for multicore architectures.
In particular, in a multicore architecture, memory is
shared, and data accesses are performed through a

hierarchy of caches, from shared caches to distributed
caches. We need to take further advantage of data
locality, in order to minimize data movement. This hier-
archical framework resembles that of out-of-core algo-
rithms [3] (the shared cache being the disk) and that of
master-slave implementations with limited memory [4]
(the shared cache being the master’s memory). The
latter paper [4] presents the Maximum Reuse Algorithm
which aims at minimizing the communication volume
from the master to the slaves. Here, we adapt this study
to multicore architectures, by taking both cache levels
into account.

II. Problem statement

A. Multicore architectures

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1 . . .Corei

CD . . . CD

Corep Processing cores

Shared cache

Distributed caches

Figure 1. Multicore architecture model.

A major difficulty of this study is to come up with
a realistic but still tractable model of a multicore pro-
cessor. We assume that such a processor is composed
of p cores, and that each core has the same computing
speed. The processor is connected to a memory, which
is supposed to be large enough to contain all necessary
data (we do not deal with out-of-core execution here).
The data path from the memory to a computing core

goes through two levels of caches. The first level of
cache is shared among all cores, and has size CS , while
the second level of cache is distributed: each core has
its own private cache, of size CD. Caches are supposed
to be inclusive, which means that the shared cache
contains at least all the data stored in every distributed
cache. Therefore, this cache must be larger than the
union of all distributed caches: CS ≥ p × CD. Our
caches are also “fully associative”, and can therefore
store any data from main memory. Figure 1 depicts the
multicore architecture model.

The hierarchy of caches is used as follows. When
a data is needed in a computing core, it is first sought
in the distributed cache of this core. If the data is not
present in this cache, a distributed-cache miss occurs,
and the data is then sought in the shared cache. If
it is not present in the shared cache either, then a
shared-cache miss occurs, and the data is loaded from
the memory in the shared cache and afterward in the
distributed cache. When a core tries to write to an
address that is not in the caches, the same mechanism
applies. Rather than trying to model this complex
behavior, we assume in the following an ideal cache
model [5]: we suppose that we are able to totally control
the behavior of each cache, and that we can load any
data into any cache (shared of distributed), with the
constraint that a data has to be first loaded in the shared
cache before it could be loaded in the distributed cache.
Although somewhat unrealistic, this simplified model
has been proven not too far from reality: it is shown
in [5] that an algorithm causing N cache misses with
an ideal cache of size L will not cause more than 2N
cache misses with a cache of size 2L and implementing
a classical LRU replacement policy.

In the following, our objective is twofold: (i) mini-
mize the number of cache misses during the computa-
tion of matrix product, and (ii) minimize the predicted
data access time of the algorithm. To this end, we
need to model the time needed for a data to be loaded
in both caches. To get a simple and yet tractable
model, we consider that cache speed is characterized
by its bandwidth. The shared cache has bandwidth σS ,
thus a block of size S needs S/σS time-unit to be
loaded from the memory in the shared cache, while
each distributed cache has bandwidth σD. Moreover,
we assume that concurrent loads to several distributed
caches are possible without contention.

Finally, the purpose of the algorithms described
below is to compute the classical matrix product C =
A × B. In the following, we assume that A has size
m × z, B has size z × n, and C has size m × n. We

use a block-oriented approach, to harness the power of
BLAS routines [2]. Thus, the atomic elements that we
manipulate are not matrix coefficients but rather square
blocks of coefficients of size q× q. Typically, q ranges
from 32 to 100 on most platforms.

B. Communication volume

The key point to performance in a multicore archi-
tecture is efficient data reuse. A simple way to assess
data locality is to count and minimize the number of
cache misses, that is the number of times each data
has to be loaded in a cache. Since we have two types
of caches in our model, we try to minimize both the
number of misses in the shared cache and the number
of misses in the distributed caches. We denote by MS

the number of cache misses in the shared cache. As for
distributed caches, since accesses from different caches
are concurrent, we denote by MD the maximum of
all distributed caches misses: if M (c)

D is the number
of cache misses for the distributed cache of core c,
MD = maxcM

(c)
D .

