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Abstract

In this paper, we consider the communications
involved by the execution of a complex applica-
tion, deployed on a heterogeneous platform. Such
applications extensively use macro-communication
schemes, for example to broadcast data items.
Rather than aiming at minimizing the execution
time of a single broadcast, we focus on the steady-
state operation. We assume that there is a large
number of messages to be broadcast in pipeline fash-
ion, or a large message that can be split into sev-
eral packets, and we aim at maximizing the through-
put, i.e. the (rational) number of messages which
can be broadcast every time-step. Achieving the best
throughput may well require that the target platform
15 used in totality: we show that neither spanning
trees nor DAGs are as powerful as general graphs.
We show how to compute the best throughput using
linear programming, and how to exhibit a periodic
schedule, first when restricting to a DAG, and then
when using a general graph. The polynomial com-
pactness of the description comes from the decom-
position of the schedule into several broadcast trees
that are used concurrently to reach the best through-
put. The concrete scheduling algorithm based upon
the steady-state operation is asymptotically optimal,
in the class of all possible schedules (not only peri-
odic solutions).

1. Introduction

Broadcasting in computer networks is the focus
of a vast literature. The one-to-all broadcast, or

single-node broadcast [5], is the most primary col-
lective communication pattern: initially, only the
source processor has the data that needs to be
broadcast; at the end, there is a copy of the original
data residing at each processor.

Parallel algorithms often require to send identical
data to all other processors, in order to disseminate
global information (typically, input data such as the
problem size or application parameters). Numerous
broadcast algorithms have been designed for paral-
lel machines such as meshes, hypercubes, and vari-
ants. The MPI Bcast routine [8] is widely used, and
particular care has been given to its efficient imple-
mentation on a large variety of platforms. There are
three main variants considered in the literature:

Atomic broadcast: the source message is atomic,
i.e. cannot be split into packets. A single mes-
sage is sent by the source processor, and for-
warded across the network.

Pipelined broadcast: the source message can be
split into an arbitrary number of packets, which
may be routed in a pipelined fashion, possibly
using different paths.

Series of broadcasts: the same source processor
sends a series of atomic one-to-all broadcasts.
The processing of these broadcasts can be
pipelined (and different paths can be used in
the graph).

For the first two problems, the goal is to mini-
mize the total execution time (or makespan). For
the third problem, the objective function is rather
to optimize the throughput of the steady-state op-
eration, i.e. the average amount of data broadcast
per time-unit.
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Because there is a single message involved, the
atomic broadcast is implemented using a spanning
tree. In the case of the pipelined broadcast, things
get more complex: the idea is to use several edge-
disjoint spanning trees to route simultaneously sev-
eral distinct fractions of the total message. Along
each spanning tree, the message fraction is divided
into packets, which are sent in a pipeline fashion,
so as to minimize start-up idle times. See [9] for an
illustration with two-dimensional meshes.

The series of broadcasts problems has been con-
sidered by Moore and Quinn [6], and by Desprez
et al. [4], but with a different perspective: they
consider that distinct processor sources successively
broadcast one message, and their goal is to load-
balance this series of communications. Here, we
assume that the same source processor initiates
all the broadcasts: this is closer to a master-slave
paradigm where the master disseminates the infor-
mation to the slaves in a pipelined fashion, e.g. the
data needed to solve a collection of (independent)
problem instances. The series of broadcasts resem-
bles the pipelined broadcast problem in that we can
solve the latter using an algorithm for the former:
this amounts to fix the granularity, i.e. the size
of the atomic messages (packets) that will be sent
in pipeline. However, an efficient solution to the
pipelined broadcast problem would require to deter-
mine the size of the packets as a function of the total
message length.

In this paper, we re-visit the series of broadcasts
and the pipelined broadcast problems in the con-
text of heterogeneous computing platforms. Sev-
eral authors have recently studied broadcasting
with processors communicating with their neighbors
along links with different capacities, and/or differ-
ent start-up costs, but they mainly restricted to
the atomic broadcast problem. Our major result
is the design of asymptotically optimal algorithms
for the series of broadcasts problem, and for the
pipelined broadcast problem. Both algorithms rely
on tools such as linear programming, network flows
and graph theory (Edmond’s branching theorem).

