
Independent and Divisible Tasks Scheduling
on Heterogeneous Star-shaped Platforms

with Limited Memory ∗

O. Beaumont1, A. Legrand2, L. Marchal2, and Y. Robert3

1: LaBRI, UMR CNRS 5800, Bordeaux, France 2: ID, UMR CNRS-INRIA-IMAG 5132, Grenoble, France

Olivier.Beaumont@labri.fr {Arnaud.Legrand}@imag.fr

3: LIP, UMR CNRS-INRIA 5668, ENS Lyon, France

{Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract

In this paper, we consider the problem of allocating
and scheduling a collection of independent, equal-sized
tasks on heterogeneous star-shaped platforms. We also
address the same problem for divisible tasks. For both
cases, we take memory constraints into account. We prove
strong NP-completeness results for different objective
functions, namely makespan minimization and through-
put maximization, on simple star-shaped platforms. We
propose an approximation algorithm based on the un-
constrained version (with unlimited memory) of the prob-
lem. We introduce several heuristics, which are evaluated
and compared through extensive simulations. An unex-
pected conclusion drawn from these experiments is that
classical scheduling heuristics that try to greedily mini-
mize the completion time of each task are outperformed
by the simple heuristic that consists in assigning the task
to the available processor that has the smallest commu-
nication time, regardless of computation power (hence a
"bandwidth-centric" distribution).

Keywords:Scheduling, makespan, steady-state, divis-
ible load, memory constraints, bounded buffers, memory
limitation.

1 Introduction

In this paper, we consider the problem of allocating
and scheduling a collection of independent, equal-sized
tasks on heterogeneous computing platforms. Master-
slave tasking on such platforms has received a lot of at-
tention recently [19, 16, 15, 20].

The minimization of the total execution time is a NP-
hard problem, even if the platform is a simple tree [13]. In
contrast, the optimal steady-state throughput, i.e. the max-
imal number of tasks that can be processed per time-unit,
can be computed in polynomial time, using rational linear

programming [1]. Moreover, when the overlay network of
computing nodes is tree-shaped, the optimal throughput
can be characterized by a set of recursive equations, which
are solved via a bottom-up traversal of the tree [3]. From
these equations, it is possible to derive alocal allocation
of tasks to resources. This best allocation isbandwidth-
centric: if enough bandwidth is available at the node, then
all children must be kept busy all the time; if bandwidth
is limited, then tasks should be allocated only to children
which have sufficiently fast communication links, in order
of fastest communication time. Counter-intuitively, the
maximum throughput in the tree is achieved by delegating
tasks to children as quickly as possible, and not by seek-
ing their fastest resolution. The bandwidth-centric strat-
egy is asymptotically optimal, and enjoys the key advan-
tage that the optimal allocation can be computed locally.
This enables each component to make autonomous, local
scheduling decisions. The approach is thus more scalable
than a fully centralized approach.

Nevertheless, the bandwidth-centric periodic solution
presented in [3, 1] may well require a huge amount of
memory. Indeed, the length of the period may be very
large, while the number of buffers required on each re-
source is proportional to the length of this period. This
drawback may prevent the use of the bandwidth-centric
protocol in practical situations. In this paper, we take
memory constraints into account, and we aim at deriving
efficient scheduling strategies for scheduling independent
tasks when computing resources have a limited number of
buffers.

As expected, the problem becomes more difficult with
memory constraints. We first target the makespan min-
imization problem (which is polynomial [5] on simple
star-shaped platforms) in Section2 and show that it is
a strongly NP-complete problem. We also derive an ap-
proximation algorithm based on the unconstrained (with-
out memory limitations) version of this problem and in-
troduce several heuristics, which are evaluated and com-

1

pared through extensive simulations in Section3. Then
we prove in Section4 that finding the minimum num-
ber of buffers required to reach the optimal steady-state
throughput is a strongly NP-complete problem. We also
address the counterpart of the previous scheduling prob-
lem for divisible tasks (a perfect parallel job that can be
arbitrarily split into several independent parts) and prove
its strong NP-completeness. Last, in Section5, we sur-
vey related work on scheduling under memory constraints
and we state some final remarks and conclude the paper in
Section6.