In a second step, since the former two objectives
are conflicting, we aim at minimizing the overall time
Tdata required for data movement. With the previously
introduced bandwidth, it can be expressed as Tdata =
MS

σS
+ MD

σD
. Depending on the ratio between cache

speeds, this objective provides a tradeoff between both
cache miss quantities.

C. Lower bound on communication

In [3], Irony, Toledo and Tiskin propose a lower
bound on the number of communications needed to
perform a matrix product. Their study focuses on a
system with a memory of size M and concludes that
the communication-to-computation ratio of a matrix
product is bounded below by

√
27
8M . We have extended

this study to our hierarchical cache architecture (details
can be found in the corresponding research report [6]).
Here, the communication-to-computation is the ratio
between the number of cache misses and the number
of operations. With comp(c) being the amount of com-
putation done by core c, we can define this ratio for
both types of caches.

For the shared cache, we consider everything above
this cache level as a single processor and the main
memory as a master which sends and receives data.
CCRS = MS/(

∑
c comp(c)) is therefore the CCR for

the shared cache.
In the case of the distributed caches, we first apply

the previous result on a single core c, with cache size

CD. We thus have CCRc ≥
√

27
8CD

. We have defined
the overall distributed CCR as the average of all CCRc.
The overall amount of computation for the matrix
product is mnz, and in all our algorithms, this amount
is equally balanced among cores, so that comp(c) =
mnz/p for all cores. Therefore this bound also holds
for the CCRD: CCRD = 1

p

∑p
c=1(MDc/comp(c)).

Indeed, we could even have a stronger result, on the
minimum of all CCRc.

In both cases, we have been able to extend the
previous bound:

CCRS ≥
√

27
8CS

and CCRD ≥
√

27
8CD

.

III. Algorithms

In the out-of-core algorithm of [3], the three ma-
trices A, B and C are equally accessed throughout
time. This naturally leads to allocating one third of
the available memory to each matrix. This algorithm
has a communication-to-computation ratio of O

(
mnz√
M

)
for a memory of size M but it does not use the
memory optimally. The Maximum Reuse Algorithm [4]
proposes a more efficient memory allocation: it splits
the available memory into 1+µ+µ2 blocks, storing a
square block Ci1...i2,j1...j2 of size µ2 of matrix C, a row
Bi1...i2,j of size µ of matrix B and one element Ai,j
of matrix A (with i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2). This
allows to compute Ci1...i2,j1...j2+ = Ai,j × Bi1...i2,j .
Then, with the same block of C, other computations
can be accumulated by considering other elements of
A and B. The block of C is stored back only when it
has been processed entirely, thus avoiding any future
need of reading this block to accumulate other contri-
butions. Using this framework, the communication-to-
computation ratio is 2√

M
for large matrices.

To adapt the Maximum Reuse Algorithm to mul-
ticore architectures, we must take into account both
cache levels. Depending on our objective, we adapt the
previous data allocation scheme so as to fit with the
shared cache, with the distributed caches, or with both.
The main idea is to design a “data-thrifty” algorithm
that reuses matrix elements as much as possible and
loads each required data only once in a given loop.
Since the outermost loop is prevalent, we load the
largest possible square block of data in this loop, and
adjust the size of the other blocks for the inner loops,
according to the objective (shared-cache, distributed-
cache, tradeoff) of the algorithm. We define two pa-
rameters that will prove helpful to compute the size
of the block of C that should be loaded in the shared

cache or in a distributed cache:
• λ is the largest integer with 1 + λ+ λ2 ≤ CS ;
• µ is the largest integer with 1 + µ+ µ2 ≤ CD.
In the following, we assume that λ is a multiple of µ,
so that a block of size λ2 that fits in the shared cache
can be easily divided in blocks of size µ2 that fit in the
distributed caches.