Due to lack of space, we do not survey related
work: instead, we refer to the extended version [1]
of this paper.

2. Framework

The target architectural platform is represented
by an edge-weighted directed graph G = (V, E,¢),

as illustrated in Figure 1. Note that this graph may
well include cycles and multiple paths. Let p = |V|
be the number of nodes. There is a source node P,
which plays a particular role: it initially holds all
the data to be broadcast. All the other nodes P;,
1 <i<p,i#s, are destination nodes which must
receive all the data sent by Ps.

Figure 1. Simple network topology. The
value of ¢;;, is indicated along each edge.
The node P, is the source of the broad-
casts.

There are several scenarios for the operation of
the processors. In this paper, we concentrate on
the one-port model, where a processor node can si-
multaneously receive data from one of its neighbor,
and send (independent) data to one of its neigh-
bor. At any given time-step, there are at most two
communications involving a given processor, one in
emission and the other in reception. FEach edge
ejr : P; — Py is labeled by a value c; ;, which rep-
resents the time needed to communicate one unit-
size message from P; to P (start-up costs are dealt
with below, for the pipelined broadcast problem).
The graph is directed, and the time to communi-
cate in the reverse direction, from P} to P;, pro-
vided that this link exists, is ¢ ;. Note that if there
is no communication link between P; and P we let
¢jkx = +00, so that ¢j < 400 means that P; and
Py are neighbors in the communication graph. We
state the communication model more precisely: if
P; sends a unit-size message to P, at time-step t,
then: (i) P cannot initiate another receive opera-
tion before time-step ¢ + ¢; 1, (but it can perform a
send operation); and (ii) P; cannot initiate another
send operation before time-step ¢ + ¢; ; (but it can
perform a receive operation).

Series of broadcasts In the series of broadcasts
problem, the source processor broadcasts a (poten-
tially infinite) sequence of unit-size messages. Start-
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up costs are included in the values of the link capac-
ities ¢; . The optimization problem, which we de-
note as SERIES(V, E, ¢), is to maximize the through-
put, i.e. the average number of broadcasts initiated
per time-unit. We work out a little example in Sec-
tion 3, using the platform represented in Figure 1.

Pipelined broadcast In the pipelined broadcast
problem, the source processor broadcasts a large
message of total size L. The message can be split
into an arbitrary number of packets. The time
to send a packet of size n;; from P; to Pj is
Bjk + njkcjk. We include the start-up costs in
the definition of the platform graph, which becomes
G = (V,E,c,3). The optimization problem, which
we denote as PIPE(V, E, ¢, 3), is to minimize the
makespan, i.e. to find the number and size of the
packets, and a routing scheme for each broadcast
packet, so that the total execution time is as small
as possible.

3. Comparing topologies for series of
broadcasts

In this section, we work out a small example,
whose objective is to show the difficulty of the prob-
lem. We compare the best throughput that can
be achieved using a tree, a directed acyclic graph
(DAG), or the full topology with cycles.

3.1. Optimal solution

Consider the simple example of the network de-
scribed on Figure 1. The best throughput that can
be achieved on this network is 1, i.e. one message is
broadcast every time-step after some initialization
phase. On one hand, since the source cannot send
more than one message at each time-unit, the best
throughput is less than or equal to 1. On the other
hand, a feasible schedule for a series of broadcasts
realizing this throughput is given in Figure 2, where
messages are tagged by their number, and columns
represent time-steps. The schedule is periodic, with
period length T' = 2, and steady-state is reached at
time-step t = 5: a new broadcast is then initiated
by the source processor every time-step, so that the
throughput of the schedule is equal to 1.

Here are a few comments to read Figure 2. At
time-step t = 1, the source processor P, sends the
first message mq to P;. At time-step ¢ = 2, the
source processor Ps sends the second message ms to

Period 1 2 3

Time
Link

P, — Py my ms ms my
Py — Py ma my me

Py — Py my ms ms
P, — P X X my, mo ma3, My

P, — Py X ma my me
Py — Py X my, mo ms, my

ms, me

Figure 2. An optimal schedule for the net-
work of Figure 1.