2 Scheduling a finite number of indepen-
dant tasks under memory constraints

In this section, we introduce the first of our four differ-
ent problems. We seek to minimize the processing time
of a finite number of independant equal-sized tasks on an
heterogeneous platform.

2.1 Framework and complexity results

Consider the star-shaped platform depicted in Figure1.
The master processorP0 initially holds all the identical
tasks{T1, T2, . . . , TN}. There arep slave processors,
numbered fromP1 to Pp. The time needed to send a task
from P0 to Pi is given byci. The time necessary forPi to
process a task is given bywi. We assume that the commu-
nication medium is exclusive: the master can only com-
municate with a single slave at each time-step. We also
assume the possibility of overlapping computations with
independent computations. More precisely, a slavePi can
simultaneously execute a task whose data was received in
one of its buffers, and receive the data for another task in
another buffer, provided that is has enough buffers to do
so. Throughout the paper, this star-shaped platform and its
operating model will be referred to as thereferenceplat-
form.

Definition 1 (UNBOUNDED-MAKESPAN
((ci)16i6p, (wi)16i6p, {T1, T2, . . . , TN}), K).
Let K > 0 be a time-bound, and consider the reference
platform. Is it possible to process all theN tasks within
K time units on this platform?

A O(N2p2) algorithm that solves theUNBOUNDED-
MAKESPAN problem is described in [5]. The memory-
constrained version can be defined as follows:

Definition 2 (BOUNDED-MAKESPAN ((ci)16i6p,
(wi)16i6p, (bi)16i6p, {T1, T2, . . . , TN}, K)). Let
K > 0 be a time-bound. Consider the reference platform,
and assume that each slave processorPi is equipped with
a bounded buffer that can hold at mostbi tasks. Is it
possible to process all theN tasks withinK time units on
this platform?

P0

P1 P2 Pi Pp

b1 b2 bi bp

w1 w2 wi wp

ci

cpc1

c2

Figure 1. Star Platform

This problem is NP-complete by reduction3-Partition,
which is NP-Complete in the strong sense [14].

Definition 3 (3-Partition). Given 3n inte-
gers a1, . . . , a3n, such that

∑3n
1 ai = nB and

∀i, B
4 < ai < B

2 . Is there a partition of theai’s
into n groups of 3 integers, such that eachai belongs
exactly to one group, and each group sums toB.

Theorem 1. BOUNDED-MAKESPAN (bi, ci, wi,K,N)
is NP-Complete in the strong sense.

Proof. We have to polynomially transform the instance of
3-Partition into an instance ofBOUNDED-MAKESPAN
which has a solution if and only if the original instance of
3-Partition has a solution.

Let us consider the following instance ofBOUNDED-
MAKESPAN, consisting of a master processorP0, 3n
slave processorsP1, . . . , P3n with the following charac-
teristics.

• bi = 1, i.e. processorPi cannot start receiving a new
task until it has processed the task it holds

• ci = ai, wi = 2nB, i.e. it takesai time units toPi to
receive a task fromP0 and2nB time units to process
it,

and one processorPB with bB = 1, cB = B,wB = B.
Moreover let us setN = 5n andK = 4nB.

⇒ Let us first suppose that there is a solution to the
original instance of3-Partition and let us suppose,
without loss of generality, that

∀0 6 j 6 n− 1, a3j+1 + a3j+2 + a3j+3 = B.

Then, the schedule depicted in Figure2 pro-
vides a solution to BOUNDED-MAKESPAN
(bi, ci, wi,K,N).

⇐ Let us now suppose that there is a solu-
tion to the instance ofBOUNDED-MAKESPAN
(bi, ci, wi,K,N) we have built.

2

P comp
1

P comp
2

P comp
3

P comp
4

P comp
5

P comp
6

a1 a3B a4 a6B B B

P comp
B

2nB

a5a2

B B

B B

4nB

comm.

Figure 2. Solution to BOUNDED-MAKESPAN

Lemma 1. In a solution of BOUNDED-
MAKESPAN (bi, ci, wi,K,N), each processor
Pi processes exactly 1 task, andPB processes
exactly2n tasks.