A. Shared-cache misses

Algorithm 1: The algorithm minimizing shared-
cache misses.

for Step = 1 to m×n
λ2 do

Load a new block Cblock (of size λ× λ) from
C in the shared cache
for k = 1 to z do

Load a row Brow (of size λ) from row z
of B in the shared cache
Distribute Brow to the distributed caches
for l = 1 to λ do

foreach core c in parallel do
Load the element a = A[l, k] in
the shared and distributed cache
Load a row Crow (of size λ/p)
from Cblock in the distributed
cache
Compute the new contribution:
Crow ← Crow + a×Brow
Write back Crow to the shared
cache

Write back the block Cblock to main memory

To minimize the number of shared-cache misses, we
adapt the Maximum Reuse Algorithm with parameter
λ. A square block Cblock of size λ2 of C is allocated
in the shared cache, together with a row of λ elements
of B and one element of A. Then, the row of Cblock is
distributed and computed by the different cores. This
is described in details in Algorithm 1, and the memory
layout is depicted in Figure 2.

In this algorithm, the whole matrix C is loaded in
the shared cache, thus resulting in mn cache misses.
For the computation of each block of size λ2, z rows of
size λ are loaded from B, and z×λ elements of A are
accessed. Since there are mn/λ2 steps, this amounts to
a total of MS = mn + 2mnz/λ shared-cache misses.
For large matrices, this leads to a shared-cache CCR of
2/λ, which is close to the lower bound.

k

k

l

A C

λ

B

λ

Brow

a

Cblock

Crow

in core c

Figure 2. Data layout for Algorithm 1.

B. Distributed-cache misses

Our next objective is to minimize the number of
distributed-cache misses. To this end, we use the pa-
rameter µ defined earlier to store in each distributed
cache a square block of size µ2 of C, a fraction of row
(of size µ) of B and one element of A. Contrarily to
the previous algorithm, the block of C will be totally
computed before being written back to the shared
cache. All p cores work on different blocks of C.
Thanks to the constraint p× CD ≤ CS , we know that
the shared cache has the capacity to store all necessary
data. The overall number of distributed cache misses
on a core will then be MD = 1

p (mn + 2mnz/µ)
(see [6] for details). For large matrices, this leads to
a distributed-cache CCR of 2/µ, which is close to the
lower bound.

C. Data access time

To get a tradeoff between minimizing the number
of shared-cache and distributed-cache misses, we now
aim at minimizing Tdata = MS

σS
+ MD

σD
. The sketch of

the algorithm, detailed in [6], is the following:
1) A block from C of size α × α is loaded in the

shared cache. Its size satisfies p× µ2 ≤ α2 ≤ λ2.
Both extreme cases are obtained when one of σD
and σS is negligible in front of the other.

2) In the shared cache, we also load a block from B,
of size β × α, and a block from A of size α× β.
Thus, we have 2α× β + α2 ≤ CD.

3) The α × α block of C is split into sub-blocks of
size µ × µ which are processed by the different
cores. These sub-blocks of C are cyclicly dis-
tributed among every distributed-caches. The same
holds for the block-row of B which is split into
β × µ block-rows and cyclically distributed, row

by row (i.e. by blocks of size 1×µ), among every
distributed-cache.

4) The contribution of the corresponding β (fractions
of) columns of A and β (fractions of) lines of B is
added to the block of C. Then, another µ×µ block
of C residing in shared cache is distributed among
every distributed-cache, going back to step 3.

5) As soon as all elements of A and B have con-
tributed to the α × α block of C, another β
columns/lines from A/B are loaded in shared
cache, going back to step 2.

6) Once the α × α block of C in shared cache is
totally computed, a new one is loaded, going back
to step 1.

With this algorithm, we get: Tdata = 1
σS

(mn+ 2mnz
α)+

1
σD

(mnzpβ + 2mnz
pµ). Together with the constraint 2α ×

β + α2 ≤ CD, it allows to compute the best value for
parameters α and β, depending on the ratio σS/σD
(see [6] for details).