1/2 (t=1/2) 1/2 (t=1/2)

1/2 (t=1/4)  [1/2 (t=1/4)

Figure 3. Broadcasting a message from P;,
using the first broadcast tree. Edges are
labeled with the (average) number of mes-
sages that circulate within one time-unit.
The time needed to transfer these mes-
sages is indicated between brackets.

P,. Every odd-numbered step, Ps sends a new mes-
sage to P;, and every even-numbered step, P; sends
a new message to P,. Pj is idle at time-steps t = 1
and t = 3: since it has not yet reached its steady-
state, we have indicated fictitious messages (repre-
sented as crosses “x”), which it would have received
from P; if the computation had started earlier. At
time-step t = 2, P, forwards the first message m; to
P;,. Every even-numbered time-step, P; forwards to
P5 the message that it has received from Py during
the previous step. At step ¢t = 5, P; forwards two-
messages to P3: message my that it received from P;
at t = 1, and message mo that it received from P; at
t = 3. Because the link is twice faster (¢33 = 1/2),
one time-step is enough for sending both messages.
From then on, every odd-numbered time-step, P;
sends two messages to P3. P, operates in a similar
fashion, alternately sending one message to P; and
two messages to Pj.

We further use the example to illustrate the
“superiority” of general graphs over DAGs, and of
DAGs over spanning trees, for the SERIES problem.
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Figure 4. Broadcasting a message from P,
using the second broadcast tree. Edges
are labeled with the (average) number of
messages that circulate within one time-
unit. The time needed to transfer these
messages is indicated between brackets.

3.2. Broadcast trees

As already pointed out, the atomic broadcast is
frequently implemented using a spanning tree. This
raises a natural question: what is the best through-
put that can be achieved for the SERIES problem,
using a single spanning tree to broadcast all the mes-
sages?

A broadcast tree T = (V, Er) is a subgraph of
G, which is a spanning tree rooted at P;, source of
the broadcast. The broadcast tree can be used to
broadcast r messages within a time-unit (in steady
state) if the one-port constraints are satisfied:

>

JEV, (P, Pj)EET

VieV rxcmgl (1)

These are the constraints for outgoing messages:
Equation 1 simply states that each node ¢ needs
the time to send the message to all of its children in
the broadcast tree. As a node receives its messages
from only one node (its parent in the tree), the con-
straint on incoming messages writes 1 X cy(;); < 1,
where f(¢) is the parent of ¢ in 7". This constraint
is satisfied for 7 as soon as Equation 1 is verified
for f(i), so we can discard this constraint. In the
following, we let TP(T) denote the throughput of
a broadcast tree T, i.e. the maximum number of
messages of unit size which can be broadcast using
T in one time-unit.

What is the maximal throughput TP(T) that
can be achieved using a sub-tree of the platform
described on Figure 1?7 We can build two kinds
of spanning trees: either both P; and P, are chil-
dren of the source, or only one of them is a child of

the source in the tree. In the first case, where P;
and P, are directly linked to the source, we obtain
the broadcast tree of Figure 3. The labels on the
figure are not communication capacities. Instead,
they represent the (average) number of messages
that circulate along each edge within one time-unit.
The value 1/2 means that one message is sent every
two steps along the edge. Obviously, because of the
one-port constraint for the source processor, this is
the best throughput that can be achieved using this
tree.

In the second case, one of the vertices P; and
P, is not directly linked to the source. Without
loss of generality, we assume that the edge (Ps, Ps)
does not belong to the tree. This leads to the span-
ning tree of Figure 4, whose optimal throughput is
TP(T) = 2/3. Indeed, on one hand, the one-port
constraint for processor P; states that P; needs 1.5
time-steps to transfer a message to its children Py
and Ps, so we cannot achieve more than 2 broad-
casts every 3 time-steps. We can indeed achieve
this throughput TP(T') = 2/3, as illustrated in the
figure. Overall, this is the best throughput that can
be obtained with a broadcast tree in this network.