Proof. Let us first consider the case ofPi. It can-
not receive its first task before time stepai, and
thus, it cannot finish its processing before time step
ai+2nB. Therefore, it cannot receive its second task
before time step2ai + 2nB, and thus, it cannot pro-
cess a second task within the time boundK = 4nB.
Thus, eachPi processes at most one task.
Clearly, for the same reasons,PB cannot process
more than2n tasks within4nB time units. There-
fore, eachPi cannot process more than one task, and
PB cannot process more than2n tasks, such that,
sinceN = 5n, in any optimal solution, eachPi pro-
cesses exactly one task, andPB processes exactly2n
tasks.

Using Lemma1 and as communications and process-
ing cannot overlap, we can prove that communica-
tions toPB are necessarily organized as depicted in
Figure 2. Moreover, since it takes2nB time units
to Pi to process one task, all communications to the
Pi’s must be finished before time step2nB. There-
fore, those communications must take place in then
disjoint holes of sizeB left free by the communica-
tions toPB , thus providing a solution to the original
instance of3-Partition.

2.2 Approximation Algorithms

In this section, we give an approximation algorithm
in presence of limited memory for star graphs when we
aim at minimizing the makespan. The approximation al-
gorithm we propose is designed for processors that are
able to hold only one task (and thus where tasks have to
be distributed one by one and where communications and
processing cannot be overlapped), which is the most re-

strictive case in presence of limited buffer. Therefore, the
approximation ratio holds true a fortiori for larger buffers.

The approximation algorithm we propose is a list based
scheduling algorithm, whose makespan is not larger than
twice the optimal makespan on the platform where all
memory constraints have been removed.

The sketch of the list algorithm is depicted in Figure3.
At any time, IdleProc[i] is the next smallest date when
processorPi becomes idle (and thus the smallest date
when a task can be sent toPi since the algorithm makes
use of only one buffer),NbTasksSent is the overall num-
ber of tasks already sent byP0, and NbTasksProc[i]
is the overall number of tasks already sent toPi, and
NbCommEvent denotes the date of the next communi-
cation event. The algorithm we propose requires some
pre-processing. We need to know the numberni of tasks
that are sent toPi in the optimal solution without mem-
ory limitation. The ni’s are given by the solution of
UNBOUNDED-MAKESPAN, which is described in [5].
In the algorithm described in Figure3, a task is sent toPi

as soon as

• the communication medium is free

• Pi is idle

• Pi has not processed yet the number of tasks allo-
cated to it in the optimal solution without limited
memory.

STAR-BOUNDED-BUFFER(ci, wi, N)
1: (n1, . . . , np) =STAR-UNBOUNDED-BUFFER(ci, wi, N);
2: NbTasksSent=0;
3: NextCommEvent=0;
4: ∀i, IdleProc[i]=0; NbTasksProc[i]=0;
5: while NbTasksSent 6 N do
6: Find Pi, such that IdleProc[i] is minimal and

NbTasksProc[i] 6 ni

7: if IdleProc[i] 6 NextCommEvent then
8: NbTasksProc[i] + +; NbTasksSent++;
9: IdleProc[i]=NextCommEvent+ci + wi;

10: NextCommEvent=NextCommEvent+ci;
11: else
12: NexCommEvent=IdleProc[i];

Figure 3. List scheduling approximation al-
gorithm

Surprisingly, this very simple heuristic builds a
schedule whose makespan cannot be larger than twice
the makespan of the optimal schedule without memory
limitations:

Theorem 2. Let us denote byTalg the makespan
of the schedule built with limited buffers by

3

STAR-BOUNDED-BUFFER(ci, wi, N) (defined in
Figure 3), and by Topt the makespan of the (op-
timal) schedule built with unlimited buffers by
STAR-UNBOUNDED-BUFFER(ci, wi, N) (defined in [5]),
then

Talg 6 2Topt.