IV. Simulation results

We have presented three algorithms minimizing
different objectives (shared cache misses, distributed
cache misses and overall time spent in data move-
ment) and provided a theoretical analysis of their
performance. However, our simplified multicore model
makes some assumptions that are not realistic on a
real hardware platform. In particular it uses an ideal
and omniscient data replacement policy instead of a
classical LRU policy. This led us to design a multicore
cache simulator and implement all our algorithms, as
well as the outer-product [2] and Toledo [3] algorithms,
using different cache policies. The goal is to experi-
mentally assess the impact of the policies on the actual
performance of the algorithms, and to measure the gap
between the theoretical prediction and the observed
behavior. The main motivation behind the choice of a
simulator instead of a real hardware platform resides
in commodity reasons: simulation enables to obtain
desired results faster and allows to easily modify mul-
ticore processor parameters (cache sizes, number of
cores, bandwidths, . . .).

A. Settings

The driving feature of our simulator was simplicity.
It implements the cache hierarchy of our model, and
basically counts the number of cache misses in each
cache level. It offers two data replacement policies,
LRU (Least Recently Used) and Ideal. In the LRU

mode, read and write operations are made at the
distributed cache level (top of hierarchy); if a miss
occurs, operations are propagated throughout the hi-
erarchy until a cache hit happens. In the Ideal mode,
the user manually decides which data needs to be
loaded/unloaded in a given cache; I/O operations are
not propagated throughout the hierarchy in case of a
cache miss: it is the user responsibility to guarantee
that a given data is present in every caches below the
target cache.

We have implemented two reference algorithms:
(i) Outer Product, the algorithm in [2], for which
we organize cores as a (virtual) processor torus and
distribute square blocks of data elements to be updated
among them; and (ii) Equal, an algorithm inspired
by [3], which uses a simple equal-size memory scheme:
one third of distributed caches is equally allocated to
each loaded matrix sub-block. In fact, the algorithm
in [3] deals with a single cache level, hence we decline
it in two versions, Shared Equal for shared cache op-
timization, and Distributed Equal for distributed cache
optimization. We have also implemented the three
versions of the Multicore Maximum Reuse Algorithm:
• Shared Opt., the version to minimize the number

of shared caches misses MS

• Distributed Opt., the version to minimize the num-
ber of distributed cache misses MD

• Tradeoff, the version to minimize the data access
time Tdata.

In the experiments, we simulated a ”realistic” quad-
core processor with 8MB of shared cache and four
distributed caches of size 256KB dedicated to both
data and instruction. We assume that two-thirds of
the distributed caches are dedicated to data, and one-
third for the instructions. See [6] for results using a
more pessimistic repartition of one half for data and
one-half for instructions. Recall that square blocks of
matrix coefficients have size q×q. We report results for
q = 32, and we derive CS = 977 and CD = 21. See [6]
for results with larger blocks (q = 64, CS = 245 &
CD = 6, and q = 80, CS = 157 & CD = 4).

B. LRU vs IDEAL

Here we assess the impact of the data replacement
policy on the number of shared cache misses and on
the performance achieved by the algorithm. Figure 3
shows the total number of shared cache misses for
Shared Opt., in function of the matrix dimension. While
LRU(CS) (the LRU policy with a cache of size CS)
achieves significantly more cache-misses than predicted

by the theoretical formula, LRU(2CS) is quite close,
thereby experimentally validating the prediction of [5].
Similar results are obtained for Shared Equal. Further-
more, the same conclusions hold for Distributed Opt.
and Distributed Equal, see [6]. Note that Outer Product
is insensitive to cache policies.

Shared Opt. LRU (2CS)

Shared Opt. LRU (CS)

Formula (CS)

100 200 300 400 500 600

Matrix Order (In block units)

10000

100000

1000000

10000000

100000000

L
og

(S
ha

re
d

ca
ch

e
m

is
se

s)

Figure 3. Impact of LRU policy on the
number of shared cache misses MS with
CS = 977.