3.3. Broadcast DAGs

We choose a less restrictive assumption and try
to extract a Directed Acyclic Graph (DAG), in-
stead of a broadcast tree, out of the network. Of
course we look for a DAG with a single entry vertex,
namely the source processor. Can we can get a bet-
ter throughput than with a tree? The answer is pos-
itive. There are only two candidates DAGs which
do not reduce to spanning trees: the DAG shown
on Figure 5, and its symmetric counterpart where
the edge (P, P) is replaced by the edge (Py, P).
Without loss of generality, we restrict to the DAG
of Figure 5. Because the first broadcast tree of Fig-
ure 3 is a subgraph of the DAG, we can achieve
a throughput at least 1/2. But we can get more.
Figure 5 illustrates how to initiate 4 broadcasts ev-
ery b time-steps, hence a throughput 4/5. It turns
out that this is the optimal solution with this DAG:
we explain in Section 4 how to compute the best
throughput for a DAG.

As a conclusion, we point out that the best
throughput achieved for the SERIES problem
strongly depends upon the graph structure allowed
for transferring the messages. As the little exam-
ple shows, restricting to trees is less powerful than
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using DAGs (throughput of % instead of %), and re-
stricting to DAGs is less powerful than using the
full network graph (throughput of £ instead of 1).
It turns out that computing the optimal through-
put for the SERIES problem is much easier when re-
stricting to DAGs than when dealing with arbitrary
graphs (including cycles). Therefore, we give the
solution for DAGs in Section 4, to prepare for the
difficult algorithm for general graphs (Section 5).

4. Series of broadcasts on a DAG

In this section, we assume the network is orga-
nized as a DAG rooted at the source Ps, and that
all nodes are reachable from the source. Under this
hypothesis, we provide an algorithm to compute the
optimal solution to the SERIES(V, E, ¢) optimization
problem.

We let nj; denote the (fractional) number of
unit-size messages sent from processor P; to pro-
cessor P, during one time-unit, and ¢;; denote the
fraction of time spent by processor P; to send mes-
sages to Pj, during one time-unit. As above, ¢; is
the time needed to perform the transfer of a unit-
size message on edge (P;, Py). The activity on edge
(P}, Pr) in one time-unit is bounded:

VP;, VP 0<tjr=n5% xcjr <1 (2)

The one-port model constraints are expressed by
the following equations:

VP; Z tix < 1 (outgoing msg) (3)
Pk,(Pj,Pk)GE
VP; Z tr; < 1 (incoming msg) (4)

Py, (Py,P;)EE

Moreover, each node should receive the same
(fractional) number of messages in one time-unit
(that is the throughput TP):

>

Py, (P, Pj)EE

VPJ' Wlthj # S, Ngj; = TP (5)

We summarize these equations in a linear pro-
gram (with rational coefficients and unknowns):

STEADY-STATE SERIES OF BROADCASTS
PROBLEM ON A DAG (SSBDAG(G))
Maximize TP,

subject to

VPj,VPk 0 < tj,k =Njk X Cjk < 1
VP; 2P (P Poer Lik S 1
VP; Py (Pu,Py)eE thi S 1

VP] With] 7& S, ZP;W(P;C,PJ')EE nkJ' =TP

Theorem 1. The solution of the SSBDAG(G) lin-
ear program provides the optimal solution to the SE-
RIES problem on a DAG: the value TP returned by
the program is the mazimum number of broadcasts
that can be initiated per time-unit. Furthermore,
it is possible to construct the corresponding optimal
periodic schedule in time polynomial in size of the
input DAG.

Proof. We only give the main ideas of the proof
here: a detailed proof can be found in [1]. Intu-
itively, the previous linear program gives a bound
on the achievable throughput. To prove that this
bound can indeed be achieved, after solving the lin-
ear program in rational numbers, we compute the
least common multiple T' of all denominators that
appear in the value of the variables, then we multi-
ply every quantities by T. We get integer results for
a steady-state operation with period T'. There re-
mains to show that we can derive a schedule which
(i) achieves the throughput returned by the linear
program; (ii) does not violate any constraint in the
model; and (iii) admits a compact description, i.e.
of size polynomial in the input data.