Proof. The proof of this theorem is adapted from Gra-
ham’s proof for list based scheduling [10]. Let us consider
the schedule built bySTAR-BOUNDED-BUFFER(ci, wi, N)
and let us denote by[t1, t1+α1], . . . , [tk, tk+αk], [tl, Talg]
the intervals when the communication medium is idle.
Clearly tl =

∑k
1 αi +

∑p
1 cini since at each time step,

either the communication medium is idle or a task is be-
ing sent, and the overall number of tasks sent toPi is ni

by construction. Let us also denote byPlast the processor
that finishes its processing at timeTalg in the schedule built
by STAR-BOUNDED-BUFFER(ci, wi, N). The situation is
depicted in Figure4.

. . .

0

[t1, t1 + α1]

[t2, t2 + α2]

[t3, t3 + α3]

[t4, t4 + α4]

∑p
1 cini +

∑k
1 αi Talg

Figure 4. Schedule built by Star-Bounded-
Buffer

Let us consider the case ofPlast. An idle
time in the communication medium is generated by
STAR-BOUNDED-BUFFER if and only if all the proces-
sors that have not processed all their tasks yet are work-
ing. Thus, sincePlast processes the last task, it has been
working at least during all the time intervals[t1, t1 +
α1], . . . , [tk, tk + αk], [tl, Talg], of overall sizeTalg −∑p

i=1 cini. Therefore, the overall processing time ofPlast

is given bywlastnlast, so that

Talg−
p∑

i=1

cini 6 wlastnlast and thusTalg 6
p∑

i=1

cini+wlastnlast.

Moreover,Topt >
∑p

i=1 cini since
∑p

i=1 cini represents
the time necessary to send all the tasks to the different
slaves in the optimal solution (remember that the num-
bers of tasks sent toPi by STAR-BOUNDED-BUFFER

and STAR-UNBOUNDED-BUFFER are the same),
and Topt > wlastnlast since wlastnlast repre-
sents the overall processing time on slavePlast

(again, either with STAR-BOUNDED-BUFFER or
STAR-UNBOUNDED-BUFFER). Therefore,

Talg 6 2Topt.

3 Simulation

3.1 Heuristics

In this section, we present several heuristics for the
model with independent, equal-sized tasks. All the heuris-
tics are list-based heuristics, and schedule a task as soon
as possible. Only the selection function differs from one
heuristic to the other. Thus, this selection function plays a
key role in this scheme: it selects the next target processor
(the one that will execute the next task) among all the dif-
ferent processors that are available at a given time step, as
soon as the communication medium becomes free. In the
following, we present different selection functions.

A natural idea for choosing among available proces-
sors, is to select the one with the highest computing
speed, or the one with the smallest communication cost.
These selection functions lead to the heuristics denoted
by min_w andmin_c in the following. It is also possi-
ble to choose the processor which will finish to process
the task the earliest, given previous scheduling decisions.
The heuristic based on this selection function is denoted
by mct in the following.

P1

P2

Comm.

min_c selection

P1

P2

Comm.

min_loss selection

Figure 5. Simple instance with two proces-
sors (b1 = b2 = 1, c1 = 1, c2 = 10, w1 = 2,
w2 = 20). Light (resp. dark) grey repre-
sent communications from the master to P1

(resp. P1) or computations by P1 (resp. P2).
min_c may perform a very bad choice. Leav-
ing the communication medium idle for a
while may lead to much better results.

Nevertheless, all these list-based heuristics may lead to
very bad choices like the one depicted on Figure5. There-
fore, we also propose an heuristic based on the evaluation
of the gain and loss of a decision to schedule a task a pro-
cessor. This kind of approach is very close to the com-
monly usedsufferageheuristic [9, 18] and may avoid such
misleading choices. Assume that we decide, at a given
time stept when the communication medium is free, to
schedule the next communication as a transfer toPi. We
earn one task, but it is possible that another processorPj

becomes starving betweent and the end of the communi-
cation toPi (Available[i]+ci). We can compute the num-
ber of tasks that could have been performed byPj during

4

this interval in such a case and sum this number over the
Pj to get the average penalty incurred by the selection of
Pi. This leads to the heuristicmin_loss based selecting
thePi that minimize the average penalty and by sending it
a task as soon as it gets ready This heuristic may not com-
municate a task as soon as possible and wait for a better
available slave instead, so it is not a “real” list heuristic.