This leads us to run our tests using the following
two simulation settings:
• The IDEAL setting, which corresponds to the use

of the omniscient ideal data replacement policy
assumed in the theoretical model. It relies on
the Ideal mode of the simulator and uses entire
cache sizes (CS and/or CD) as a parameter for
the algorithms

• The LRU-50% setting, which relies on a LRU
cache data replacement policy, but uses only one
half of cache sizes as a parameter for the algo-
rithms. The other half is used by the LRU policy
as kind of an automatic prefetching buffer.

C. Performance

1) Shared Opt.: Figure 4(a) depicts the number
of shared cache misses achieved by Shared Opt ver-
sions LRU-50% and IDEAL, in comparison with Outer
Product, Shared Equal and the lower bound m3

√
27

8CS
,

according to the matrix dimension m. We see that
Shared Opt. performs significantly better than Outer
Product and Shared Equal for the LRU-50% policy.
Under the IDEAL policy, it is closer to the lower bound,
but this latter setting is not realistic.

2) Distributed Opt.: Figure 4(b) is the counterpart
of Figure 4(a) for distributed caches. Similarly, we see
that Distributed Opt. performs significantly better than
Outer Product and Distributed Equal for the LRU-50%
policy. Under the IDEAL policy, it is very close to the
lower bound m3

p

√
27

8CD
.

3) Tradeoff: The overall time spent in data move-
ment Tdata of all six LRU-50% algorithms is shown on
Figure 4(c). Here, we observe an unexpected tie: Trade-
off algorithm does not rank better than Shared Opt. This
trend is probably due to the artificial constraints set on
cache-related parameters: for instance we require that
α divides m and is a multiple of

√
p and of µ.

In the implementations, parameter λ and α can be
significantly lower than their optimal numerical value.
Nevertheless, looking at Figure 4(d), we see that Trade-
off does outperform other algorithms with the IDEAL
policy. We also run another experiment to assess the
impact of cache bandwidths on Tdata. We introduce the
parameter r defined as: r = σS

σD+σS
. Figure 5 reports

results for square matrices of size m = 240.
We see that Tradeoff performs best, and still offers

the best performance even after distributed misses have
become predominant. When the latter event occurs,
plots cross over: Shared Opt. and Distributed Opt.
achieve the same Tdata. We also point out that when
r = 0, Tradeoff achieves almost the same Tdata than
Shared Opt., while when r = 1, it ties Distributed Opt.

V. Related work

Algorithms– In [3], the authors introduce several lower
bounds on the communication volume for standard
matrix multiplication algorithms. The scope of their
work ranges from one processor and its main mem-
ory to several distributed memory processors. They
also provide a lower bound for a processor having
a fast cache and a large slow memory. In [4], the
authors introduce the Maximum Reuse Algorithm, a
matrix product algorithm for master-slave platforms.
They improve the lower bound introduced in [3], and
show that their algorithm is close to this bound for
large matrices. However, neither [3] nor [4] deals with
multicore processors and the additional level of cache
hierarchy that they imply.

Models– The ideal-cache model is presented in [5],
together with the cache-oblivious paradigm, which aims
at provide asymptotically optimal “cache-unaware” al-
gorithms. A key contribution is the proof that the ideal
cache-model can efficiently be simulated with a LRU

replacement policy. However, the model only focuses
on single-core processors. It is extended in [7] for mul-
ticore processors: the authors of [7] study divide-and-
conquer cache-oblivious algorithms for several prob-
lems,

and they design algorithms that are asymptotically
optimal for both shared and distributed caches misses.
The emphasis is on models and asymptotic performance
rather than on algorithms for fixed-size matrices.

In [8], the authors introduce a theoretical model for
multicore processors intended to be used to analyze
the complexity of algorithms on these new platforms.
They also describe a framework called SWARM that
aims at providing an open-source library for developing
software on multicore architectures. However, they do
not explicitly use the notion of cache misses, but instead
focus on the number of blocks transferred between
shared cache and main memory; distributed caches are
not considered in their analysis.