For (i), we have to ensure that fictitious cycles
(think of a parasitic cycle involving two processors
exchanging meaningless data) do not account for a
fake throughput in the solution of the linear pro-
gram SSBDAG(G). Because the platform is a
DAG, this cannot happen, and the actual sched-
ule will be constructed iteratively, the nodes being
topologically sorted according to their shortest dis-
tance from the source. However, this forbids the use
of SSBDAG(G) for general platforms.

For (ii), the question is the following: given a set
of processors operating under the one-port model,
can we actually execute any set of communications
within a prescribed time-bound 77 Of course, a
necessary constraint is that Equations 3 and 4 are
satisfied by each processor during the time inter-
val: VPJ"ZPk,(Pj,Pk)eE tix < T (outgoing mes-
sages) and ZPk,(Pk,Pj)eE tp,; < T (incoming mes-
sages). However, it is not obvious that these neces-
sary conditions are sufficient to build a schedule, be-
cause only independent communications (with dis-
joint sender and receiver pairs) can be scheduled
simultaneously.

For (iii), because T is the least common multiple
of values of the linear program solution, log(T") has
a size that is polynomial in the input data size but
not necessarily 7' itself, so a time-step by time-step
description of the schedule might be too large.
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We solve both the (ii) and (iii) problems as
follows: we transform the platform graph into a
weighted bipartite graph by splitting each node P;
into an outgoing node Pj“”d and an incoming node
Preev. Each edge from Pjse"d to P is weighted by
the length of the communication ¢; ;. At any given
time-step, we can schedule at most two communi-
cations involving a given processor, one in emis-
sion and the other in reception. Thus, at a given
time step, only communications corresponding to a
matching in the bipartite graph can be performed
simultaneously. Therefore, we need to decompose
the weighted bipartite graph into a sum of match-
ings. The desired decomposition of the graph is in
fact an edge coloring. The weighted edge coloring
algorithm of [7, vol.A chapter 20] provides in time
O(|EJ?) a number of matchings which is polynomial
in the size of the platform graph (in fact there are at
most | F| matchings). Moreover, the overall weight
of the matchings is equal to the maximum weighted
degree of any Pjse”d or Pj“® node, so that we can
use these matchings to perform the different com-
munications. [ |

4/5 (t=4/5) 1/5 (t=1/5)

3/5 (t=3/5)

4/5 (t=2/5)  |4/5 (t=2/5)

® ®

Figure 5. Broadcast on a DAG. 4 broad-
casts are initiated every 5 time-steps.

We come back to the example given in Figure 5,
for which we claimed to obtain a throughput of 4/5:
this is in fact the value returned by the linear pro-
gram on this example. The values 5 x n; (¢ = 5)
are given along the edges in Figure 5. The schedule
constructed in the proof [1] is represented on Figure
6(a) (the number of the messages sent is mentioned
between brackets, [0, 3] stand for messages number
0 to 3). Once pipelined, it gives the communica-
tions represented on Figure 6(b). The last step is to
use the edge-coloring algorithm to create a schedule
where several receptions or emissions never overlap
on a node, which leads to the final schedule of Fig-
ure 6(c).

Period

Link 0 ! 2
Py — Py [0,3]
Ps— P [0]
P =P, 1,3]
P — Py [0,3]
P, P 03]
(a) Basic schedule
Period - P S
Link 0 1 2 3 4 5 6
P, =P 03] | &7 | 811 | [12,15] | [16,19] | [20,23]
PP, o [ S| (2 | 19
P = P, [1.3] 5.7 [0.11] | [13,15] | (17,19
P =Py 0,3 47 | [811] | [12,15
P, — Py 0.3 47 | B11 | 12,15
(b) Pipelined communications
Period I 2 3 1
o Tmellg fafofa|als]e]r]s]ow]ufwe|n|uls|ws|ir|s] o
PP [0]1]2]3 1[5]6] 7 s [0 (0] 1 21311
P =D 0 1 5
P =P || x| x|x 123 51617 9 10|11
1Y) 0123 1567 89 | 10,11
PPy || x| x| x| x 0123 45 [ 6,7 |

(c¢) Final schedule

Figure 6. Solution for the example of a
broadcast on a DAG

5. Series of broadcasts on a general
platform

The SERIES problem turns out to be much more
difficult for general graphs than for DAGs. As al-
ready mentioned, the linear program SSBDAG(G)
would lead to wrong solutions, because fictitious cy-
cles could corrupt the throughput. We still solve the
problem by using a linear programming approach,
but with a completely different, more involved, for-
mulation.