3.2 Simulation platforms

The platform consists of a master and several slaves.
The different parameters to take into account are the fol-
lowing:

Number of slaves We performed the experiments with a
small number of processors (5) and with a larger
number (20). As the results are similar, we only
present them in the latter case, where heterogeneity
is more likely to play a part.

Sending and computing speedsThese parameters were
chosen randomly with a Gaussian distribution in the
interval [50,150].

Number of tasks As we simulate the scheduling of a
fixed number of tasks on a platform, we have to
choose the number of tasks to be scheduled. We let
this number vary from 10 to 2,048. Note that a small
number of tasks is more significant for makespan
minimization, while a large number of tasks is rel-
evant for throughput optimization.

Size of the buffers We perform experiments for buffer
sizes going from 1 (no overlap between communi-
cation and computation) to 32 (almost no limitation
on memory).

3.3 Simulation results

To compare the performance of the different heuristics,
we compute their performance ratio, defined as the ratio of
the number of tasks processed by the slaves over the total
time spent to process these tasks. We cannot compute the
optimal performance ratio in the case of bounded buffers,
but we normalize results by plotting the performance ratio
of the heuristics over the optimal performance ratio in the
absence of memory limitation [3, 1].

Figure 6 presents the results in the case of a single
buffer, for a varying number of tasks. Figure7 shows the
results for a fixed number of tasks (2,048), for a varying
size of buffer.

Most scheduling heuristics try to greedily minimize the
completion time of each task. Even if some variants exist
to cope with task affinity or misleading greedy decisions
(like sufferage), none of these heuristics is efficient in the
situation where communications from the master are the

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 10 100 1000

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

number of tasks (logarithmic scale)

min_c
min_w

mct
min_loss

Figure 6. Performance for a single buffer

bottleneck. Surprisingly, the simplest heuristic (min_c)
outperforms the more involved ones (likemin_loss and
mct), and achieves very good results in all situations:
min_c always has the best performances when trying to
minimize the makespan in the single buffer case; it reaches
90% of the optimal throughput in the single buffer case,
and more than 99% of this bound when the size of the
buffer is greater than 2.

Another surprising conclusion is thatmin_c reaches
the optimal unbounded throughput with only a few
buffers. The good performances ofmin_c can be ex-
plained as follows: if we send a task to a processorPi with
a smallci and a bigwi, the communication medium will
be busy during a short time, andPi spends a lot of time
processing the task; we are able to perform many other
communications during this computation. Conversely, if
we send a task to a processor with a smallci and a small
wi, this processor is likely to process the task quickly and
to be chosen again soon as a future target: this leads to
a larger share of the communication medium forPi but
since it has a smallwi, it contributes to a big fraction of
the total throughput of the platform. In conclusion, send-
ing a task to a slave processor with a smallci is never a
bad choice, regardless of its computing power.

4 Relaxed optimization problems

4.1 Throughput maximization under memory
constraints

When the platform model is more complicated than a
star (e.g. a tree or a general graph), the makespan mini-
mization problem turns out to be very difficult [13]. A nice
idea to circumvent this difficulty is to relax the objective
function by maximizing the steady-state throughput. This

5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25 30

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

size of the buffer

min_c
min_w

mct
min_loss

Figure 7. Performance as a function of the
buffer size.

problem is polynomial and leads to asymptotically opti-
mal solutions for the makespan minimization problem. On
a star platform, finding the optimal steady-state through-
put, i.e. the optimal number of tasks that can be processed
per time-unit, can be formalized as follows:

Definition 4 (UNBOUNDED-THROUGHPUT
((ci)16i6p, (wi)16i6p, ρ)). Let K > 0 be a time-
bound, and consider the reference platform. Is there a
K-periodic schedule of periodT , i.e. a schedule that
executesK tasks everyT time-units in steady state, and
such thatKT > ρ?

Using a linear-programming formulation, this problem
can be solved by aO(p log(p)) algorithm [3, 1]. The
bounded version of the throughput problem can be defined
as follows:

Definition 5 (BOUNDED-THROUGHPUT
((ci)16i6p, (wi)16i6p, (bi)16i6p, ρ)). Let K > 0
be a time-bound. Consider the reference platform, and
assume that each slave processorPi is equipped with a
bounded buffer that can hold at mostbi tasks. Is there
a K-periodic schedule of periodT , i.e. a schedule that
executesK tasks everyT time-units in steady state, and
such thatKT > ρ?