In [9], the authors study the behavior of DGEMM
kernels and introduce a fine-tuning version leading to
better performance than Intel’s parallel DGEMM in the
MKL library. This paper provides a fine-grain analysis
in terms of cache related notions, as for instance cache
misses or false sharing, on a real hardware platform.
Our analysis is at a higher level (our algorithms call
sequential DGEMM kernels) and is not associated to
any particular hardware architecture.

Experiments– In [10], the authors present performance
results for dense linear algebra using recent NVIDIA
GPUs, and analyse some factors impacting performance
on these particular multicore processors through the
performance evaluation of their matrix-matrix multipli-
cation kernel. This work also is at a lower level since
it focuses on implementing a better DGEMM routine
for GPUs.

VI. Conclusion

In this paper, we proposed cache-aware algorithms
for multicore processors. We have proposed a model for
multicore memory layout. Using this model, we have
extended a lower bound on cache misses, and proposed
cache-aware algorithms. For both types of caches, our
algorithms reach a CCR which is close to the lower
bound for large matrices. We also propose an algorithm
for minimizing the overall data access time, which
realizes a tradeoff between shared and distributed cache
misses. Every algorithm introduced in this paper has
been tested, and is behavior validated, on the simulator
that we have designed, using realistic parameters.

Sh
ar

ed
E

qu
al

L
R

U
-5

0

Sh
ar

ed
O

pt
.I

D
E

A
L

L
ow

er
B

ou
nd

O
ut

er
Pr

od
uc

t

Sh
ar

ed
O

pt
.L

R
U

-5
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

M
at

ri
x

O
rd

er
(I

n
bl

oc
k

un
its

)

0

20
00

00
00

0

40
00

00
00

0

60
00

00
00

0

80
00

00
00

0

10
00

00
00

00
SharedcachemissesMS

(a
)

Sh
ar

ed
ca

ch
e

m
is

se
s

M
S

in
fu

nc
tio

n
of

m
at

ri
x

or
de

r.

D
is

tr
ib

ut
ed

O
pt

.L
R

U
-5

0

D
is

tr
ib

ut
ed

E
qu

al
L

R
U

-5
0

D
is

tr
ib

ut
ed

O
pt

.I
D

E
A

L

L
ow

er
B

ou
nd

O
ut

er
Pr

od
uc

t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00

M
at

ri
x

O
rd

er
(I

n
bl

oc
k

un
its

)

0

10
00

00
00

0

20
00

00
00

0

30
00

00
00

0

40
00

00
00

0

50
00

00
00

0

60
00

00
00

0

70
00

00
00

0

DistributedcachemissesMD

(b
)

D
is

tr
ib

ut
ed

ca
ch

e
m

is
se

s
M

D
.

D
is

tr
ib

ut
ed

O
pt

.L
R

U
-5

0

D
is

tr
ib

ut
ed

E
qu

al
L

R
U

-5
0

Sh
ar

ed
E

qu
al

L
R

U
-5

0

Tr
ad

eo
ff

ID
E

A
L

L
ow

er
B

ou
nd

Tr
ad

eo
ff

L
R

U
-5

0

O
ut

er
Pr

od
uc

t

Sh
ar

ed
O

pt
.L

R
U

-5
0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00

M
at

ri
x

O
rd

er
(I

n
bl

oc
k

un
its

)

0

20
00

00
00

0

40
00

00
00

0

60
00

00
00

0

80
00

00
00

0

10
00

00
00

00

12
00

00
00

00

14
00

00
00

00

16
00

00
00

00

Tdata

(c
)

O
ve

ra
ll

da
ta

tim
e

T
da

ta
(L

R
U

po
lic

y)
.