5.1. Linear program and upper bound for the
throughput

We proceed in three main steps:

1. First, we express the linear constraints that
have to be satisfied by an optimal solution in
steady-state mode. The linear program gives
an upper bound of the throughput that can be
achieved on the platform.

2. Then, from an optimal solution of the linear
program, we build a set of broadcast trees. The
weighted sum of these trees leads to the optimal
throughput, and satisfy all the communications
constraints.

3. Finally, we provide a compact description of
the optimal periodic schedule. We ensure that
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the size of the description is polynomial in the
size of the initial data.

We focus on the broadcast of a unit-size message
from a processor Psoyurce in a platform represented
by the graph G = (V,E,c¢). We want to realize
a steady-state broadcast with the best throughput
in one time-unit. We introduce xf’k, the fractional
number of messages whose final destination is P;
and which transit through edge (P;, Py) in one time-
unit. We can already write the linear constraints
concerning the number of messages broadcast by the
source and received by every other node in one time-
unit:

VP eV, > Ziovreed  — TP (6)
Pj,(source,j)eE
VP, eV, Y @t = TP (7)
Pj,(ji)eE

We also write a constraint corresponding to the con-
servation law for messages in P; targeting P; (with

P, # P):
>ooa o= Y W)

VP, P;,
P’Ci(k:)j)eE Pk‘v(j’k)eE

We denote as nj the total (fractional) number
of messages going through the edge (P}, P;) in one
time-unit. The number of such messages targeting
each P; is x] ' but these messages can be either dif-
ferent or identical. If they were all different, then we
would have n;, = >, x{’k, which corresponds to a
scatter operation. However, since the source broad-
casts the same messages to each node, some of the
27* may be identical. Using 37,z to define n;
is too pessimistic for the broadcast operation. To
get an upper bound on the achievable throughput,
we assume that all messages going through one edge
and targeting different nodes are part of a same set
of messages:

V(j, k) e E, njp= mzaxxg’k (9)

As we know the number of messages going
through each edge, we can write the constraints
about the one-port model:

VP, > el k) xmie < 1 (10)
Py,(j,k)eE

VP, Y ekg) xmy; < 10 (11)
Py, (k,j)EE

All these constraints are summarized in the fol-
lowing linear program:

STEADY-STATE BROADCAST

PROBLEM ON A GRAPH (SSB(G))
Maximize TP,

subject to

VP; € ‘/a ZPJ,(source,j)EE :EfourCEJ =TP
VP eV, Y p (ier® =TP

VP;, Pi i # §, 3 py (kj)eR T P keE T
V(j,k) € E,n;j ) = max; z7’

VP, er €Uy k) X e <1
VP, 2o by kyem (ks ) X Mk <1

Clearly, the linear program SSB(G) provides an
upper bound on the throughput, but there remains
to prove that the all set of communications can be
orchestrated so that whenever two messages tar-
geted to different processors circulate along a given
edge, they are identical. The (somewhat unex-
pected) result is that the bound can be achieved.

As previously, after solving the linear program
in rational numbers, we compute the least common
multiple T of all denominators that appear in the
value of the variables, then we multiply every quan-
tities by T'. We get integer results for a steady-state
operation with period T'.

5.2. Extracting trees

Once the linear program solved, we have an up-
per bound on the throughput of a broadcast on the
platform. However, we do not know if the bound
is achievable, as the assumption we made on the
messages going through one edge being part of the
same set of messages may be too strong. We use
Edmond’s Branching theorem to prove that there
exists a set of broadcast trees such that the sum
of these trees satisfies the linear constraints and
reaches the upper bound of the throughput. Ed-
mond’s theorem [10] links the number of edges that
have to be deleted to make a vertex P; unreachable
from the source (denoted as k(G, Psource)) and the
number of edge-disjoint spanning trees rooted in Pjy:

Theorem 2. The number of edge-disjoint spanning
trees rooted in Py is equal to K(G, Psoyrce)-