The formulation of the UNBOUNDED-
THROUGHPUT and BOUNDED-THROUGHPUT
problems is questionable, because as stated these prob-
lems may not belong to NP. Indeed, the size ofK andT
could be exponential in the size of the problem instance.
For the UNBOUNDED-THROUGHPUT problem, it
turns out the polynomial-time algorithm given in [3, 1]
does provide a solution whereK andT have a polynomial
size. For theBOUNDED-THROUGHPUT problem, the

size ofK has no reason to be polynomial in the size of
the original instance. Therefore, we need to define the
following "compact" version of the problem:

Definition 6 (COMPACT-BOUNDED-THROUGHPUT
((ci)16i6p, (wi)16i6p, (bi)16i6p, S, ρ)). Let K > 0
be a time-bound. Consider the reference platform, and
assume that each slave processorPi is equipped with a
bounded buffer that can hold at mostbi tasks. Is there
a K-periodic schedule of periodT , i.e. a schedule that
executesK tasks everyT time-units in steady state, and
such thatK 6 log S and K

T > ρ?

COMPACT-BOUNDED-THROUGHPUT belongs
to NP but is more constrained thanBOUNDED-
THROUGHPUT. We omit the proofs for brievety (it can
be found in [4] since they are very similar to the proof
presented in Section2.1) but both problems are strongly
NP-complete. Hence the difficulty is intrinsically due to
the memory limitation, and not to the statement of the
problem.

4.2 Divisible load scheduling under memory
constraints

A divisible task corresponds to a perfect parallel job
that can be arbitrarily split into several independent parts.
In the simplest variant, computation and communication
times for a given chunk are assumed to grow linearly with
the chunk size. However, this is not realistic for communi-
cations, and recent papers have added a start-up overhead
in the model, to take link latency into account. In this pa-
per we also focus on this affine cost model: it takeswiX
time-units to executeX units of load on workerPi, and
Gi + X.gi time-units to sendX units of load from the
master processorP0 to Pi. Note that in the case of inde-
pendent tasks, the latency is directly incorporated in the
valueci (since the sizeX of a task is fixed beforehand).
Two algorithmic techniques have been proposed to sched-
ule divisible loads, namely one-round and multi-round al-
gorithms:

• In a one-round distribution, each processor is used at
most once. Therefore, the first problem is to select
a subset of workers and to determine in which or-
der the chunks should be sent to the different work-
ers, given that the master can perform only one com-
munication at a time. Once the communication or-
der has been determined, the second problem is to
decide how much work should be allocated to each
workerPi: eachPi receivesαi units of load, where∑p

i=1 αi = Wtotal. The final objective is to minimize
the makespan, i.e. the total execution time. Selec-
tion and ordering are the most difficult parts of the
problem since theαi’s can then be found by solving
a simple linear program (closed-form expressions are
also available [7, 2]).

6

• One-round distributions lead to a poor utilization of
the workers. To alleviate this problem,multi-round
algorithms have been proposed. These algorithms
dispatch the load in multiple rounds of work alloca-
tion, and thus improve the overlapping of communi-
cations with computations. By comparison with one-
round algorithms, work on multi-round algorithms
has been scarce. The two main questions that must
be answered are: (i) what should the chunk sizes be
at each round? and (ii) how many rounds should be
used? It is widely acknowledged that the latencies
introduced in the affine model make the model more
realistic and cannot be avoided when dealing with
multi-round algorithms.

Definition 7 (UNBOUNDED-DIVISIBLE ((gi)16i6p,
(Gi)16i6p, (wi)16i6p, W, T)). Let T > 0 be a time-
bound, and consider the divisible platform. Is it possible
to process all theW load units withinT time-units on this
platform, using a multi-round distribution?

The complexity of this problem is still an open prob-
lem, even for one-round distributions.

Definition 8 (BOUNDED-DIVISIBLE ((gi)16i6p,
(Gi)16i6p, (wi)16i6p, (bi)16i6p, W, T)). Let T >
0 be a time-bound. Consider the divisible platform, where
each slavePi cannot hold more thanbi units of load at
any moment. Is it possible to process all theW load units
within T time-units on this platform, using a multi-round
distribution?