Sh
ar

ed
O

pt
.I

D
E

A
L

D
is

tr
ib

ut
ed

O
pt

.I
D

E
A

L

Tr
ad

eo
ff

ID
E

A
L

L
ow

er
B

ou
nd

D
is

tr
ib

ut
ed

E
qu

al
ID

E
A

L

Sh
ar

ed
E

qu
al

ID
E

A
L

O
ut

er
Pr

od
uc

t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00

M
at

ri
x

O
rd

er
(I

n
bl

oc
k

un
its

)

0

20
00

00
00

0

40
00

00
00

0

60
00

00
00

0

80
00

00
00

0

10
00

00
00

00

12
00

00
00

00

Tdata

(d
)

O
ve

ra
ll

da
ta

tim
e

T
da

ta
(I

D
E

A
L

po
lic

y)
.

Fi
gu

re
4.

S
im

ul
at

io
n

R
es

ul
ts

Shared Equal IDEAL

Distributed Equal IDEAL

Shared Opt. IDEAL

Distributed Opt. IDEALTradeoff IDEAL

Lower Bound

0 0.2 0.4 0.6 0.8 1

r

100000

200000

300000

400000

500000

600000

700000

T
da

ta

Figure 5. Cache bandwidth impact on Tdata in function of r, the ratio between σS and σD. Unit
blocks of size q = 32, results are given for a square matrix of dimension m = 240. CS = 977 and
CD = 21 (data occupy two thirds of distributed caches).

Future work will be twofold. On the algorithmic
side, we will tackle more complex operations, such
as LU factorization or path problems. On the more
practical side, we will implement all algorithms on
state-of-the-art multicore machines. This will be a first
step towards the (more ambitious) task of designing
efficient algorithms for clusters of multicores: we ex-
pect yet another level of hierarchy (or tiling) in the
algorithmic specification to be required in order to
match the additional complexity of such platforms.

References

[1] L. E. Cannon, “A cellular computer to implement the
kalman filter algorithm,” Ph.D. dissertation, Montana
State University, 1969.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley, ScaLAPACK Users’ Guide. SIAM, 1997.

[3] S. Toledo, “A survey of out-of-core algorithms in nu-
merical linear algebra,” in External Memory Algorithms
and Visualization. American Mathematical Society
Press, 1999, pp. 161–180.

[4] J.-F. Pineau, Y. Robert, F. Vivien, and J. Dongarra, “Ma-
trix product on heterogeneous master-worker platforms,”
in PPoPP’2008, the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming.
ACM Press, 2008, pp. 53–62.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachan-
dran, “Cache-oblivious algorithms,” in FOCS’99, the
40th IEEE Symposium on Foundations of Computer
Science. IEEE Computer Society Press, 1999, pp. 285–
298.

[6] M. Jacquelin, L. Marchal, and Y. Robert,
“Complexity analysis and performance evaluation
of matrix product on multicore architectures,” LIP,
ENS Lyon, Research report RRLIP2009-09, 2009.
[Online]. Available: http://www.ens-lyon.fr/LIP/Pub/
Rapports/RR/RR2009/RR2009-09.pdf

[7] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ra-
machandran, S. Chen, and M. Kozuch, “Provably good
multicore cache performance for divide-and-conquer al-
gorithms,” in SODA’08, the 19th ACM-SIAM symposium
on Discrete algorithms. SIAM Press, 2008, pp. 501–
510.

[8] D. A. Bader, V. Kanade, and K. Madduri, “SWARM:
A parallel programming framework for multicore pro-
cessors,” in IPDPS’07, the 21st IEEE Int. Parallel and
Distributed Processing Symposium, 2007, pp. 1–8.

[9] S. Zuckerman, M. Pérache, and W. Jalby, “Fine tuning
matrix multiplications on multicore,” in High Pefroam-
nce Computing HiPC’08. Springer Verlag LNCS 5374,
2008, pp. 30–41.

[10] V. Volkov and J. W. Demmel, “Benchmarking gpus
to tune dense linear algebra,” in SC’08, the 2008
ACM/IEEE conference on Supercomputing. IEEE
Computer Society Press, 2008, pp. 1–11.