In [1], we prove that x(G, Psource) = T x TP,
which is the number of messages broadcast in one
period T'. This provides a decomposition of the so-
lution in T" x TP broadcast trees, and guarantees
that the use of these trees simultaneously in one
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period T satisfies the constraints of the communi-
cation model, as the sum of these trees is a subgraph
of the graph solution of the linear program. How-
ever, the description of T' x TP broadcast trees is
not compact enough, since the number of trees can
be exponential in the size of the initial data. In-
deed, TP is obtained from the solution of the linear
program built with the initial data, so it can be en-
coded in polynomial size. Similarly, T is the least
common multiple of values of the linear program
solution, so it also can be encoded in polynomial
size. Nevertheless, to encode all the trees we need
at least |V| x T'x TP, which is not polynomial in the
size of the data. Fortunately there exists a weighted
version of Edmond’s theorem [7, vol.B chapter 53]:

Theorem 3. Let G = (V,E,T x nj) be an
oriented graph with weighted edges.  There ex-
ist kp trees and kr integer weights such that:
Vj,k, Zl )\lxgjk;(j‘l) < Tnj,ka where X}jk(z—‘l) =1
if (Pj,Pr) € T; and 0 otherwise, and ) A\, mawi-
mal. Besides, these trees can be found in polynomial
time, and kr < |V|3 + |E|

We can prove that >, \; = k(G, Py) = T. Then
we obtain a decomposition of the solution into a set
of weighted trees that can be encoded in polynomial
size. As previously, we partition the set of commu-
nications into several sets without communication
conflicts for the one-port model, using the weighted
matching algorithm. We obtain an optimal periodic
schedule for the steady-state operation. All these
steps are detailed in [1].

5.3. Asymptotic optimality

In this section, we state that the previous pe-
riodic schedule is asymptotically optimal: basically,
no scheduling algorithm (even non periodic) can ex-
ecute more broadcast operations in a given time-
frame than ours, up to a constant number of oper-
ations. This section is devoted to the formal state-
ment of this result, whose proof can be found in [1].

Given a platform graph G = (V, E,¢), a source
processor Py holding an infinite number of unit-size
messages, and a time bound K, define opt(G, K)
as the optimal number of messages that can be
received by every target processor in a succession
of broadcast operations from P,, within K time-
units. Let TP(G) be the solution of the linear pro-
gram SSB(G) of Section 5.1 applied to this platform
graph G. We have the following result:

Lemma 1. opt(G,K) < %(G) x K

This lemma states that no schedule can send
more messages that the steady-state. There remains
to derive an actual schedule based on the periodic
solution, where the loss due to the initialization and
clean-up phases is bounded. This algorithm is fully
described in [1]. Let steady(G, K) denotes the num-
ber of messages broadcast by the source in K time-
units with this algorithm:

Theorem 4. The scheduling algorithm based on the
steady-state operation is asymptotically optimal:

steady(G, K)

opt(G, K) =1

K——+oco

6. Pipelined broadcast

In the pipelined broadcast problem, the source
processor broadcasts a single (large) message of to-
tal size L, which can be split into an arbitrary num-
ber of packets. To be realistic, the model must
include start-up overheads in the communication
times: otherwise, with a cost linear in the packet
size, the best solution would be to have an infi-
nite number of infinitely small packets. Therefore,
in this section we assume that the time to send a
packet of size n; from P; to Py is Bj 5 + nj kCj k-
We include the start-up costs in the definition of
the platform graph, which becomes G = (V, E, ¢, ).
The P1pe(V, E,c,3) problem is to minimize the
time needed to broadcast the initial message of size
L, i.e. to find the number and size of the packets,
and a routing scheme for each packet, so that the
total execution time is as small as possible.

Using again the periodic scheme mentioned in
Section 5, we can extend Theorem 4 and prove a
result of asymptotic optimality for the PIPE opti-
mization problem. Due to lack of space we refer
the reader to the extended version [1] for a formal
statement. This result is inspired by the work of
Bertsimas and Gamarnik [2], who use a fluid relax-
ation technique to prove the asymptotic optimality
of a simpler packet routing problem.