However BOUNDED-DIVISIBLE is strongly NP-
complete, for both one-round and multi-round distribu-
tions. Once again, the proofs, even if more technical, are
very similar to the proof presented in Section2.1. There-
fore they are omited for brievety but can be found in [4].

5 Related Work

To the best of our knowledge, the closest work on
throughput maximization under memory constraints is
presented in [8, 17] and [11].

In [8, 17], the authors study the number of buffers re-
quired to reach the optimal steady-state throughput. They
experimentally state that with non-interruptible commu-
nications, a bandwidth-centric protocol using a fixed
number of buffers will not reach optimal steady-state
throughput in all trees. Therefore they propose an au-
tonomous buffer growing protocol that automatically ad-
justs the number of required buffers. To solve the anarchic
growth of buffers problem, they study the situation where
communications are interruptible. They experimentally
show that, when allowing interruptible communications,
three buffers are sufficient to reach optimal steady-state
throughput in 99,6% of the cases. Allowing interruptible

communications allows communications to flow continu-
ously at a fixed rate and therefore amounts to modify the
granularity, hence minimizing buffering.

Another theoretical result whose framework is close to
ours is given by Drozdowski et al. [11]. The authors con-
sider scheduling divisible loads on a distributed comput-
ing system with limited available memory. They use the
same model as in this paper and show that finding the opti-
mal one-round load distribution is NP-hard under memory
constraints (using a reduction to2-Partition that is weakly
NP-hard [14]). Using integer linear programming, they
propose a robust (albeit possibly non-polynomial) algo-
rithm to tackle the difficulty of this problem and demon-
strate its efficiency using extensive simulations.

The complexity results for the distribution of indepen-
dent tasks on different platforms, with or without memory
limitations, are summarized in Table1.

6 Conclusion

In this paper, we have studied the allocation of a large
number of independent, equal-sized tasks, on simple star
platforms, under different application models and differ-
ent objective functions. We have also studied the same
problem in the context of divisible tasks. In all these situa-
tions memory limitations lead to NP-completeness results.
We believe that the classification of these scheduling prob-
lems will prove useful to the community, and will foster
more work on the open problems listed in Table1.

For the objective of makespan minimization, we have
been able to derive an approximation algorithm. We have
introduced several heuristics which have been evaluated
and compared by performing extensive simulations. Un-
expectedly, classical list-based scheduling heuristics that
aim at greedily minimizing the completion time of each
task are outperformed by the simplest heuristic that con-
sists in delegating data to the available processor that has
the smallest communication time, regardless of its com-
putation power.

References

[1] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies for
master-slave tasking on heterogeneous processor plat-
forms. IEEE Trans. Parallel Distributed Systems,
15(4):319–330, 2004.

[2] G. Barlas. Collection-aware optimum sequencing of op-
erations and closed-form solutions for the distribution of
a divisible load on arbitrary processor trees.IEEE Trans.
Parallel Distributed Systems, 9(5):429–441, 1998.

[3] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Bandwidth-centric allocation of independent

7

Objective
function

Memory
limitation

Star and Spider
Graphs

Trees and General
Graphs

Makespan Min No Polynomial [5, 12] NP Complete [13]
Makespan Min Yes NP Complete(this paper) NP Complete(this paper)

Throughput Max No Polynomial [3] Polynomial [1]
Throughput Max Yes NP Complete(this paper) NP Complete(this paper)

Divisible
Linear One-round

No Polynomial [6]
Polynomial for trees [6]
Open for general graphs

Divisible
Linear One-round

Yes Open Open

Divisible
Affine One-round

No Open Open

Divisible
Affine One-round

Yes
Weakly NP Complete [11]
NP Complete(this paper)

Weakly NP Complete [11]
NP Complete(this paper)

Divisible
Linear Multi-round

No
Asymptotically optimal
algorithm [6]

Asymptotically optimal
algorithm [6]

Divisible
Linear Multi-round

Yes Open Open

Divisible
Affine Multi-round

No
Asymptotically optimal
algorithm [6]

Asymptotically optimal
algorithm [6]

Divisible
Affine Multi-round

Yes NP Complete(this paper) NP Complete(this paper)

Table 1. Summary of complexity results.

tasks on heterogeneous platforms. InInternational Paral-
lel and Distributed Processing Symposium (IPDPS’2002).
IEEE Computer Society Press, 2002.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. In-
dependent and divisible tasks scheduling on heterogenous
star-shape platforms with limited memory. Technical Re-
port 2004-22, LIP, ENS Lyon, France, Apr. 2004.