7. A complete example

In this section, we work out a complete example.
The platform is generated by Tiers, a random gener-
ator of topology [3]. The bandwidth of the links are
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randomly chosen, and the topology is represented
on Figure 8(a). Figure 8(b) shows the results of the
linear program SSB(G). The edges of this graph
represent communications, and their label is a list
of transfers: if edge (i,7) has the item y(k) in its
list, it means that Nz;” =y, i.e. that in the steady-
state integer solution, y messages go through edge
(i,7) to reach Pj. Here, the throughput achieved is
2 messages per period of 152 time-units.

From these communications, we extract two
broadcast trees, which are represented on Figure 9,
where both the logical tree and the communica-
tions extracted from Figure 8(b) are mentioned.
We point out that not all communications arising
from the linear program SSB(G) are actually used
in the trees: some are redundant (hence useless).
For example, there is a cycle between node P; and
Py for transfers, whose targets are nodes P3, Ps, Py
and P;. These communications do not improve
the throughput of the broadcast, but they do not
interfere with other communications: indeed, the
maximum of all communications on these edges is
Nz'® = Nz®! = 1. Extracting trees from the so-
lution of the linear program enables us to neglect
such “parasitic” communications.

8. Conclusion

In this paper, we have studied several broad-
casting problems on heterogeneous platforms. Our
major objective was to maximize the throughput
that can be achieved in steady-state mode, when a
large number of same-size broadcasts are done in
a pipeline fashion, or when a single large message
is split into packets that are broadcast in pipeline
fashion too. Achieving the best throughput may
well require that the target platform is used in to-
tality: we have shown neither spanning trees nor
DAGs are powerful enough. In passing, note that
determining in a given graph the broadcast tree that
achieves the best throughput among all trees is a
NP-complete problem [1]. We have shown how to
compute the best throughput using linear program-
ming, and how to exhibit a periodic schedule, first
when restricting to a DAG, and then when using
a general graph. The polynomial compactness of
the description comes from the decomposition of the
schedule into several broadcast trees that are used
concurrently to reach the best throughput.

An interesting problem would be to extend this
work to the case of the multicast operation, where

the target processors (the receivers) form a strict
subset of the computing resources. In this case,
even determining the best throughput in steady-
state mode seems to be a challenging problem.
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1
(a) Topology Graph, with (b) Result Graph (Nxzk)
the communication cost of
each edge.

Graph of the ]\}nj,k = (d) First broadcast tree,
max (szk) Ar=1
K

(e) Second broadcast tree, (f) Sum of both trees -

A2 =1 graph of the m; ;’s

Figure 7. Example where m; , < Nn; ;. The
optimal steady-state broadcast time 7 for
one message is 5 time-units, due to edge
(P,, P,). Figure 7(b) describes the results
multiplied by the least common multiple
N = 2, and Figure 7(c) reports the maxi-
mum values of ng”“ on each edge. Fig-
ures 7(d) and 7(e) are the two broadcast
trees extracted from the previous figure,
each of them with a weight of \;, = 1. Fi-
nally, Figure 7(f) represents the sum of
these trees. On the edge (7., P.), we have
mee < Nnc.: this edge is used by only
one broadcast tree, so m.. = 1, whereas
Nn.. = 2 because all messages targeting
P; are supposed to go through this edge
in the optimal solution given by the linear
solver, which is not the choice made when
we use trees.

(a) Topology. Edge e is labeled by its band-
width bw(e). The cost of a transfer is c(e) =
1000/bw (%) for a single message.

1(1), 1(2), 1(3), 1(5),
(6], 1(7), 1(8), 1(9),
1(10)

1(1), 1(2), 1(3), 1(5).
16). 1(7). 1(8). 1(9).
1

(10)

1(2). 1(3). 1(5), 1(6).
i)

(b) Communication graph

Figure 8. Experiments on a given topology.

logical tree  extracted communications
(a) First broadcast tree (broadcasting 1 message)

1(1), 1(2), 1(3), 1(5).
1(6). 1(7); 1(8). 1(9)
1(10)

logical tree  extracted communications
(b) Second broadcast tree (broadcasting 1 message)

Figure 9. Broadcast trees.
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