[5] O. Beaumont, A. Legrand, and Y. Robert. A polynomial-
time algorithm for allocating independent tasks on hetero-
geneous fork-graphs. InISCIS XVII, Seventeenth Interna-
tional Symposium On Computer and Information Sciences,
pages 115–119. CRC Press, 2002.

[6] O. Beaumont, A. Legrand, and Y. Robert. Scheduling di-
visible workloads on heterogeneous platforms.Parallel
Computing, 29:1121–1152, 2003.

[7] V. Bharadwaj, D. Ghose, and V. Mani. Optimal Sequenc-
ing and Arrangement in Single-Level Tree Networks with
Communication Delays.IEEE transactions on parallel
and distributed systems, 5(9), 1994.

[8] L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck.
Autonomous protocols for bandwidth-centric scheduling
of independent-task applications. InInternational Paral-
lel and Distributed Processing Symposium IPDPS’2003.
IEEE Computer Society Press, 2003.

[9] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for Scheduling Parameter Sweep Applications
in Grid Environments. InNinth Heterogeneous Computing
Workshop, pages 349–363. IEEE Computer Society Press,
2000.

[10] E. G. Coffman.Computer and job-shop scheduling theory.
John Wiley & Sons, 1976.

[11] M. Drozdowski and P. Wolniewicz. Divisible Load
Scheduling in Systems with Limited Memory.Cluster
Computing, 6(1):19–29, 2003.

[12] P.-F. Dutot. Master-slave tasking on heterogeneous proces-
sors. InInternational Parallel and Distributed Processing

Symposium IPDPS’2003. IEEE Computer Society Press,
2003.

[13] P.-F. Dutot. Complexity of master-slave tasking on hetero-
geneous trees.European Journal of Operational Research,
2004. Special issue on the Dagstuhl meeting on Schedul-
ing for Computing and Manufacturing systems (to appear).

[14] M. R. Garey and D. S. Johnson.Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1991.

[15] J. P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder.
An enabling framework for master-worker applications
on the computational grid. InNinth IEEE International
Symposium on High Performance Distributed Computing
(HPDC’00). IEEE Computer Society Press, 2000.

[16] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adap-
tive scheduling for master-worker applications on the com-
putational grid. In R. Buyya and M. Baker, editors,Grid
Computing - GRID 2000, pages 214–227. Springer-Verlag
LNCS 1971, 2000.

[17] B. Kreaseck.Dynamic autonomous scheduling on Hetero-
geneous Systems. PhD thesis, University of California, San
Diego, 2003.

[18] M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R. Fre-
und. Dynamic matching and scheduling of a class of inde-
pendent tasks onto heterogeneous computing systems. In
Eight Heterogeneous Computing Workshop, pages 30–44.
IEEE Computer Society Press, 1999.

[19] G. Shao, F. Berman, and R. Wolski. Master/slave comput-
ing on the grid. InHeterogeneous Computing Workshop
HCW’00. IEEE Computer Society Press, 2000.

[20] J. B. Weissman. Scheduling multi-component applications
in heterogeneous wide-area networks. InHeterogeneous
Computing Workshop HCW’00. IEEE Computer Society
Press, 2000.

8

	1 Introduction
	2 Scheduling a finite number of independant tasks under memory constraints
	2.1 Framework and complexity results
	2.2 Approximation Algorithms

	3 Simulation
	3.1 Heuristics
	3.2 Simulation platforms
	3.3 Simulation results

	4 Relaxed optimization problems
	4.1 Throughput maximization under memory constraints
	4.2 Divisible load scheduling under memory constraints

	5 Related Work
	6 Conclusion

